The Promise of Polynomialbased Local Search to Boost Boolean MAX-CSP Solvers

Christine D. Hang Northeastern University Boston, MA

Joint work with Ahmed Abdelmeged, Daniel Rinehart and Karl J. Lieberherr

Approach & Thesis

- Reactivate a MAX-CSP algorithm for finding best possible approximations of satisfaction ratios from Journal of Algorithms [Lieberherr 1982]
- Apply the algorithm to implement a preprocessor for Boolean MAX-CSP solvers
- Thesis: the preprocessor boosts the performance of Boolean MAX-CSP solvers

τ_{Γ} : The P-optimal Threshold

- * Γ : a set of boolean relations
- * Which fraction τ_{Γ} of the constraints in a CSP(Γ) formula can always be satisfied?

$$\tau_{\Gamma} = \inf_{F \in \phi(\Gamma)} \max_{J \in \alpha(F)} fsat(F, J)$$

- * P-optimal Alg for Solving MAX-CSP(Γ) Problems
 - * Guaranteed to satisfy τ_{Γ} of the constraints
 - * Satisfying $\tau_{\Gamma} + \epsilon (\epsilon > 0)$ is NP-complete

summing Example
* Constraint Language

$$\Gamma_1 = \{R_1(A) = A, R_2(A, B) = \neg A \lor \neg B\}$$

* P-optimal Threshold
 $\tau_{\Gamma_1} = \frac{\sqrt{5} - 1}{2}$

The infimum-maximum Problem

$$\tau_{\Gamma} = \inf_{F \in \phi(\Gamma)} \max_{J \in \alpha(F)} fsat(F, J)$$

Problem Reduction

$$\tau_{\Gamma} = \inf_{F \in SYM(\Gamma)} \max_{J \in \alpha(F)} fsat(F, J)$$

Mean Polynomials

Definition of mean_F(n, k) : given a formula F containing n variables, the average fraction of satisfied constraints over all assignments of which exactly k variables are set to true

* Computation

$$mean_{F}(n,k) = \sum_{i=1}^{s} t_{R_{i}}(F) \cdot SAT_{R_{i}}(n,k)$$
$$SAT_{R_{i}}(n,k) = \frac{\sum_{j=0}^{r(R_{i})} \frac{q_{j}(R_{i})}{\binom{r(R_{i})}{j}} \cdot \binom{k}{j} \cdot \binom{n-k}{r(R_{i})-j}}{\binom{n}{\binom{n}{r(R_{i})}}}$$

Evergreen Local Search
EVERGREEN-LOCAL-SEARCH
$$(F, J_1)$$

1 $new \leftarrow fsat(F, J_1)$
2 repeat
3 $J_2 \leftarrow \text{EVERGREEN-NEIGHBOR}(F, J_1)$
4 $old \leftarrow new$
5 $new \leftarrow fsat(F, J_2)$
6 $J_1 \leftarrow J_2$
7 until $old = new$
8 return J_1

Two Approaches of Achieving τ_{Γ}

* Randomized Algorithm

* Introduced as a useful algorithm

* Derandomized Algorithm

Used to find Evergreen neighbors

Randomized Algorithm

RANDOMIZED-GAMBLER(F, b)1 bias a coin with respect to b2 $J \leftarrow \emptyset$ 3 for each variable $x \in F$ 4 do flip the biased coin 5 if the coin lands Head 6 then $J \leftarrow J \cup x$ 7 else $J \leftarrow J \cup \neg x$ 8 return J

Derandomized Algorithm

EVERGREEN-PLAYER(F)

1 $k \leftarrow 0, tm \leftarrow mean_F(n, t)$ 2 for $t \leftarrow 1$ to nmaximization 3 do if $mean_F(n,t) > tm$ then $k \leftarrow t, tm \leftarrow mean_F(n,t)$ 4 5 $J \leftarrow \emptyset$ 6 for each variable $x \in F$ do $F_1 \leftarrow \text{REDUCE}(x, F)$ 8 $F_0 \leftarrow \text{REDUCE}(\neg x, F)$ 9 if $mean_{F_1}(n-1,k-1) > mean_{F_0}(n-1,k)$ 10 then $J \leftarrow J \cup x, k \leftarrow k-1, F \leftarrow F_1$ 11 12 else $J \leftarrow J \cup \neg x, F \leftarrow F_0$ 13 return J

Shannon Decomposition

 $F = xF_{x=true} + \neg xF_{x=false}$

- Compute the average satisfaction ratios for the positive and negative Shannon cofactors
- * Pick the better one and set variable *x* accordingly
- * Iterate until all variables are set

Evergreen Laws

- P-optimal: Future MAX-CSP solvers will be guaranteed to construct an assignment with a satisfaction ratio no less than τ_Γ on their first try.
- Maximal: Future MAX-CSP solvers will be guaranteed to find a maximal assignment after constructing at most *c* assignments, where *c* is the total number of constraints.

Enforcing Evergreen Laws

- * ELS is a natural enforcer of the Evergreen laws
 - The P-optimality and maximality are implied by the Postcondition of the ELS algorithm
- ✤ ELS as a preprocessor
 - * Find a maximal assignment A for F
 - * n-map F with respect to A
 - * Solve the n-mapped formula
 - * Postprocess the result with respect to F

Experiments

 Preprocessor implemented in Scheme Benchmark: MAX-SAT Evaluation 2007 * MAX-SAT Solver: Toolbar * 2.16 GHz Intel Core 2 Duo, 1 GB RAM * Timeout: 20 minutes Performance Comparison Original formulae VS. Preprocessed formulae

Further Experiments

- Preprocessor implemented in Java
- Benchmark: a formula containing 2000 variables and 8400 constraints from the SAT competition in 2005
- * MAX-SAT Solver: Yices
- * 2.16 GHz Intel Core 2 Duo, 1 GB RAM

* Timeout: 20 minutes

Yices	Running Time (s)	Satisfaction Ratio
Without Preprocessing	888.048	94.7143%
With Preprocessing	0.0342615	100%

Thank you

http://www.ccs.neu.edu/evergreen

2-Satisfiable Problem

 A conjunctive-normal-form expression (cnf) IS said to be 2-satisfiable if and only if any two of its clauses are simultaneously satisfiable It is shown that every 2satisfiable cnf has a truth assignment that satisfies at least the fraction h of its clauses, where h = (sqrt(5) - 1)/2

 $\Gamma_2 = \{ \text{all disjunctions but } R_1(A) = A \}$

$$\tau_{\Gamma_2} = \frac{\sqrt{5} - 1}{2}$$