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Abstract. Empirical modeling of the score distributions associated with
retrieved documents is an essential task for many retrieval applications.
In this work, we propose modeling the relevant documents’ scores by a
mixture of Gaussians and modeling the non-relevant scores by a Gamma
distribution. Applying variational inference we automatically trade-off
the goodness-of-fit with the complexity of the model. We test our model
on traditional retrieval functions and actual search engines submitted to
TREC. We demonstrate the utility of our model in inferring precision-
recall curves. In all experiments our model outperforms the dominant
exponential-Gaussian model.

1 Introduction

Information retrieval systems assign scores to documents according to their rel-
evance to a user’s request and return documents in a descending order of their
scores. In reality, however, a ranked list of documents is a mixture of both rel-
evant and non-relevant documents. For a wide range of retrieval applications
(e.g. information filtering, topic detection, meta-search, distributed IR), model-
ing and inferring the distribution of relevant and non-relevant documents over
scores in a reasonable way could be highly beneficial. For instance, in informa-
tion filtering and topic detection modeling the score distributions of relevant
and non-relevant documents can be utilized to find the appropriate threshold
between relevant and non-relevant documents [16, 17, 2, 19, 7, 15], in distributed
IR it can be used for collection fusion [3], and in meta-search to combine the
outputs of several search engines [10].

Inferring the score distribution for relevant and non-relevant documents in
the absence of any relevance information is an extremely difficult task, if at all
possible. Modeling score distributions in the right way is the basis of any pos-
sible inferences. Due to this, numerous combinations of statistical distributions
have been proposed in the literature to model score distributions of relevant
and non-relevant documents. In 60’s and 70’s Swets attempted to model the
score distributions of non-relevant and relevant documents with two Gaussians
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of equal variance [16], two Gaussians of unequal variance and two exponen-
tials [17]. Bookstein instead proposed a two Poisson model [6] and Baumgarten
a two Gamma model [3]. A negative exponential and a Gamma distribution [10]
has also been proposed in the literature. The dominant model, however, has been
an exponential for the non-relevant documents and a Gaussian for the relevant
ones [2, 10, 19].

As mentioned before the right choice of distributions (that is distributions
that reflect the underline process that produces the scores of relevant and non-
relevant documents) can enhance the ability to infer these distributions, while a
bad choice may make this task practically impossible. Clearly a strong argument
for choosing any particular combination of distributions is the goodness-of-fit to
a set of empirical data. However, the complexity of the underline process that
generates documents’ scores makes the selection of the appropriate distributions
a hard problem. Hence, even though the exponential - Gaussian model is the
dominant one, there is no real consensus on the choice of the distributions. For
instance, recently, Bennett [4], by utilizing the two Gaussians model for text clas-
sification and based on the observation that documents’ scores outside the modes
of the two Gaussians (corresponding to “extremely irrelevant” and “obviously
relevant” documents) demonstrate different empirical behavior than the scores
between the two modes (corresponding to “hard to discriminate” documents)
introduced several asymmetric distributions to capture these differences.

Even though the goodness-of-fit can be a reasonable indicator of whether a
choice of statistical distributions is the right one, from an IR perspective, these
distributions should also possess a number of IR theoretical properties. Robert-
son considered various combinations of distributions and examined whether these
combinations exhibit anomalous behavior with respect to theoretical properties
of precision and recall [13].

In this work, we revisit the choice of distributions used to model documents’
scores. Similarly to Bennett [4] we observed that the scores of relevant docu-
ments demonstrate different behavior in different score ranges. In order to study
what is the appropriate choice of distributions for relevant and non-relevant doc-
uments we assume that the relevance information for all documents is available.
We utilize a richer class of density functions for modeling the score distribu-
tions. In particular, we empirically fit a Gamma distribution in the scores of
the non-relevant documents and a mixture of Gaussians in the scores of the
relevant documents. Note that, the Gamma distribution represents the sum of
M independent exponentially distributed random variables. In order to balance
between the flexibility and the generalization power of the model we take a
Bayesian treatment on the model that automatically trades-off the goodness-of-
fit with the complexity of the model. We show that the data alone suggest that
a mixture of two Gaussians for the relevant documents and a Gamma distribu-
tion with M > 1 is often times the right choice to model documents’ scores.
Further, we examine the IR utility of our model by testing how well one can
infer precision-recall curves from the fit probability distributions. We show that
our model outperforms the dominant exponential - Gaussian model.



2 Modeling Score Distributions

In this work, we empirically fit a Gamma distribution in the scores of the non-
relevant documents and a mixture of Gaussians in the scores of the relevant
documents (GkG model) and compare it to the dominant exponential-Gaussian
model (EF model).

To avoid the effects of arbitrary query manipulations and score transfor-
mations that systems submitted to TREC (Text REtrieval Conference) often
apply, in the sections that follow, we instead use scores produced by traditional
IR models. Later, in Section 4, we validate our model on TREC systems.

The document collections used are the ones contained in TREC Disk 4 and
5, excluding the Congressional Record sub-collection, that is the exact same
document collection used in TREC 8. The topics used are the TREC topics
401−450 (the topics in TREC 8) [18]. Indexing and search was performed using
the Terrier search engine [11]. Porter stemming and stop-wording was applied.
The document scores obtained are the outputs of (a) Robertson’s and Spärck
Jones’ TF-IDF [14], (b) BM25 [12], (c) Hiemstra’s Language Model (LM) [9],
and (d) PL2 divergence from randomness [1] (with Poisson estimation for ran-
domness, Laplace succession for first normalization, and Normalization 2 for
term frequency normalization). Further, three different topic formulations were
used, (a) topic titles only, (b) topic titles and descriptions, and (c)topic titles,
descriptions and narratives.

2.1 Methodology

The Gamma distribution was used to model the scores of the non-relevant doc-
uments. The Gamma density function with scale θ and shape M is given by,

P (x|M, θ) = xM−1 exp−M/θ

θMΓ (M)

where, Γ (M) = (M−1)!. The mean of the distribution is Mθ, while the variance
is Mθ2. The maximum likelihood estimation (MLE) was used to estimate the
Gamma parameters. When M = 1, the Gamma distribution degrades to an
exponential distribution with rate parameter 1/θ.

The scores of relevant documents are modeled by a mixture of K Gaussians.
Fitting the mixture of Gaussians into the scores could be easily done by em-
ploying the EM algorithm if the number of Gaussian components K was known.
However, we considered as known only an upper bound on K. Given the fact
that the larger the number of components is the better the fit will be and that
EM finds the maximum likelihood mixture of Gaussians regardless of the model
complexity, the EM algorithm is not appropriate for our problem. Instead, to
avoid over-fitting, we employ a Bayesian treatment on the model by utilizing
Variational Bayesian model selection for the mixture of Gaussians [5, 8].

The mixture distribution of K Gaussian components is given by,

P (x|π, µ, Λ) =
K∑

i=1

πiN (x|µi, Λ
−1
i )



where πi are the mixing coefficients, and satisfy 0 ≤ πi ≤ 1 and
∑K

i=1 πi = 1, µi

and Λi the mean and the precision of the ith Gaussian component.
The mixture coefficients π essentially give the contribution of each gaussian

to the model. A fully Bayesian treatment of the mixture modeling problem in-
volves the introduction of prior distributions over all the parameters, that is
including π. Given a fixed number of potential components (an upper bound on
K) the variational inference approach causes the mixing coefficients of unwanted
components to go to zero and essentially leads to an automatic trade-off between
the goodness-of-fit and the complexity of the model. The approach used in this
paper to determine the number of components is to treat the mixing coefficients
π as parameters and make point estimates of their value instead of maintaining
a probability distribution over them [8].

Fig. 1. The histogram over the scores of non-relevant and relevant documents and the
Gamma and k Gaussians distribution (top) along with the negative exponential and
single Gaussian distributions (bottom) fit into these scores separately.

2.2 Results and Analysis

We separately fit the Gamma distribution and the mixture of Gaussians into the
scores of the non-relevant and relevant documents, respectively, per topic. There
are 50 topics available and 3 query formulations (title, title and description and
title, description and narrative), along with the relevance information for the top
1000 documents returned by 4 IR systems (TF-IDF, BM25, LM and PL2). Thus,



there are in total 600 ranked lists of documents. The scores of the documents
were first normalized into a 0 to 1 range.

An example of fitting an exponential-Gaussian model and a Gamma and a
mixture of two Gaussians into scores of non-relevant and relevant documents
(separately) for query 434 (“Estonia economy”) is shown in Figure 1. The wide
yellow-bar and the thin red-bar histograms in both plots correspond to the non-
relevant and relevant documents scores, respectively (scaled). Further, the top
plot shows a negative exponential and a single Gaussian density functions fit
into the scores, while the bottom plot shows a Gamma density function and a
mixture of two Gaussians fit into the scores. As it can be observed, the Gamma
and the mixture of two Gaussians can better fit the data than the choice of the
exponential and the single Gaussian. To summarize our results we report the pa-
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Fig. 2. The histograms over the number K of Gaussian components and the parameter
M of the Gamma distribution, over all IR models, topics and topic formulations.

rameter M of the Gamma distribution, which as mentioned earlier corresponds
to the number of independent exponential density functions averaged, and the
number K of Gaussian components in the mixture, for all four systems, all 150
topics (50 topics and 3 query formulations). Figure 2 shows the histograms over
M and K. As it can be observed, both M and K, in most of the cases, are
different from 1, which shows that, taken into account the complexity of the
model, the data suggest that a Gamma distribution and a mixture of Gaussians
is a better fit than a negative exponential and a single Gaussian. In particular,
the mean number of Gaussian components is 1.7, while the mean value of the
parameter M is 1.3. In order to quantify and compare the goodness-of-fit for the
different statistical distributions fit into the scores of relevant and non-relevant
documents we employ hypothesis testing. The null hypothesis tested is that the
scores of relevant (non-relevant) documents come from a certain distribution.
The Kolmogorov-Smirnov test (using the maximum distance between the em-
pirical and the theoretical cumulative distributions as a statistic) was utilized.
The histogram of the p-values for all systems and all queries is shown in Figure 3.
The top row corresponds to the p-values of testing the relevant documents scores
against the single Gaussian distribution and mixture of K Gaussians, while the
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Fig. 3. The histogram of p-values of the Kolmogorov-Smirnov test on all systems, topics
and topic formulations for relevant and non-relevant documents score distribution.

bottom row corresponds to the p-values of testing the non-relevant documents
scores against the negative exponential and the Gamma distributions. As it can
be observed, in the case of the relevant documents’ scores distribution the sin-
gle Gaussian distribution yields the worst results (as expected), with most of
the p-values being less than the significance level of 0.05 and thus rejecting the
null hypothesis, while the mixture of two Gaussian distributions yields clearly
much higher p-values. In particular, for 82% of the system-query pairs the null
hypothesis that the score distribution is a single Gaussian distribution could not
be rejected, while the corresponding percentage for the mixture of two Gaussians
is 100%. For the case of non-relevant documents the corresponding percentages
for the exponential and Gamma distributions are 27% and 62%, respectively.
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Fig. 4. The histogram over the number K of Gaussian components and the parameter
M of Gamma distribution, over all topics and topic formulations for each IR model.

Finally, we tested how the different IR systems and topic formulations affect
the parameter M and the number K of Gaussian components. In Figures 4 and
5, we report the histograms over K for each system separately (50 topics with
3 topic formulations) and the histograms over K for each query formulation
(all 50 topics and 4 IR systems). As it can be observed, the distribution of K
appears to be independent both with respect to the IR model and with respect



to query formulation. To validate our observations we run an n-way ANOVA
testing whether the mean values of K per IR model - query formulation are
equal and we could not reject the hypothesis.
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Fig. 5. The histogram over the number K of Gaussian components and the parameter
M of Gamma distribution, over all topics and IR models for each topic formulation.

2.3 On the Choice of Score Distributions

So far the optimal distributions to model the scores of relevant and non-relevant
documents have been dictated by the data. In this section, we give an intuitive
explanation of choice of a Gamma distribution to model non-relevant documents’
scores and a mixture of Gaussians to model relevant documents’ scores from an
IR point of view.

An intuition behind the shape of the distribution that models the scores of
relevant documents is given by Manmatha et al. [10]. Assuming that a query
consists of a single term, Manmatha shows that the scores of relevant docu-
ments can be modeled as a Poisson distribution with a large λ parameter, which
approaches a Gaussian distribution. Now, let’s consider queries that consist of
multiple terms and let’s revisit the top plot in Figure 1. The query used in the
example is: “Estonia economy”. Each relevant document in the plot corresponds
either to a triangular or to a rectangular marker at the top of the plot. The
triangular markers denote the relevant documents for which only one out of the
two query terms occur in the document, while the rectangular ones denote the
relevant documents for which both terms occur in the document. By visual in-
spection, the relevant documents containing a single term clearly correspond to
the low-scores’ Gaussian, while the relevant documents containing both terms



clearly correspond to the high-scores’ Gaussian. Essentially, the former docu-
ments get a low score due to the fact that only one terms appear in them but
they happen to be relevant to the query, while the latter correspond to docu-
ments that are obviously relevant. We observed the same phenomenon for many
different queries independently of the IR model used for retrieval and indepen-
dent of the query formulation. In the case of queries with multiple terms (e.g.
queries that consists of both the title and the description), even though the pos-
sible number of query terms that may co-occur in a document is greater than 2
(e.g. for a query with 3 terms, all terms may occur in a document or only two of
them or only a single one of them), we observed that there is a threshold on the
number of terms occurring in the document; relevant documents containing a
number of terms that is less than this threshold are clustered towards low scores
(first Gaussian), while relevant documents containing a number of terms that is
greater than the threshold are clustered towards high scores (second Gaussian).
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Fig. 6. The distribution of BM25 scores for all 133, 784 documents (containing at least
one query term) on query ”foreign minorities Germany”. Note the different slopes at
the left and at the right of the mean. Truncating the list at rank 1, 000 would cause
the scores’ distribution to look like an exponential one.

Regarding the non-relevant documents, given that the number of them is
orders of magnitude larger than the number of the relevant ones, a modeling
distribution over non-relevant documents’ scores is essentially a modeling dis-
tribution over all scores. Previous work [10, 13] argues that this distribution is
a negative exponential but often times a more flexible distribution is necessary.
The Gamma distribution, which can range (in skewness) from an exponential
to a Gaussian distribution is flexible enough. In order to explain why a Gamma
distribution is a better choice, several factors should be considered.

– Truncation cut-off: If a list is arbitrarily truncated very early (say at rank
1, 000) the distribution of the top scores may indeed look as an exponential.
However looking deep down in the list (say up to rank 200, 000), the scores’
distribution shape changes (Figure 6).

– Query complexity: Arguments for the scores’ distribution for single term
queries have been given in the literature [10]. For a query with two or more
terms, most non-trivial documents (i.e. the ones that contain at least two



query terms) will have the following property; the contribution of the two
or more terms to the final score of a document would often times be very
different for the two or more terms, with some terms having a low contri-
bution while others having a higher contribution. Averaging such effects is
likely to produce a “hill” of score frequencies, perhaps with different slopes
at the left and the right side of the mean; the Gamma distribution is known
to be an average of exponential distributions.

– Retrieval function: We mostly look at scoring functions that are decompos-
able into a sum of scores per query terms, like TF-IDF or Language Models
(after taking logs); such scores also induce averaging effects.

Fig. 7. Precision-Recall curve (blue) for query 434 and the BM25 retrieval function
implemented by Terrier. It is easy to see that the PR curve estimated from the GkG
model (magenta) is much better than the PR estimated from the EG model (brown).
Yellow bars indicate the number of non-relevant documents in each recall interval.

3 Precision-Recall Curves

As a utility of our model for IR purposes, we estimate the precision-recall (PR)
curve separately from both the EG and GkG model. Similarly to Robertson [13],
let fr and fn denote the model densities of relevant and non-relevant scores,
respectively; Fr(x) =

∫ 1

x
fr(x)dx and Fn(x) =

∫ 1

x
fn(x)dx are the cumulative

density functions from the right. While the density models might have support
outside the range [0,1], we use integrals up to 1 because our scores are normalized.
For each recall level r we estimate the retrieval score at which r happens, from the
relevant cumulative density: score(r) = F−1

r (r), which we compute numerically.
Then we have n(r) = Fn(score(r)) as the percentage of non-relevant documents
found up to recall r in the ranked list. Finally, the precision at recall r can be
computed as in [13], prec(r) = r

r+n(r)∗G , where G is the ratio of non-relevant to
relevant documents in the collection searched. Computing precision at all recall
levels from the score distribution models fr and fn gives an estimated PR curve.



In the reminder of this section we show that estimating PR curves from the GkG
model clearly outperforms PR curves estimated from the dominant EG model.

To measure the quality of the estimated PR curves we report the RMS error
between the actual and the predicted precisions at all recall levels for both mod-
els. The results are summarized in Table 1, separately for each model. Language
model LM and Divergence from randomness PL2 seem to produce slightly better
PR estimates, independent of the query formulation. The over-all RMSE of GkG
vs. EG is .094 vs .117, or about 20% improvement.

title title+desc title+desc+narrative
EG GkG EG GkG EG GkG

BM25 .135 .106 .122 .093 .117 .099
LM .117 .098 .101 .085 .091 .076
PL2 .113 .092 .116 .094 .113 .092
TFIDF .137 .106 .122 .095 .120 .100

Table 1. RMS error between the actual and the inferred precision-recall curves.

Further, we report the mean absolute error between the actual and predicted
precisions at all recall levels. This is the area difference between the estimated
and the actual curve, which immediately gives a bound for the difference in
Average Precision of the two curves (because the AP metric is approximated by
the area under the PR curve). The results are reported in Table 2. Note that
the best fit with respect to MAE are given for the full query formulation (title,
description and narrative); the overall MAE for GkG is .055 vs EG with .074,
or an improvement of about 25%.

title title+desc title+desc+narrative
EG GkG EG GkG EG GkG

BM25 .091 .067 .076 .052 .071 .056
LM .078 .063 .064 .052 .055 .043
PL2 .072 .056 .070 .052 .065 .049
TFIDF .092 .067 .076 .053 .072 .055

Table 2. Mean Absolute Error between actual and inferred precision-recall curves.

.

4 TREC Search Engines

To avoid the effects of arbitrary query manipulations and score transformations
that systems submitted to TREC (Text REtrieval Conference) often applied, we
used in our experiments scores produced by traditional IR models. In this section
we apply our methodology over the score distributions returned by search engines
submitted to TREC 8. Out of the 129 manual and automatic systems submitted
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Fig. 8. The histograms over the number K of Gaussian components and the parameter
M of the Gamma distribution, over all IR models, topics and topic formulations.

to TREC 8 30 of them were excluded from our experiments since they transform
document scores into ranks. No other quality control was performed. As earlier,
we report the parameter M of the Gamma distribution, and the number K of
Gaussian components in the mixture, for all systems and all queries as histograms
in Figure 8. As it can be observed, similarly to the case of the traditional IR
models, both M and K, in most cases, are different from 1, confirming that a
Gamma distribution and a mixture of Gaussians is a better fit than a negative
exponential and a single Gaussian.

5 Conclusions

In this work, we proposed modeling the relevant documents’ scores by a mixture
of Gaussians and modeling the non-relevant scores by a Gamma distribution. In
all experiments conducted our model outperformed the dominant exponential-
Gaussian model. Further, we demonstrated the utility of our model in inferring
precision-recall curves. Some intuition about the choice of the particular model
from an IR perspective was also given.
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