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ABSTRACT
Inferring the score distribution of relevant and non-relevant
documents is an essential task for many IR applications (e.g.
information filtering, recall-oriented IR, meta-search, dis-
tributed IR). Modeling score distributions in an accurate
manner is the basis of any inference. Thus, numerous score
distribution models have been proposed in the literature.
Most of the models were proposed on the basis of empirical
evidence and goodness-of-fit. In this work, we model score
distributions in a rather different, systematic manner. We
start with a basic assumption on the distribution of terms in
a document. Following the transformations applied on term
frequencies by two basic ranking functions, BM25 and Lan-
guage Models, we derive the distribution of the produced
scores for all documents. Then we focus on the relevant
documents. We detach our analysis from particular ranking
functions. Instead, we consider a model for precision-recall
curves, and given this model, we present a general mathe-
matical framework which, given any score distribution for all
retrieved documents, produces an analytical formula for the
score distribution of relevant documents that is consistent
with the precision-recall curves that follow the aforemen-
tioned model. In particular, assuming a Gamma distribu-
tion for all retrieved documents, we show that the derived
distribution for the relevant documents resembles a Gaus-
sian distribution with a heavy right tail.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval] Retrieval models

General Terms: Theory, Measurement

Keywords: information retrieval, score distribution, den-
sity functions, recall-precision curve

1. INTRODUCTION
Given a user request an information retrieval system as-

signs scores to each document in the underlying collection
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according to some definition of relevance of each document
to the user’s request and returns a ranked list of documents
to the user. In reality, this ranked list of documents is a
mixture of both relevant and non-relevant documents. For
a wide range of retrieval applications (e.g. information filter-
ing, topic detection, meta-search, distributed IR), modeling
and inferring the distribution of relevant and non-relevant
documents over scores in a reasonable way can be highly
beneficial. For instance, in information filtering, topic detec-
tion and recall-oriented retrieval, modeling the score distri-
butions of relevant and non-relevant documents can be uti-
lized to find the appropriate threshold between relevant and
non-relevant documents [16, 17, 2, 19, 9, 15]. In distributed
IR and meta-search it can be used to normalize document
scores and combine different collections or the outputs of
several search engines [5, 12].

Inferring the score distribution for relevant and non-relevant
documents in the absence of any relevance information is an
extremely difficult task, if at all possible. Modeling score dis-
tributions is often the basis of any possible inference. Due to
this, numerous combinations of statistical distributions have
been proposed in the literature to model score distributions
of relevant and non-relevant documents. In the 1960s and
70s, Swets attempted to model the score distributions of
non-relevant and relevant documents with two Gaussians of
equal variance [16], two Gaussians of unequal variance, and
two exponentials [17]. Bookstein instead proposed a two
Poisson model [7] and Baumgarten a two Gamma model [5].
A negative exponential and a Gamma distribution [12] has
also been proposed in the literature. The dominant model
has been a negative exponential for the non-relevant docu-
ments and a Gaussian for the relevant ones [2, 12, 19]. Ben-
nett [6] observed that when using a two-Gaussians model for
text classification, document scores outside the modes of the
two Gaussians (corresponding to “extremely irrelevant” and
“obviously relevant” documents) demonstrated different em-
pirical behavior than the scores between the two modes (cor-
responding to “hard to discriminate” documents). This mo-
tivated him to introduce several asymmetric distributions to
capture these differences. Kanoulas et al. [11] recently pro-
posed a Gamma distribution for the non-relevant documents
and a mixture of Gaussians for the relevant documents.

The complexity of the underlying process that generates
document scores makes it hard to theoretically argue about
the actual distribution of document scores. Most of the
aforementioned models were proposed on the basis of empir-
ical fits to scores produced over different document corpora.



There have also been several attempts to intuitively argue
about the shape of the different distributions. The starting
point for most of these attempts has been some basic as-
sumptions about the frequency of query term occurrences in
documents (e.g. in Manmatha et al. [12]). Harter [10] and
Bookstein and Swanson [8] used a mixture of Poisson distri-
butions to model the distribution of words in a document,
with one Poisson corresponding to the distribution of words
in relevant documents and the other to the distribution of
words in non-relevant documents.

In a different line of work, Arampatzis and van Hameren [2]
showed that the distribution of relevant document scores
rapidly converges to a Gaussian via the Central Limit The-
orem as the number of query terms increases, under some
basic assumptions. Further, they claimed that this is not
true in the case of non-relevant documents.

Finally, Robertson [14] considered various combinations
of distributions and examined whether these combinations
exhibit anomalous behavior with respect to theoretical prop-
erties of precision and recall. Arampatzis et al. [1] proposed
two truncated versions of the exponential-Gaussian model
to overcome the theoretical problems associated with the
original exponential-Gaussian model.

In this work, we model score distributions in a rather dif-
ferent, systematic manner. We start with a basic assumption
on the distribution of terms in a document. Following the
transformations applied on term frequencies by two basic
ranking functions, BM25 and Language Models, we derive
the distribution of the produced scores for all documents in
an analytical form and illustrate that the derived distribu-
tion can be well approximated by a Gamma distribution.

Further, we also consider the score distribution for rel-
evant documents. We detach our analysis from particular
ranking functions. Instead, we consider a simple model for
precision-recall curves proposed by Aslam and Yilmaz [3],
which makes some very basic assumptions about the shapes
of precision-recall curves that are produced by reasonable
retrieval system on average. Given this model, we present a
general mathematical framework which, given any score dis-
tribution for all retrieved documents, produces an analytical
formula for the score distribution of relevant documents that
is consistent with the precision-recall curves that follow the
aforementioned model. In particular, assuming a Gamma
distribution for all retrieved documents, we show that the
derived distribution for the relevant documents resembles a
Gaussian distribution with a heavy right tail.

2. FROM TERM FREQUENCIES TO
RETRIEVAL SCORES

Traditional retrieval models score documents based on
how well their language matches the language of the user’s
request. Thus, the essential component of all traditional
scoring functions is the number of occurrences of query terms
within a document (term frequency, TF). Different retrieval
models apply different transformations over the term fre-
quencies to produce a score per query term. The final score
of a document is usually an aggregate of the document scores
for each individual term.

Before we consider the distribution of term frequencies
and the transformation applied by ranking functions over
them in an analytical manner we illustrate the evolution of
the term frequency distribution for all retrieved documents

(documents that contain at least one of the query terms) for
a sample query from the TREC 8 ad hoc collection (Ireland
Peace Talks) and for two different retrieval models, BM25
and Language Models, in Figure 1.

The left panel corresponds to the transformation of TF
distribution by BM25, while the right panel corresponds to
the transformation by the Jelinek-Mercer Language Model.1

Each column then, in both panels, corresponds to an indi-
vidual query term and each row to progressively more com-
plex transformations of the term frequency. The bottom
row plots illustrate the final score distribution by the two
retrieval models.

As can be observed, for both retrieval models, there is
a critical step in the term frequency transformation (from
Row 2 to Row 3) after which the score distribution radically
changes and appears to be closer to the final score distribu-
tion. Furthermore, the shape of the final score distribution
appears to be dominated by the most frequent query term
in the collection (as expected) — for the sample query this
is the term talk — and thus our main goal will be to derive
the score distribution for each individual query term.

3. DERIVING THE DISTRIBUTION OF RAW
STATISTICS

For a fixed query, consider a partition of the collection
into relevance classes, such that DQ is the class of docu-
ments that satisfy the information need to a certain degree
Q>0. Depending on several factors like the user, the infor-
mation need, the collection of documents etc, Q can take
a range of values from “completely irrelevant” (the lowest
Q) to “extremely relevant” (the highest Q). Note that in
test collections (such as TREC) for simplicity only two or
three classes are considered. The discussion in this section
assumes a fixed quality/relevance class Q, and assumes all
documents in the class contain all query terms at least once.

A query term t has a certain contribution to the document
quality in response to the user query. For a given document
quality Q, we assume an approximately constant probability
of seeing the term t at any position in a document in class
DQ; hence we can model term t occurrences in documents in
class DQ with a Poisson process with rate λ = λt = f(g,Q),
where g = gt relates to the general rarity of the term in the
language. Such a model is memoryless and implies that the
query term appears equally likely at any moment. We do
not model the dependence f — any monotonic function can
be used, depending on the class model.

Counting the occurrences of a term t when reading a ran-
dom document d ∈ DQ is analogous to counting buses at
a bus station: arrive at the station, wait for the first bus,
for the second bus, etc., and leave at some point (when the
document ends). It is well known that the waiting times
w1, w2, w3, . . . among Poisson generated events are exponen-
tially distributed i.i.d. random variables

wl ≈ λe−xλ. (1)

The average waiting time is θ = 1/λ, the mean of the ex-
ponential distribution. Intuitively, θ corresponds to a notion
of the expected ratio of document length to term frequency,
i.e., DL/TF.

1The parameter values used for BM25 are k1=1.2 and
b=0.75, and λ = 0.2 for the Jelenik-Mercer Language Model.
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Figure 1: The empirical histograms of term frequencies evolving and resulting to the final scores for a sample
query (Ireland Peace Talks) over the TREC 8 Ad Hoc Track collection for both BM25 (left) and JM Language
Model (right). Each column corresponds to single query term while the rows correspond to progressively
more complex transformations of the term frequency (TF) up to the final score for the two ranking functions.
DL is the document length, ADL is the average document length, CTF is the collection term frequency, and
TN is the number of terms in the collection.

Our purpose is to model the distribution of the random
variable DL/TF for documents in class DQ. We will do so
separately for each frequency and then express the general
distribution as a mixture.

Let us now fix a term frequency k = 1, 2, 3, . . . and denote
DQk = {d ∈ DQ | TF (t, d) = k} the set of documents in DQ
that contain term t exactly k times. Here, we make the ap-
proximation that the document ends exactly after the k-th
occurrence, and so we can write the document length DL as
the sum of k waiting times

Pk
l=1 wl, which immediately im-

plies that DL is Gamma distributed (and more specifically
Erlang-distributed), with shape k and scale θ = 1/λ :

DLQk ∼ Gamma(k, θ). (2)

Since k is a constant for the subclass DQk, the waiting time
XQk is also Gamma distributed:

XQk =
DocLength

TermFrequency
=
DL

k
∼ Gamma(k, θ/k). (3)

Since the quality class DQ is partitioned into the classes
DQk for k = 1, 2, 3, . . ., the waiting time X on DQ follows
a mixture of Gamma distributions with a constant mean θ,
while DL on DQ follows a mixture of Gamma distributions
with a constant scale θ:

DLQ ∼
X
k

PQ(k) ·Gamma(k, θ) (4)

XQ ∼
X
k

PQ(k) ·Gamma(k, θ/k) (5)

where PQ(k) = Pr[TF (d, t) = k | d ∈ DQ] denotes the prob-
ability that a document in class DQ contains the term t
exactly k times.

Assuming a constant probability p that a term occurrence
gives quality Q, PQ(k) can be expressed as probability of
k − 1 failures (term occurrences that do not imply quality
Q) followed by one success (term occurrence when quality
Q is reached); therefore we model the mixture probabilities

PQ(k) with a geometric distribution (equivalent to a nega-
tive binomial distribution with β = 1),

PQ(k) = p(1− p)k−1 (6)

where p = pt = θ/ADLQ expresses the correlation between
the term and the information need on the class DQ (the
average document length, the general rarity of the term t,
and the quality Q). For example, p = 0.5 implies that there
are twice as many documents containing k terms than doc-
uments containing k + 1 terms in the class DQ. Intuitively
p can be thought as a notion of inverse term frequency:

p = θ/ADLQ ≈ avg(DL/TF )/ADLQ ≈ avg(1/TF ).

Note that a number of different mixtures could be used,
perhaps based on the query type. For instance, an infor-
mational query could use a negative binomial or a Poisson
mixture. For the particular case of a geometric mixture how-
ever, an interesting result follows: Neuts and Zachs [13] show
that under certain conditions similar to ours, a negative bi-
nomial mixture of Gamma distributions with constant scale
is actually itself a Gamma distribution. With a different
notation, their result isX

k

pk ·Gamma(β + k, θ) = Gamma(β, θ/p) when (7)

pk = NegBinomial(p, β) =

 
k + β − 1

β − 1

!
pβ(1− p)k (8)

Applying this on DL (with β=1) implies that DL is expo-
nentially distributed on DQ with mean θ/p. Of course this
must hold for all query terms, not only for t, which requires
a proportionality θ/p = constant = ADLQ. In practice,
for a given quality class, the document length variable will
not be exactly exponentially distributed for two reasons: (1)
relevance judgments cover a range of qualities inducing an
average effect, (2) our Poisson process model for query term
occurrence works reasonably well for frequent terms, but can
fail on rare terms. However, this model is fairly accurate
in that DL can be modeled well by a Gamma distribution



with a small shape parameter (the exponential distribution
is Gamma with shape = 1.)

Figure 2 illustrates the empirical histogram of DL/TF for
the query term system. As can be observed, a Gamma dis-
tribution appears to be a good approximation of the empir-
ical score distribution, offering empirical evidence that the
assumptions and approximations in our theory are reason-
able.2
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Figure 2: The empirical histogram and the Gamma
density function fit over the DL

TF
scores for term sys-

tem in TREC8.

4. DERIVING THE SCORE DISTRIBUTION
FROM SCORING FUNCTIONS

In this section, we derive the score distribution of the re-
trieved documents in a systematic manner. We consider the
transformation applied on the distribution of the elemen-
tary statistics described in the previous section by two scor-
ing functions, BM25 and Jelinek-Mercer Language Model.
The derivations presented here can be applied in the case
of other retrieval models, such as TF-IDF and Divergence
From Randomness (DFR).

4.1 Score Transformations
Consider a transformation of the random variable X by a

monotonic, differentiable function r, Y = r(X). The proba-
bility density function (pdf) of Y , fY (y), can then be com-
puted as a function of the pdf of X, fX(x) [4]. Let FY (y)
and FX(x) be the cumulative density function (cdf) of Y
and X, respectively. Without loss of generality let r be a
non-decreasing function. Then,

FY (y) = Pr{Y ≤ y} = Pr{r(X) ≤ y}
= Pr{X ≤ r−1(y)} = FX(r−1(y)) and

fY (y) =
d

dy
FY (y) =

d

dy
FX(r−1(y)) =

∂r−1(y)

∂y
· fX(r−1(y))

In the general case of a monotonic function r,

fY (y) = |∂r
−1(y)

∂y
| · fX(r−1(y))

2Some fits will be better than others, depending on the ex-
ample. No theoretical model will fit all empirical examples,
of course.

A rudimentary transformation of interest is just the in-
verse of X = DL/TF, which gives the normalized term fre-
quency TF/DL. According to the previous section, X =
DL/TF ∼ fX =

P
k≥1 PQ(k) ∗ Gamma(k, θ

k
). It is known

that a mixture of Gamma can approximate any smooth func-
tion [18]. By approximating PQ(k) with a geometric distri-
bution inverting TF/DL has the effect displayed in Figure 3.
A relevant class of documents (high Q) implies:

• the geometric rates 1− p = 1− 1/(λ ·ADL) for query
terms are higher, which means the mean 1/p is higher,
or the mixture PQ will have non-negligible coefficients
for higher scale parameters k. This will make the mix-
ture look more “hill”-like due to more effective compo-
nents.

• for each query term, the Poisson generating process
will be governed by a higher rate, 1/θ, which dictates a
lower mean to all Gamma components of the mixture,
or a “light” right-side tail. When the inverse transfor-
mation is performed (see below), the result distribu-
tion will have a heavier tail.

Conversely, a lower quality Q implies a mixture with ef-
fectively significant coefficients only for the lower k values,
and also that the components of the mixture are less skewed
towards the left-side, overall producing a more exponential-
like distribution (after inversion).

Figure 3: Mixture of gamma before and after the
inversion, for different quality classes

Note that in practice fitting a Gamma, an inverse Gamma
or an inverse Gaussian distribution in the TF/DL scores
of existing collections/judgments (like TREC) are likely to
differ in goodness-of-fit mostly due to random effects than
other theoretical reasons - this is primarily due to complex
score manipulations, and due to the sparsity and inaccuracy
of the judgment process.

4.2 BM25 and Jelinek-Mercer LM
Assuming that query terms appear only once within a

query the BM25 for a single query term can be calculated
as:

BM25 score =
(k1 + 1)TF

k1((1− b) + b DL
ADL

) + TF
· IDF (9)

where TF is the term frequency, IDF is the BM25 inverse
document frequency, DL is the document length, and ADL
is the average document length in the collection. By setting
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Figure 4: The empirical histograms, analytically numerical plot, and MLE Gamma fitting of the distribution
of approximated BM25 scores and JM language model scores for term system in TREC8.

the parameter b equal to 1 (fixing the document length nor-
malization) and defining the variable X = DL/TF , BM25
can be approximated by,

Y = r(X) =
IDF (k1 + 1)

CX + 1
, X > 0 (10)

where C = k1/ADL. Given Equation 10 it can be shown

that r−1(Y ) =
IDF (k1 + 1)− Y

CY
. Now, let fX(x) be the pdf

of X and fY (y) the pdf of Y . Since function r is a monotonic
and differentiable when X is positive, based on the principle
of function transformations of random variables [4], we can
calculate the pdf of Y as a function of the pdf of X,

fY (y) =
−IDF (k1 + 1)

Cy2
fX(

IDF (k1 + 1)− y
Cy

) (11)

when 0 < y < IDF (k1 + 1) and 0 otherwise.
In other words we can model the pdf of an approxima-

tion of BM25 as a function of the density function of the
reverse relative term frequency. Essentially, one can plug
in the above formula any distribution for the relative term
frequency and get an analytical form distribution of BM25.

Based on the previous section DL/TF approximately fol-

lows a Gamma distribution. Let k̂ and θ̂ are estimated pa-
rameters of the Gamma distribution from X via maximum
likelihood estimation (MLE) for all retrieved documents (see
Figure 2). Then, the approximated pdf of BM25 score for a
single term can be reached as follows,

fY (y) =
−IDF (k1 + 1)

Cy2
Gamma(

IDF (k1 + 1)− y
Cy

; k̂, θ̂)

(12)
We repeat the exact same derivation in the case of lan-

guage models with Jelinek-Mercer smoothing. The score for
each term is computed as,

JMLM score = log (λ
TF

DL
+ C(1− λ)) (13)

where C = CTF/TN . CTF is collection term frequency
and TN is the number of unique terms in the collection.
As before, we let X = DL/TF , then the LM score can be

written as,

Y = r(X) = log (
λ

X
+ C(1− λ)) (14)

Using the previous assumption that DL/TF is modeled by
a Gamma distribution and since the function r is a mono-
tonic and differentiable, after the random variable transform
over X we get the pdf of the LM scores as a function of the
Gamma distribution that models the reverse relative term
frequency.

fY (y) =
−λey

(ey − C(1− λ))2
Gamma(

λ

ey − C(1− λ)
; k̂, θ̂)

(15)
Figure 4 shows the comparison among the empirical his-

togram, the analytical model derived from the distribution
of DL/TF , and the Gamma distribution obtained by MLE
over BM25 and JM language model scores all retrieved docu-
ments for query system in TREC8 collection. As illustrated
on the plots, the analytical model has more freedom than
the Gamma distribution, but the Gamma is still a reason-
able approximation to the term score distribution. Further,
the mixture model presented in the previous section with
the best-fit λ is also shown on Figure 4 (black line denoted
as “Model (theory)” in the legend).

Remark on the Shape of the Distribution
Most term frequency weighting functions are nonlinear mono-
tonically increasing functions of the raw term frequency. In
BM25 Roberston’s TF grows fast when the raw term fre-
quency is small and gets gradually saturated. The parameter
k1 controls the speed of the saturation. The logarithm func-
tion in Language Models also has this saturation property
but without the power of controlling the saturating speed.
Therefore, the JM language model scoring function has a
similar to BM25 impact on transforming the distribution of
low level statistics, such as DL/TF or normalized TF to the
final score distribution.

As it is illustrated in Figure 2 the typical shape of the
distribution for the DL/TF tends to have a long right tail
but a fast rising-up left tail. After applying a transforma-



tion function with the saturation property, the imbalance
between two tails of the original distribution is alleviated,
so the peak of the new distribution is right shifted, and
with a shorter right tail compared to the original one. The
amount of difference is dominated by the parameter control-
ling the saturating speed. This can be viewed in Figure 5.
As k1 becomes larger and the weighting function more lin-
ear the empirical histograms of BM25 looks more similar to
the distribution of DL/TF in Figure 2. This implies that
the term score distribution can also be approximated by a
Gamma distribution by adjusting the shape and the scale
parameters.

4.3 Summation over Query Terms
In this paper we have considered scoring functions with

the following property: score(d,query) =
P
t∈query r(Xt),

where Xt = DL/tf(t, d). This class of scoring functions in-
cludes BM25, TF-IDF, some Language Models etc, but does
not include scores like PageRank. Assuming term indepen-
dence, the intuition for the summation score =

P
t r(Xt) is

as follows:

• For non-relevant documents (low qualityQ) each r(Xt)
will be distributed approximately as a Gamma(low
shape, low scale). If the scales are approximately equal
their sum follows a Gamma distribution with the same
scale (gamma distribution exhibits infinite divisibil-
ity).

• For relevant documents, the mixture for each term has
more effective components, thus making the sum a rich
mixture, usually Gaussian like (or Gamma-like with
higher scale and shape).

Thus, the distribution of the summation of several term
scores could also be modeled using a Gamma distribution
if we use a Gamma distribution to model the term score
distribution. Figure 6 shows this summation process.

5. INFERRING THE SCORE DISTRIBUTION
OF RELEVANT DOCUMENTS

In this section, we relate the score distributions for rele-
vant and non-relevant documents with precision-recall curves.
That the score distributions for relevant and non-relevant
documents are related to precision-recall curves is well known
and unsurprising: Given the two score distributions, one can
easily infer a precision-recall curve [14], and we shall do so
below as part of the treatment that follows. More interest-
ingly, we demonstrate that one can infer the score distri-
bution for relevant documents given a score distribution for
non-relevant documents and a precision-recall curve, and we
use the technique described to show that the score distribu-
tions for relevant documents will tend to have a Gaussian-
like form, with a heavy right tail.

Let fR(s) and fN (s) be the score distributions for rel-
evant and non-relevant documents, respectively. For any
score threshold t, consider the set of documents whose scores
are t or higher. The recall and fallout associated with this
document set are easily defined in terms of fR(s) and fN (s)
as follows:

r(t) =

Z ∞
t

fR(s) ds (16)

fo(t) =

Z ∞
t

fN (s) ds. (17)
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Figure 5: Roberston’s TF and empirical histograms
of BM25 scores with different k1 for term system in
TREC8
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Figure 6: MLE Gamma fitting over scores of all re-
trieved documents for all query terms and query
“Ireland Peace Talks”

Now let C be the size of the collection and let γ be the
fraction of the collection that is relevant to a given query.
Then there are R = γ C total relevant documents and N =
(1− γ)C total non-relevant documents. At score t or above,
there are

R · r(t) = γ C · r(t)
relevant documents and

N · fo(t) = (1− γ)C · fo(t)

non-relevant documents. Thus, the precision associated with
this document set is simply

p(t) =
γ C · r(t)

γ C · r(t) + (1− γ)C · fo(t)
=

r(t)

r(t) +O · fo(t)
(18)

where O = (1 − γ)/γ is the odds of non-relevance in the
collection. Equations 16 and 18 are parametric equations



defining a precision-recall curve: Given the score distribu-
tions fR(s) and fN (s) (and γ), one can vary the score thresh-
old t in Equations 16 and 18 to obtain the precision-recall
curve. (A substantially similar treatment can be found in
Robertson [14].)

Now suppose that one has a candidate score distribution
for either relevant or non-relevant documents and one has a
candidate form for a precision-recall curve: Can one derive
a form for the other score distribution? In what follows,
we show how this can be accomplished, and using the score
distributions described in Section 4 and a simple form for
precision-recall curves, we infer a form for the score distri-
butions of relevant documents.

Consider the simple model for precision-recall curves de-
scribed by Aslam and Yilmaz [3] and shown in Figure 7.

This family of precision-recall curves is defined by the fol-
lowing equation, implicitly parameterized by the value of
R-precision rp:

p(r) =
1− r

1 + α · r . (19)

(Here α = (1/rp− 1)2− 1 governs the “shape” of the curve.)
While it is certainly the case that“real”precision-recall curves
are never this “clean”, this simple model captures many
properties found in real precision-recall curves, such as high
precisions at low recall levels, low precisions at high recall
levels, and so on. Furthermore, Aslam and Yilmaz show that
this simple model allows one to explicitly and accurately re-
late average precision, R-precision, precision-at-cutoff, and
other seemingly disparate measures of retrieval performance.

Using such a model for precision-recall curves, we can re-
late the score distributions for relevant and non-relevant doc-
uments as follows. We first parameterize Equation 19 by the
score threshold t, obtaining

p(t) = p(r(t)) =
1− r(t)

1 + α · r(t) . (20)

We now equate Equations 18 and 20

r(t)

r(t) +O · fo(t)
=

1− r(t)
1 + α · r(t)

and solve for r(t) as a function of fo(t)

r(t) =
−O · fo(t) +

p
(O · fo(t))2 + 4(1 + α)O · fo(t)

2(1 + α)
(21)

Differentiating Equation 21 by t immediately establishes a
closed-form relationship between the score distributions for
relevant and non-relevant documents, since by Equations 16
and 17 and the Fundamental Theorem of Calculus, we have

r′(t) = −fR(t)

fo′(t) = −fN (t).

As an example of this methodology, let us assume that the
score distribution for all documents follows a Gamma distri-
bution, as we argued in Section 4. Since the overwhelming
majority of documents are non-relevant, the score distribu-
tion for non-relevant documents will then tend to follow a
Gamma distribution as well. Now consider the Gamma that
fits the non-relevant documents for the TREC8 query “Esto-
nia Economy”. Using this Gamma distribution for the non-
relevant documents, together with a precision-recall curve3

3We set γ and α = (1/rp−1)2−1 to match those parameters
from the BM25 run on that query.

from the family show in Equation 19, and employing the
method described above, we obtain the score distribution
for relevant documents shown in Figure 8.

While Figure 8 gives just one such example, the form of
this curve is quite consistent across all tested input distri-
butions from the Gamma family (which includes the nega-
tive exponential distribution) and all tested precision-recall
curves from the family defined by Equation 19: The distri-
bution is roughly Gaussian in form, but with a heavy right
tail. That the score distribution is “Gaussian-like” is much
assumed (as discussed in the introduction), but the heavy
right tail is also necessary to avoid problems with a simple
Gaussian, such as those described by Manmatha et al. [12]
and others. Figure 9 shows the typical form of the rele-
vant document score distribution we obtained in TREC 8.
We here for the first time derive such a form, given reason-
able forms for non-relevant score distributions and precision-
recall curves.

Our results in this section are descriptive rather than pre-
scriptive, and as such, we conclude the following:

The tendency of the score distributions for rele-
vant documents to look Gaussian with a heavy
right tail is a natural and inevitable consequence
of the facts that (1) the score distributions of
non-relevant documents tend to look Gamma and
(2) precision-recall curves tend to have the form
shown in Figure 7.

6. CONCLUSIONS
In this work, we attempt to model score distributions in a

rather systematic manner. We start with a basic assumption
that query terms are generated via a Poisson process and
induced that the distribution the relative term frequency
in a document is a inverse Gamma distribution. Following
the mathematical transformations applied on the relative
term frequencies by two basic ranking functions, BM25 and
Language Models, we derived the distribution of the pro-
duced scores, in an analytical form and illustrate that the
derived distribution can be well approximated by a Gamma
distribution. Further, we also considered the score distribu-
tion for relevant documents by relating score distributions
with precision-recall curves. In particular, we adopted a
precision-recall curve model that has previously been pro-
posed and given this model we presented a general math-
ematical framework under which given any score distribu-
tion for all retrieved documents we can derive an analyti-
cal formula for the score distribution of relevant documents.
The framework is general enough such that the same deriva-
tions can be repeated for different models of precision recall
curves. Finally, under the assumption that non-relevant doc-
uments follow a Gamma distribution for all retrieved docu-
ments, we show that there is a tendency of the derived dis-
tribution for the relevant documents to look Gaussian with
a heavy right-hand tail.
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