
The Promise of Polynomial-
based Local Search to Boost
Boolean MAX-CSP Solvers

Christine D. Hang
Northeastern University

Boston, MA
Joint work with Ahmed Abdelmeged, Daniel Rinehart and

Karl J. Lieberherr
1

Approach & Thesis

Reactivate a MAX-CSP algorithm for finding best
possible approximations of satisfaction ratios from
Journal of Algorithms [Lieberherr 1982]

Apply the algorithm to implement a preprocessor
for Boolean MAX-CSP solvers

Thesis: the preprocessor boosts the performance
of Boolean MAX-CSP solvers

2

Outline

What is τΓ ?

Deriving τΓ

Evergreen Local Search

Two Approaches of Achieving τΓ

Boosting MAX-CSP Solvers

3

τΓ: The P-optimal Threshold

Γ: a set of boolean relations

Which fraction τΓ of the constraints in a CSP(Γ)
formula can always be satisfied?

P-optimal Alg for Solving MAX-CSP(Γ) Problems

Guaranteed to satisfy τΓ of the constraints

Satisfying τΓ + ε (ε > 0) is NP-complete

3 Deriving τΓ

Given a constraint language Γ , what is the fraction of the constraints
that can be satisfied in any CSP(Γ) formula? We call this fraction τΓ and
formalize this question as the following infimum-maximum problem.
We denote the class of all CSP(Γ) formulae as φ(Γ), and the set of all
assignments of some CSP(Γ) formula F as α(F).

τΓ = inf
F∈φ(Γ)

max
J∈α(F)

fsat(F, J)

At first glance, this problem involves searching through all CSP(Γ) for-
mulae. However, we show that the search space can be reduced drastically
by searching only within symmetric formulae. We will also show how to
compute τΓ using polynomials.

3.1 Symmetric Formulae

Let πn be the full permutation group on the n variables of some CSP(Γ)
formula F . For every σ ∈ πn let σ(F) be the permuted formula, which
is the result of substituting σ(x) for all variables x in F .

Definition 2. A CSP(Γ) formula is called symmetric if any permuta-
tion of the variables in the formula returns the same formula up to a
permutation of the constraints.

Corollary 1. If F is a symmetric CSP(Γ) formula then for all permu-
tations σ in πn and all assignments J of F : fsat(F, J) = fsat(σ(F), J) =
fsat(F, σ−1(J))

Lemma 1. Let F be an asymmetric CSP(Γ) formula. Symmetrize F
by using the full permutation group on the n variables of F . Call these
permutations σ1 . . . σn!. sym(F) is the concatenation of σ1(F) . . . σn!(F)
and has n! ·constraints(F) constraints. For every assignment J to F the
following holds:

fsat(sym(F), J) =
1
n!

·
n!∑

i=1

fsat(σi(F), J)

Theorem 1. For every CSP(Γ) formula F , the symmetrized formula
sym(F) satisfies:

max
Assignment:J

fsat(sym(F), J) ≤ max
Assignment:J

fsat(F, J)

Proof. The proof is best explained in terms of a two-dimensional matrix
(shown in table 3.1) for a given CSP(Γ) formula F with n variables like
the one shown below. The rows of the matrix correspond to the 2n assign-
ments for F and the columns correspond to formulae, namely to the n!
permutations all applied to F . The first permutation is the identity and
we add one more column (the last one) to the matrix for the symmetrized
formula sym(F). An entry in the matrix gives the fraction of satisfied
constraints by the assignment (row) to the permuted formula (column).

4

4

Running Example

Constraint Language

P-optimal Threshold

Γ1 = {R1(A) = A,R2(A,B) = ¬A ∨ ¬B}

τΓ1 =
√

5− 1
2

5

Outline

What is τΓ ?

Deriving τΓ

Evergreen Local Search

Two Approaches of Achieving τΓ

Boosting MAX-CSP Solvers

6

The infimum-maximum Problem

Symmetric formulas have the smallest
satisfaction ratio

Problem Reduction

3 Deriving τΓ

Given a constraint language Γ , what is the fraction of the constraints
that can be satisfied in any CSP(Γ) formula? We call this fraction τΓ and
formalize this question as the following infimum-maximum problem.
We denote the class of all CSP(Γ) formulae as φ(Γ), and the set of all
assignments of some CSP(Γ) formula F as α(F).

τΓ = inf
F∈φ(Γ)

max
J∈α(F)

fsat(F, J)

At first glance, this problem involves searching through all CSP(Γ) for-
mulae. However, we show that the search space can be reduced drastically
by searching only within symmetric formulae. We will also show how to
compute τΓ using polynomials.

3.1 Symmetric Formulae

Let πn be the full permutation group on the n variables of some CSP(Γ)
formula F . For every σ ∈ πn let σ(F) be the permuted formula, which
is the result of substituting σ(x) for all variables x in F .

Definition 2. A CSP(Γ) formula is called symmetric if any permuta-
tion of the variables in the formula returns the same formula up to a
permutation of the constraints.

Corollary 1. If F is a symmetric CSP(Γ) formula then for all permu-
tations σ in πn and all assignments J of F : fsat(F, J) = fsat(σ(F), J) =
fsat(F, σ−1(J))

Lemma 1. Let F be an asymmetric CSP(Γ) formula. Symmetrize F
by using the full permutation group on the n variables of F . Call these
permutations σ1 . . . σn!. sym(F) is the concatenation of σ1(F) . . . σn!(F)
and has n! ·constraints(F) constraints. For every assignment J to F the
following holds:

fsat(sym(F), J) =
1
n!

·
n!∑

i=1

fsat(σi(F), J)

Theorem 1. For every CSP(Γ) formula F , the symmetrized formula
sym(F) satisfies:

max
Assignment:J

fsat(sym(F), J) ≤ max
Assignment:J

fsat(F, J)

Proof. The proof is best explained in terms of a two-dimensional matrix
(shown in table 3.1) for a given CSP(Γ) formula F with n variables like
the one shown below. The rows of the matrix correspond to the 2n assign-
ments for F and the columns correspond to formulae, namely to the n!
permutations all applied to F . The first permutation is the identity and
we add one more column (the last one) to the matrix for the symmetrized
formula sym(F). An entry in the matrix gives the fraction of satisfied
constraints by the assignment (row) to the permuted formula (column).

4

According to lemma 1 and the fact that if the mean of a set of numbers
is f then at least one number is greater than or equal to f , the last entry
of every row is less than or equal to one of the entries x in the same row.
Let the column where this entry resides correspond to permutation σj .
We construct the inverse of σj (because fsat(σ(F), ai) = fsat(F, σ−1(ai)
) and apply it to ai. This gives us a new row corresponding to σ−1

j (ai)
and the claim is that in that row there is also the same entry x, namely
in column 1 (identity permutation).

σ1(F) . . . σj(F) . . . σn!(F) sym(F)
a1

...
ai x ≤ x
...

σ−1
j (ai) x

...
a2n

Table 1. Matrix

The above argument shows that

∀F∀J∃J ′ : fsat(sym(F), J) ≤ fsat(F, J ′),

where F is a CSP(Γ) formula and J and J ′ are assignments for sym(F)
and F respectively. Now we choose the maximum assignment Jmaxsym for
sym(F). The inequality also holds for this assignment. F then must have
an assignment that is at least as good as Jmaxsym for sym(F). Hence, the
theorem follows.

We denote the class of all symmetric CSP(Γ) formulae as SYM (Γ), and
simplify the infimum-maximum problem to

τΓ = inf
F∈SYM (Γ)

max
J∈α(F)

fsat(F, J)

This simplification is correct because theorem 1 states that for every
asymmetric formula there exists a symmetric one whose satisfaction ratio
is less. It is sufficient to only minimize over symmetric formulae.

3.2 Computing τΓ

Mean Polynomials Given a CSP(Γ) formula F that contains n vari-
ables, we define meanF (n, k) to be the average fraction of satisfied con-
straints over all assignments of which exactly k variables are assigned
true . We reactivate the approach of computing meanF (n, k) from [1].
Let Γ = {R1, R2, . . . , Rs} and let tRi(1 ≤ i ≤ s) be the fraction of
constraints in F that contain relation Ri.

5

7

Mean Polynomials

Definition of : given a formula F
containing n variables, the average fraction of
satisfied constraints over all assignments of which
exactly k variables are set to true

Computation

Lemma 2. meanF (n, k) is a polynomial in k. Its coefficients are func-
tions of n and tRi(1 ≤ i ≤ s) which are linear in tRi . The degree of the
polynomial is bounded by the highest rank of a relation in Γ .

Proof. By elementary combinatorial analysis,

meanF (n, k) =
s∑

i=1

tRi(F) · SATRi(n, k)

SATRi(n, k) =

∑r(Ri)
j=0

qj(Ri)

(r(Ri)
j)

·
(

k
j

)
·
(

n−k
r(Ri)−j

)

(
n

r(Ri)

)

where r(Ri) is the rank of relation Ri, and qj(Ri) is the number of
satisfied rows in the truth table of relation Ri when exactly j variables
are set to true.

Theorem 2. If F is a symmetric CSP(Γ) formula then

max
J∈α(F)

fsat(F, J) = max
0≤k≤n

meanF (n, k)

Proof. According to corollary 1, permuting an assignment doesn’t change
the fraction of satisfied constraints in a symmetric formula. In other
words, for a symmetric formula all that matters in an assignment is
the number of true variables. Since the mean polynomial averages over
assignments that set only k variables to true, the fraction of satisfied
constraints predicted by meanF (n, k) is exact.

Theorem 2 allows us to further simplify the infimum-maximum prob-
lem to

τΓ = inf
F∈SYM (Γ)

max
0≤k≤n

meanF (n, k)

This reduces the search space exponentially from size 2n to n and it can
be reduced even further using calculus.

Look-ahead Polynomials Given a CSP(Γ) formula F and a com-
plete assignment J of its n variables, we define a look-ahead polynomial,
denoted as lap(F, J, k), to be the average fraction of satisfied constraints
over all variations of J in which exactly k variables are flipped. We call
this polynomial the look-ahead polynomial because it looks ahead into
the search space.
We define n-map(F, M) as a function that takes a CSP(Γ) formula F and
an assignment M and replaces each variable in F with its complement
only if the variable is assigned to true in M . The name n-map comes
from [3]. We assume that Γ is closed under n-mapping. If this is not
the case, we use its closure under n-mapping. One can easily derive the
following correspondence between mean and look-ahead polynomials.

lap(F, J, k) = meann-map(F,J)(n, k)

6

meanF (n, k)

8

The infimum-maximum Problem

If F is a symmetric CSP(Γ) formula, then

Problem Reduction

Example for Γ1

Lieberherr & Specker [JACM 81]

Lemma 2. meanF (n, k) is a polynomial in k. Its coefficients are func-
tions of n and tRi(1 ≤ i ≤ s) which are linear in tRi . The degree of the
polynomial is bounded by the highest rank of a relation in Γ .

Proof. By elementary combinatorial analysis,

meanF (n, k) =
s∑

i=1

tRi(F) · SATRi(n, k)

SATRi(n, k) =

∑r(Ri)
j=0

qj(Ri)

(r(Ri)
j)

·
(

k
j

)
·
(

n−k
r(Ri)−j

)

(
n

r(Ri)

)

where r(Ri) is the rank of relation Ri, and qj(Ri) is the number of
satisfied rows in the truth table of relation Ri when exactly j variables
are set to true.

Theorem 2. If F is a symmetric CSP(Γ) formula then

max
J∈α(F)

fsat(F, J) = max
0≤k≤n

meanF (n, k)

Proof. According to corollary 1, permuting an assignment doesn’t change
the fraction of satisfied constraints in a symmetric formula. In other
words, for a symmetric formula all that matters in an assignment is
the number of true variables. Since the mean polynomial averages over
assignments that set only k variables to true, the fraction of satisfied
constraints predicted by meanF (n, k) is exact.

Theorem 2 allows us to further simplify the infimum-maximum prob-
lem to

τΓ = inf
F∈SYM (Γ)

max
0≤k≤n

meanF (n, k)

This reduces the search space exponentially from size 2n to n and it can
be reduced even further using calculus.

Look-ahead Polynomials Given a CSP(Γ) formula F and a com-
plete assignment J of its n variables, we define a look-ahead polynomial,
denoted as lap(F, J, k), to be the average fraction of satisfied constraints
over all variations of J in which exactly k variables are flipped. We call
this polynomial the look-ahead polynomial because it looks ahead into
the search space.
We define n-map(F, M) as a function that takes a CSP(Γ) formula F and
an assignment M and replaces each variable in F with its complement
only if the variable is assigned to true in M . The name n-map comes
from [3]. We assume that Γ is closed under n-mapping. If this is not
the case, we use its closure under n-mapping. One can easily derive the
following correspondence between mean and look-ahead polynomials.

lap(F, J, k) = meann-map(F,J)(n, k)

6

Lemma 2. meanF (n, k) is a polynomial in k. Its coefficients are func-
tions of n and tRi(1 ≤ i ≤ s) which are linear in tRi . The degree of the
polynomial is bounded by the highest rank of a relation in Γ .

Proof. By elementary combinatorial analysis,

meanF (n, k) =
s∑

i=1

tRi(F) · SATRi(n, k)

SATRi(n, k) =

∑r(Ri)
j=0

qj(Ri)

(r(Ri)
j)

·
(

k
j

)
·
(

n−k
r(Ri)−j

)

(
n

r(Ri)

)

where r(Ri) is the rank of relation Ri, and qj(Ri) is the number of
satisfied rows in the truth table of relation Ri when exactly j variables
are set to true.

Theorem 2. If F is a symmetric CSP(Γ) formula then

max
J∈α(F)

fsat(F, J) = max
0≤k≤n

meanF (n, k)

Proof. According to corollary 1, permuting an assignment doesn’t change
the fraction of satisfied constraints in a symmetric formula. In other
words, for a symmetric formula all that matters in an assignment is
the number of true variables. Since the mean polynomial averages over
assignments that set only k variables to true, the fraction of satisfied
constraints predicted by meanF (n, k) is exact.

Theorem 2 allows us to further simplify the infimum-maximum prob-
lem to

τΓ = inf
F∈SYM (Γ)

max
0≤k≤n

meanF (n, k)

This reduces the search space exponentially from size 2n to n and it can
be reduced even further using calculus.

Look-ahead Polynomials Given a CSP(Γ) formula F and a com-
plete assignment J of its n variables, we define a look-ahead polynomial,
denoted as lap(F, J, k), to be the average fraction of satisfied constraints
over all variations of J in which exactly k variables are flipped. We call
this polynomial the look-ahead polynomial because it looks ahead into
the search space.
We define n-map(F, M) as a function that takes a CSP(Γ) formula F and
an assignment M and replaces each variable in F with its complement
only if the variable is assigned to true in M . The name n-map comes
from [3]. We assume that Γ is closed under n-mapping. If this is not
the case, we use its closure under n-mapping. One can easily derive the
following correspondence between mean and look-ahead polynomials.

lap(F, J, k) = meann-map(F,J)(n, k)

6

τΓ = lim
n→∞

inf
0<a<∞

max
0≤k≤n

k · a +
(n
2

)
−

(k
2

)

n · a +
(n
2

) = (
√

5− 1)/2

9

Outline

What is τΓ ?

Deriving τΓ

Evergreen Local Search

Two Approaches of Achieving τΓ

Boosting MAX-CSP Solvers

10

Evergreen Local Search

2 Evergreen Local Search

In local search, a neighborhood relation is used to define the set of assign-
ments that are considered neighbors of a given assignment. We introduce
the notion of flipping a variable as setting it to the negation of its cur-
rent value. An assignment J2 is a k-flip of assignment J1, if k variables
in J2 are flipped with respect to J1. For a given formula F and a given
assignment J1, we consider an assignment J2 to be in the Evergreen-
neighborhood(EN) of J1 if J2 has a satisfaction ratio that is no less than
the average of the satisfaction ratios of all k-flips of J1. It is important
to recognize that J2 does not have to be a k-flip of J1.
For a given assignment J , traditional k-opt local search algorithms con-
sider all the k-flips of J to be its neighbors. What distinguishes our local
search algorithm from the traditional algorithms is that we only pick the
assignments that are at least as good as the average of the k-flips of J
to be its neighbors. Specifically, let lap(F, J, k) be the mean fraction of
satisfied constraints over the

`

n
k

´

assignments for F where among the n
variables of J exactly k of them are flipped. We will introduce how to
compute lap(F, J, k) in section 3.

Definition 1. For formula F , J2 is a k-Evergreen-neighbor of J1, writ-
ten as EN (F, J1, J2, k), if fsat(F, J2) ≥ lap(F, J1, k).

We define k-Evergreen-neighbor finder, ENF (F, J1, k), as an algorithm
that takes as inputs a formula F , an assignment J1 and an integer
k(0 ≤ k ≤ n), and returns as output an assignment J2 such that
EN (F, J1, J2, k) holds. For a given formula, a given assignment and a
given integer k, there exists at least one k-Evergreen-neighbor. Note that
ENF (F, J1, k) specifies one local search step.
Let kmax be an integer k(0 ≤ k ≤ n) that maximizes lap(F, J, k) for a
given formula F and a given assignment J . If we fix the k of ENF(F, J1, k)
to be kmax, we will derive a maximal Evergreen-neighbor finder, mENF (F, J1),
which takes as inputs a formula F and an assignment J1, and returns
as output an assignment J2 such that EN (F, J1, J2, kmax) holds. We will
specify this maximal local search step in section 4.
We construct our Evergreen local search algorithm, ELS , employing a
maximal Evergreen-neighbor finder at each step until the fraction of
satisfied constraints stops increasing. Note that the number of loops in
this algorithm is bounded by the total number of constraints, because at
least one additional constraint will be satisfied through each iteration of
the loop.

Evergreen-Local-Search(F, J1)

1 new ← fsat(F, J1)
2 repeat
3 J2 ← evergreen-neighbor(F, J1)
4 old ← new
5 new ← fsat(F, J2)
6 J1 ← J2

7 until old = new
8 return J1

3
11

Evergreen Neighborhood

1-flip

J1

J

J(n
1)

J1 J(n
k)

k-flip

n-flip

. . .

. . .

0-flip

...

...

...
...

...

...
...

...

...

meanF (n, k)

meanF (n, 0)

meanF (n, 1)

meanF (n, n)

meanF (n, kmax)

J

¬J 12

Evergreen Neighborhood

meanF (n, kmax)
average

JEN

fsat(F, J) ≥ average

fsat(F, J) < average

kmax-flip

Lemma 2. meanF (n, k) is a polynomial in k. Its coefficients are func-
tions of n and tRi(1 ≤ i ≤ s) which are linear in tRi . The degree of the
polynomial is bounded by the highest rank of a relation in Γ .

Proof. By elementary combinatorial analysis,

meanF (n, k) =
s∑

i=1

tRi(F) · SATRi(n, k)

SATRi(n, k) =

∑r(Ri)
j=0

qj(Ri)

(r(Ri)
j)

·
(

k
j

)
·
(

n−k
r(Ri)−j

)

(
n

r(Ri)

)

where r(Ri) is the rank of relation Ri, and qj(Ri) is the number of
satisfied rows in the truth table of relation Ri when exactly j variables
are set to true.

Theorem 2. If F is a symmetric CSP(Γ) formula then

max
J∈α(F)

fsat(F, J) = max
0≤k≤n

meanF (n, k)

Proof. According to corollary 1, permuting an assignment doesn’t change
the fraction of satisfied constraints in a symmetric formula. In other
words, for a symmetric formula all that matters in an assignment is
the number of true variables. Since the mean polynomial averages over
assignments that set only k variables to true, the fraction of satisfied
constraints predicted by meanF (n, k) is exact.

Theorem 2 allows us to further simplify the infimum-maximum prob-
lem to

τΓ = inf
F∈SYM (Γ)

max
0≤k≤n

meanF (n, k)

This reduces the search space exponentially from size 2n to n and it can
be reduced even further using calculus.

Look-ahead Polynomials Given a CSP(Γ) formula F and a com-
plete assignment J of its n variables, we define a look-ahead polynomial,
denoted as lap(F, J, k), to be the average fraction of satisfied constraints
over all variations of J in which exactly k variables are flipped. We call
this polynomial the look-ahead polynomial because it looks ahead into
the search space.
We define n-map(F, M) as a function that takes a CSP(Γ) formula F and
an assignment M and replaces each variable in F with its complement
only if the variable is assigned to true in M . The name n-map comes
from [3]. We assume that Γ is closed under n-mapping. If this is not
the case, we use its closure under n-mapping. One can easily derive the
following correspondence between mean and look-ahead polynomials.

lap(F, J, k) = meann-map(F,J)(n, k)

6

Recall:
13

Two Approaches of Achieving τΓ

Randomized Algorithm

Introduced as a useful algorithm

Derandomized Algorithm

Used to find Evergreen neighbors

14

Randomized Algorithm

4 Achieving τΓ

We introduce two algorithms, a randomized one which achieves τΓ with
high probability and a derandomized one which is guaranteed to achieve
τΓ . We will use the latter to generate Evergreen local search steps of the
ELS algorithm.

4.1 Randomized Algorithm

Given a CSP(Γ) formula F , the randomized algorithm iterates over its
variables, setting each to true with a probability of b. We call this algo-
rithm randomized-gambler.

randomized-gambler(F, b)

1 bias a coin with respect to b
2 J ← ∅
3 for each variable x ∈ F
4 do flip the biased coin
5 if the coin lands Head
6 then J ← J ∪ x
7 else J ← J ∪ ¬x
8 return J

Given a CSP(Γ) formula F that contains c constraints, we denote by
favg the average satisfaction ratio of all the assignments of F . We denote
by p the probability that we find an assignment whose satisfaction ratio
is no less than favg after a single iteration of randomized-gambler. We
first compute a lower bound of p. Consider the worst scenario in which
among the 2n possible assignments of F , all whose satisfaction ratio is
above favg satisfies exactly c constraints, whereas all whose satisfaction
ratio is below favg satisfies exactly c · favg − 1 constraints. We denote the
corresponding probability by pw.

c · favg = pw · c + (1 − pw) · (c · favg − 1)

pw =
1

1 + c · (1 − favg)

Intuitively, the more iterations of randomized-gambler we run, the
more confident we are that the satisfaction ratio of at least one of the
resulting assignments is no less than favg . We denote by δ the probability
that we find an assignment whose satisfaction ratio is no less than favg

after n iterations of randomized-gambler.

δ = 1 − (1 − p)n

We bound the number of iterations that we need in order to achieve a
given probability of δ′. Since 1 − (1 − p)n ≥ 1 − (1 − pw)n ≥ 1 − e−npw ,

7

15

Optimum Bias

The Optimum Bias

 : a k that maximizes

Postcondition

With high probability,

we have

1 − e−npw ≥ δ′

n ≥ − 1
pw

· ln(1 − δ′)

n ≥ (1 + c · (1 − favg)) · ln
1

1 − δ′

A special case is when we set b to kmax/n, where kmax is a k that maxi-
mizes the polynomial meanF (n, k). Then, using randomized-gambler,
we will find with high probability an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
call the randomized algorithm in this scenario Evergreen-gambler.

Evergreen-gambler(F)

1 b ← kmax/n
2 randomized-gambler(F, b)

4.2 Derandomized Algorithm

The derandomized algorithm is a deterministic polynomial time algo-
rithm that guarantees to return an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
reactivate this algorithm from [1, 4], and call it Evergreen-player. We
define REDUCE(l, F) as a function that takes a literal, l, and a for-
mula, F , and produces a new formula which is the same as F with the
variable corresponding to l assigned true if l is positive and assigned
false otherwise.

Evergreen-player(F)

1 k ← 0, tm ← meanF (n, t)
2 for t ← 1 to n
3 do if meanF (n, t) > tm
4 then k ← t, tm ← meanF (n, t)
5 J ← ∅
6 for each variable x ∈ F
7 do
8 F1 ← reduce(x, F)
9 F0 ← reduce(¬x, F)

10 if meanF1(n − 1, k − 1) > meanF0(n − 1, k)
11 then J ← J ∪ x, k ← k − 1, F ← F1

12 else J ← J ∪ ¬x, F ← F0

13 return J

Now we prove the correctness of Evergreen-player. Note that the(
n
k

)
cases of meanF (n, k), in which exactly k variables are set to true ,

can be divided into two groups: the former consists of
(

n−1
k−1

)
cases that

8

kmax meanF (n, k)

τΓ ≤ max
0≤k≤n

meanF (n, k) ≤ fsat(F, J)

16

Derandomized Algorithm

we have

1 − e−npw ≥ δ′

n ≥ − 1
pw

· ln(1 − δ′)

n ≥ (1 + c · (1 − favg)) · ln
1

1 − δ′

A special case is when we set b to kmax/n, where kmax is a k that maxi-
mizes the polynomial meanF (n, k). Then, using randomized-gambler,
we will find with high probability an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
call the randomized algorithm in this scenario Evergreen-gambler.

Evergreen-gambler(F)

1 b ← kmax/n
2 randomized-gambler(F, b)

4.2 Derandomized Algorithm

The derandomized algorithm is a deterministic polynomial time algo-
rithm that guarantees to return an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
reactivate this algorithm from [1, 4], and call it Evergreen-player. We
define REDUCE(l, F) as a function that takes a literal, l, and a for-
mula, F , and produces a new formula which is the same as F with the
variable corresponding to l assigned true if l is positive and assigned
false otherwise.

Evergreen-player(F)

1 k ← 0, tm ← meanF (n, t)
2 for t ← 1 to n
3 do if meanF (n, t) > tm
4 then k ← t, tm ← meanF (n, t)
5 J ← ∅
6 for each variable x ∈ F
7 do
8 F1 ← reduce(x, F)
9 F0 ← reduce(¬x, F)

10 if meanF1(n − 1, k − 1) > meanF0(n − 1, k)
11 then J ← J ∪ x, k ← k − 1, F ← F1

12 else J ← J ∪ ¬x, F ← F0

13 return J

Now we prove the correctness of Evergreen-player. Note that the(
n
k

)
cases of meanF (n, k), in which exactly k variables are set to true ,

can be divided into two groups: the former consists of
(

n−1
k−1

)
cases that

8

maximization

17

Shannon Decomposition

Compute the average satisfaction ratios for the
positive and negative Shannon cofactors

Pick the better one and set variable x accordingly

Iterate until all variables are set

F = xFx=true + ¬xFx=false

18

Derandomized Algorithm

Postcondition

Generating Evergreen Local Search Steps

τΓ ≤ max
0≤k≤n

meanF (n, k) ≤ fsat(F, J)

evergreen-neighbor(F, J1)

1 F ′ ← n-map(F, J1)
2 Jaux ← Evergreen-player(F ′)
3 J2 ← J1 xor Jaux

4 return J2

5 Implications of τΓ on MAX-CSP Solvers

The insights from τΓ offer opportunities to improve MAX-CSP solvers.
These opportunities apply to both complete solvers that provide a proof,
and incomplete solvers, like stochastic local search solvers. The process of
deriving and achieving τΓ shows that a non-trivial level of satisfaction can
be reached in polynomial time. We postulate two properties that future
MAX-CSP solvers will have and that the designers of these solvers will
be able to prove. If a MAX-CSP solver possesses these two properties, it
will have better performance on practically useful formulae.

5.1 Evergreen Law: P-optimal

We postulate that future MAX-CSP solvers will be guaranteed to con-
struct an assignment with a satisfaction ratio no less than τΓ on their first
try. In fact, this level of satisfaction will be obtained in time quadratic in
the size of the CSP formula. This can be achieved by either the proba-
bilistic algorithm evergreen-gambler or its derandomized counterpart
evergreen-player.

5.2 Evergreen Law: Maximal

As an iterative application of the P-optimal law, we postulate that future
MAX-CSP solvers will be guaranteed to find a maximal assignment after
constructing at most c assignments, where c is the total number of con-
straints. We consider an assignment M as maximal for a given CSP(Γ)
formula F , if

max
0≤k≤n

meann-map(F,M)(n, k) = meann-map(F,M)(n, 0)

Note that if an assignment is not maximal, it cannot be maximum. A
maximal assignment is not globally maximum. It is locally maximum in
the sense that changing it with a maximum bias probability will not give
a better assignment. Depending on Γ , finding a maximum assignment
for a CSP(Γ) formula can be NP -hard. On the other hand, finding
a maximal assignment is always in P . The following algorithm finds a
maximal assignment for a given CSP(Γ) formula.

10

19

Evergreen Local Search

Maximal: An assignment M is maximal for F, if

Postcondition: J1 is maximal for F

mENF (F, J1)

1 F ′ ← n-map(F, J1)
2 Jaux ← Evergreen-player(F ′)
3 J2 ← J1 xor Jaux

4 return J2

5 Implications of τΓ on MAX-CSP Solvers

The insights from τΓ offer opportunities to improve MAX-CSP solvers.
These opportunities apply to both complete solvers that provide a proof,
and incomplete solvers, like stochastic local search solvers. The process of
deriving and achieving τΓ shows that a non-trivial level of satisfaction can
be reached in polynomial time. We postulate two properties that future
MAX-CSP solvers will have and that the designers of these solvers will
be able to prove. If a MAX-CSP solver possesses these two properties, it
will have better performance on practically useful formulae.

5.1 Evergreen Law: P-optimal

We postulate that future MAX-CSP solvers will be guaranteed to con-
struct an assignment with a satisfaction ratio no less than τΓ on their first
try. In fact, this level of satisfaction will be obtained in time quadratic in
the size of the CSP formula. This can be achieved by either the proba-
bilistic algorithm evergreen-gambler or its derandomized counterpart
evergreen-player.

5.2 Evergreen Law: Maximal

As an iterative application of the P-optimal law, we postulate that future
MAX-CSP solvers will be guaranteed to find a maximal assignment after
constructing at most c assignments, where c is the total number of con-
straints. We consider an assignment M as maximal for a given CSP(Γ)
formula F , if

max
0≤k≤n

meann-map(F,M)(n, k) = meann-map(F,M)(n, 0)

Note that if an assignment is not maximal, it cannot be maximum. A
maximal assignment is not globally maximum. It is locally maximum in
the sense that changing it with a maximum bias probability will not give
a better assignment. Depending on Γ , finding a maximum assignment
for a CSP(Γ) formula can be NP -hard. On the other hand, finding
a maximal assignment is always in P . The following algorithm finds a
maximal assignment for a given CSP(Γ) formula.

10

R1(x1)
R1(x2)
R1(x3)

R2(x1, x2)
R2(x1, x3)
R2(x2, x3)

20

Outline

What is τΓ ?

Deriving τΓ

Evergreen Local Search

Two Approaches of Achieving τΓ

Boosting MAX-CSP Solvers

21

Evergreen Laws

P-optimal: Future MAX-CSP solvers will be
guaranteed to construct an assignment with a
satisfaction ratio no less than τΓ on their first try.

Maximal: Future MAX-CSP solvers will be
guaranteed to find a maximal assignment after
constructing at most c assignments, where c is the
total number of constraints.

22

Enforcing Evergreen Laws

ELS is a natural enforcer of the Evergreen laws

The P-optimality and maximality are implied
by the Postcondition of the ELS algorithm

ELS as a preprocessor

Find a maximal assignment A for F

n-map F with respect to A

Solve the n-mapped formula

Postprocess the result with respect to F
23

Experiments

Preprocessor implemented in Scheme

Benchmark: MAX-SAT Evaluation 2007

MAX-SAT Solver: Toolbar

2.16 GHz Intel Core 2 Duo, 1 GB RAM

Timeout: 20 minutes

Performance Comparison

Original formulae VS. Preprocessed formulae
24

Boosting Effect

CPU Time Comparison

100

200

300

400

500

600

700

800

900

C
P

U
 T

im
e

in
 S

ec
on

ds

0
300 400 500 600

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 2. Running Time

Satisfaction Ratio Comparison

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

S
at

is
fa

ct
io

n
R

at
io

 A
s

a
P

er
ce

nt
ag

e

93.50%
700 800 900 1000

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 3. Satisfaction Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800 900 1000

Number of Constraints

P
re

pr
oc

es
si

ng
 T

im
e

in
 S

ec
on

ds

Fig. 4. Preprocessing Time

7 Related and Future Work

Our Boolean MAX-CSP is a special case of Weighted Constraint Satis-
faction Problem (WCSP). WCSP is an optimization version of the CSP
framework in which constraints are extended by associating costs to tu-
ples. Solving a WCSP formula consists of finding a complete assignment
of minimal cost. Our Boolean MAX-CSP is a special case of WCSP be-
cause our domain is only Boolean and because the tuples can have only
two costs: zero when the relation is satisfied and a positive cost when the
relation is unsatisfied. Several kinds of algorithms have been proposed
to solve WCSP: Bucket Elimination [7] and several Branch and Bound
algorithms (see [8] for an enumeration). None of those WCSP algorithms
is using polynomials as abstract representations of WCSP problems. Al-
though we present our results for Boolean MAX-CSP, the techniques also
generalize to MAX-CSP, see section 8 of [1].
[9] discusses local search algorithms both for SAT and MAX-SAT and
shows that local search outperforms complete algorithms on certain for-
mulae. While traditional local search algorithms have a very simple
neighborhood relation, our neighborhood relation is more complex but
also efficiently computable. For example, Selman and Kautz have studied
local search for SAT [10]. They use a traditional neighborhood notion:
specifically, they explore the set of assignments that differ from the cur-
rent one on only one variable. We use a more refined notion of neighbor-
hood for MAX-SAT and MAX-CSP and prove an optimality result for
our neighborhood concept. In addition, while traditional local search al-
gorithms look for a largest increase or decrease within the neighborhood,
we only find one point in the neighborhood. It should be noted, however,
that we can also generate a large number of different assignments in the

13

CPU Time Comparison

100

200

300

400

500

600

700

800

900

C
P

U
 T

im
e

in
 S

ec
on

ds

0
300 400 500 600

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 2. Running Time

Satisfaction Ratio Comparison

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

S
at

is
fa

ct
io

n
R

at
io

 A
s

a
P

er
ce

nt
ag

e
93.50%

700 800 900 1000

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 3. Satisfaction Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800 900 1000

Number of Constraints

P
re

pr
oc

es
si

ng
 T

im
e

in
 S

ec
on

ds

Fig. 4. Preprocessing Time

7 Related and Future Work

Our Boolean MAX-CSP is a special case of Weighted Constraint Satis-
faction Problem (WCSP). WCSP is an optimization version of the CSP
framework in which constraints are extended by associating costs to tu-
ples. Solving a WCSP formula consists of finding a complete assignment
of minimal cost. Our Boolean MAX-CSP is a special case of WCSP be-
cause our domain is only Boolean and because the tuples can have only
two costs: zero when the relation is satisfied and a positive cost when the
relation is unsatisfied. Several kinds of algorithms have been proposed
to solve WCSP: Bucket Elimination [7] and several Branch and Bound
algorithms (see [8] for an enumeration). None of those WCSP algorithms
is using polynomials as abstract representations of WCSP problems. Al-
though we present our results for Boolean MAX-CSP, the techniques also
generalize to MAX-CSP, see section 8 of [1].
[9] discusses local search algorithms both for SAT and MAX-SAT and
shows that local search outperforms complete algorithms on certain for-
mulae. While traditional local search algorithms have a very simple
neighborhood relation, our neighborhood relation is more complex but
also efficiently computable. For example, Selman and Kautz have studied
local search for SAT [10]. They use a traditional neighborhood notion:
specifically, they explore the set of assignments that differ from the cur-
rent one on only one variable. We use a more refined notion of neighbor-
hood for MAX-SAT and MAX-CSP and prove an optimality result for
our neighborhood concept. In addition, while traditional local search al-
gorithms look for a largest increase or decrease within the neighborhood,
we only find one point in the neighborhood. It should be noted, however,
that we can also generate a large number of different assignments in the

13

Running Time Satisfaction Ratio

Finished Not finished

25

Preprocessing Time

CPU Time Comparison

100

200

300

400

500

600

700

800

900

C
P

U
 T

im
e

in
 S

ec
on

ds

0
300 400 500 600

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 2. Running Time

Satisfaction Ratio Comparison

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

S
at

is
fa

ct
io

n
R

at
io

 A
s

a
P

er
ce

nt
ag

e

93.50%
700 800 900 1000

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 3. Satisfaction Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800 900 1000

Number of Constraints

P
re

pr
oc

es
si

ng
 T

im
e

in
 S

ec
on

ds

Fig. 4. Preprocessing Time

7 Related and Future Work

Our Boolean MAX-CSP is a special case of Weighted Constraint Satis-
faction Problem (WCSP). WCSP is an optimization version of the CSP
framework in which constraints are extended by associating costs to tu-
ples. Solving a WCSP formula consists of finding a complete assignment
of minimal cost. Our Boolean MAX-CSP is a special case of WCSP be-
cause our domain is only Boolean and because the tuples can have only
two costs: zero when the relation is satisfied and a positive cost when the
relation is unsatisfied. Several kinds of algorithms have been proposed
to solve WCSP: Bucket Elimination [7] and several Branch and Bound
algorithms (see [8] for an enumeration). None of those WCSP algorithms
is using polynomials as abstract representations of WCSP problems. Al-
though we present our results for Boolean MAX-CSP, the techniques also
generalize to MAX-CSP, see section 8 of [1].
[9] discusses local search algorithms both for SAT and MAX-SAT and
shows that local search outperforms complete algorithms on certain for-
mulae. While traditional local search algorithms have a very simple
neighborhood relation, our neighborhood relation is more complex but
also efficiently computable. For example, Selman and Kautz have studied
local search for SAT [10]. They use a traditional neighborhood notion:
specifically, they explore the set of assignments that differ from the cur-
rent one on only one variable. We use a more refined notion of neighbor-
hood for MAX-SAT and MAX-CSP and prove an optimality result for
our neighborhood concept. In addition, while traditional local search al-
gorithms look for a largest increase or decrease within the neighborhood,
we only find one point in the neighborhood. It should be noted, however,
that we can also generate a large number of different assignments in the

13

26

Further Experiments

Preprocessor implemented in Java

Benchmark: a formula containing 2000 variables
and 8400 constraints from the SAT competition
in 2005

MAX-SAT Solver: Yices

2.16 GHz Intel Core 2 Duo, 1 GB RAM

Timeout: 20 minutes
Yices Running Time (s) Satisfaction Ratio
Without Preprocessing 888.048 94.7143%
With Preprocessing 0.0342615 100%

Table 2. Boosting Effect on Yices

neighborhood. A random permutation of the variables in the formula is
likely to lead to a different assignment when mENF or ELS is applied
to the formula. Our basic neighborhood relation EN can be used in dif-
ferent ways to create local search algorithms, as suggested in [9] (e.g. a
random walk strategy).
Hoos and Stutzle [11] have studied automata-based local search ap-
proaches. On one hand, we can reformulate our local search algorithms
in terms of their generalized local search machines and we plan to do
so in future work. On the other hand, the golden ratio technique can be
used to create several basic search strategies for generalized local search
machines.
Preprocessing for SAT solvers is currently an active topic of research,
e.g., [12]. Stochastic local search solvers may also benefit from a prepro-
cessing phase borrowed from systematic SAT solving [13]. The kind of
preprocessing we propose is novel, very different from resolution-based
techniques. Not only can the polynomials be applied to a preprocessor,
they can also be used in the Decide rule of a transition system for MAX-
CSP problems, as described in [14]. The transition system is based on
clause learning (superresolution) which was introduced at least as far
back as 1975 [15].
Our motivation for working on MAX-CSP is that we think that it has im-
portant applications in biology and drug discovery. A recent paper from
SRI confirms this conjecture [16] where MAX-SAT is used to analyze
biological pathways.

8 Conclusions

Boolean MAX-CSP has numerous practical applications. For example, it
serves as a flexible target language for many NP-hard optimization prob-
lems. The process of deriving and achieving τΓ reveals useful polynomial-
based local search algorithms for boosting MAX-CSP solvers. We believe
that the the Evergreen laws are beneficial additions to the bag of tricks
used in powerful Boolean MAX-CSP and WCSP solvers.

Acknowledgments: We would like to thank Ravi Sundaram for helping
with the bound for the randomized algorithm, Bryan Chadwick for help-
ing implement the preprocessor and Leonardo de Moura for his feedback
on our work. We would also like to thank Richard M. Conlan for his
feedback on the final draft of this paper. Last but not least, we would
like to thank Novartis Institutes for Biomedical Research, Inc. for sup-
porting this work. Karl Lieberherr spent his 2006 sabbatical at Novartis
and Christine Hang is supported by a Novartis fellowship.

14

27

Related Work

Selman & Kautz [AAAI 93]

Hoos & Stutzle [04]

Anbulagan, Pham, Slaney and Sattar [LSCS 06]

Lieberherr [Journal of Algorithms 82]

28

Thank you
http://www.ccs.neu.edu/evergreen

29

2-Satisfiable Problem

A conjunctive-normal-form expression (cnf) IS said to be
2-satisfiable if and only if any two of its clauses are
simultaneously satisfiable It is shown that every 2-
satisfiable cnf has a truth assignment that satisfies at least
the fraction h of its clauses, where h = (sqrt(5) - 1)/2

τΓ2 =
√

5− 1
2

Γ2 = {all disjunctions but R1(A) = A}

30

