

Pop-Out, Illusions, Interaction

DS 4200 Fall 2020 Prof. Cody Dunne **NORTHEASTERN UNIVERSITY**

Slides and inspiration from Michelle Borkin, Krzysztof Gajos, Hanspeter Pfister, Miriah Meyer, Jonathan Schwabish, and David Sprague

CHECK-IN

PREVIOUSLY, ON DS 4200...

Color Vocabulary and Perceptual Ordering

Darkness (Lightness)

Saturation

Hue

Based on Slides by Miriah Meyer, Tamara Munzner 5

Color Deficiencies (Color Blindness)

Normal

Protanope

Based on Slides by Hanspeter Pfister, Maureen Stone 6

Check your images/colormaps for issues!

Vischeck

Home

Vischeck •Run Images Run Webpages

Daltonize

Examples

Downloads

Info & Links

FAQ

About Us

Try Vischeck on Your Image Files

Select the type of color vision to simulate:

Deuteranope (a form of red/green color deficit)

Protanope (another form of red/green color deficit)

Tritanope (a blue/yellow deficit- very rare)

Image file: Choose File No file chosen

Run Vischeck!

Notes:

- Vischeck accepts most common image formats. However, we recommend that you use PNG or JPEG format for uploading large images as these tend to transfer faster.
- For PowerPoint slides, you can save all your slides as PNG images with "Save As..." and run Vischeck on each slide.
- If you have many images to process, consider downloading Vischeck to run on your own computer.)
- Uploading a large file may take a while please be patient!

Please read our terms of use before using Vischeck.

http://www.vischeck.com/vischeck/vischeckImage.php https://www.color-blindness.com/coblis-color-blindness-simulator/

Home
VD Essentials
Color Blindness Tests
Color Tools Contact

Coblis — **Color Blindness Simulator**

If you are not suffering from a color vision deficiency it is very hard to imagine how it looks like to be colorblind. The Color BLIndness Simulator can close this gap for you. Just play around with it and get a feeling of how it is to have a color vision handicap.

As all the calculations are made on your local machine, no images are uploaded to the server. Therefore you can use images as big as you like, there are no restrictions. Be aware, there are some issues for the "Lens feature" on Edge and Internet Explorer. All others should support everything just fine.

So go ahead, choose an image through the upload functionality or just drag and drop your image in the center of our Color BLIndness Simulator. It is also possible to zoom and move your images around using your mouse - try it out, I hope you like it.

Drag and drop or	paste your file in the area belo	ow or: Browse No file select	ed.
Trichromatic view:	Anomalous Trichromacy:	Dichromatic view:	Monochron
Normal	 Red-Weak/Protanomaly Green-Weak/Deuteranomaly Blue-Weak/Tritanomaly 	 ○ Red-Blind/Protanopia ○ Green-Blind/Deuteranopia ○ Blue-Blind/Tritanopia 	O Monoch O Blue Co
Use lens to compa <u>Reset View</u>	are with normal view: No Lens 	○ Normal Lens ○ Inverse Len	S
19th			

Color Brewer

http://colorbrewer2.org

Color Advice Summary Use a limited hue palette Control color "pop out" with low-saturation colors

- Avoid clutter from too many competing colors
- Use neutral backgrounds
 - Control impact of color
 - Minimize simultaneous contrast
- Use Color Brewer etc. for picking scales
- Don't forget aesthetics!

Based on Slides by Hanspeter Pfister, Maureen Stone 9

NOW, ON DS 4200...

Pop-out Effects

Healey, 2012 16

SHAPE

Healey, 2012 17

"CONJUNCTION" (HARDER TO FIND RED CIRCLE!)

MOTION

Healey, 2012 19

line (blob) orientation Julész & Bergen 83; Sagi & Julész 85a, Wolfe et al. 92; Weigle et al. 2000

length, width Sagi & Julész 85b; Treisman & Gormican 88

density, contrast Healey & Enns 98; Healey & Enns 99

curvature **Treisman & Gormican 88**

closure Julész & Bergen 83

size Treisman & Gelade 80; Healey & Enns 98; Healey & Enns 99

number, estimation Sagi & Julész 85b; Healey et al. 93; Trick & Pylyshyn 94

colour (hue) Nagy & Sanchez 90; Nagy et al. 90; D'Zmura 91; Kawai et al. 95; Bauer et al. 96; Healey 96; Bauer et al. 98; Healey & Enns 99

intersection Julész & Bergen 83

intensity, binocular lustre

Beck et al. 83; Treisman &

Gormican 88; Wolfe & Franzel

88

direction of motion Nakayama & Silverman 86; Driver & McLeod 92; Huber & Healey 2005

flicker

Gebb et a. 55; Mowbray & Gebhard 55; Brown 65; Julész 71; Huber & Healey 2005

POP-OUT EFFECTS

terminators Julész & Bergen 83

3D depth cues Enns 90b; Nakayama & Silverman 86

velocity of motion Tynan & Sekuler 82; Nakayama & Silverman 86; Driver & McLeod 92; Hohnsbein & Mateeff 98; Huber & Healey 2005

lighting direction Enns 90a

Healey, 2012 21

Use these "popout" effects to help design effective visualizations!

(E.g., draw viewer's attention to main points, effective redundant encodings, etc.)

Ware, VTFD 22

Discriminability and Separability

The question of discriminability is: if you encode data using a particular visual channel, are the differences between items perceptible to the human as intended?

Munzner, VAD 23

Textures

easy

hard

t on a background containing similar feature elements will be very difficult to read even though the background color is different. やいたかいなからみ

Subtle, low contrast background texture with little feature similarity will interfere less.

Textures: Interference

The more the background differs in element granularity, in feature similarity, and in the overall contrast, the easier the text will be to read.

ILLUSIONS AND TRICKS

Visual Attention & Change Blindness

Visual Attention & Change Blindness

Task: Identify the lumps/nodules in the patient's lungs to look for cancer or abnormal growth.

83% of the radiologists missed the gorilla! http://search.bwh.harvard.edu/new/pubs/DrewVoWolfe13.pdf

The Dress: blue/black or yellow/white?

https://en.wikipedia.org/wiki/The_dress

Still or moving?

Shepherd's Table Illusion

Illusion based on how we perceive depth/perspective...

http://mentalfloss.com/article/28862/brainworksexplaining-optical-illusions-and-other-mental-tricks

Referendum President

	URSE OPTIO NARD CCIS ANINGFUL IOR
	Bouvé (4 cour
	CAMD (23 cou
	COE (11 cours COS (35 cours
	CSSH (23 cou
	DMSB (12 cou

Northeastern University, Khoury College, 2016 40

INTERACTION

GOALS FOR TODAY

Learn when and why to use interaction.

Learn the "Shneiderman Mantra".

• Learn the basic interactive functions for visualizations.

Interaction

Why interaction?

- Complexity reduction
- Static = specific story told to you, versus interactive =
 - viewer discovers the story
- Enables data exploration, insight, reasoning for oneself
- Makes it personal to the viewer
- Dive deeper!

Interaction

A few footnotes...

Interaction requires human time and attention

 Human-guided search vs. Automatic feature detection vs. Interactive visualizations

the human in the loop to detect patterns

- Find balance between automation and relying on

Based on Slide by Hanspeter Pfister 44

- → Navigate
 - → Item Reduction
 - → Zoom Geometric or Semantic

→ Pan/Translate

\rightarrow Constrained

- → Attribute Reduction
 - → Slice

→ Cut

→ Project

Interaction

Key Concepts:

- Change over time
 - Encodings, Animated Transition
- Selection
 - Highlight
- Navigation
- Pan/Translate, rotate, zoom

Based on Slide by Miriah Meyer 47

details on demand." - Ben Shneiderman "The Shneiderman Mantra"

"Overview first, zoom and filter, and

<u>Shneiderman, 1996</u> 48

Interaction

Shneiderman Mantra:

- Overview provide high-level view/summary
- support search/tasks
- providing extra information as needed

Zoom and Filter - enable data discovery and exploration,

Details on Demand - do not overwhelm the viewer by

Based on Slide by Miriah Meyer 49

There are many visual design guidelines but the basic principle might be summarized as the Visual Information Seeking Mantra:

Overview first, zoom and filter, then details-on-demand Overview first, zoom and filter, then details-on-demand

Each line represents one project in which I found myself rediscovering this principle and therefore wrote it down it as a reminder. It proved to be only a starting point in trying to characterize the multiple informationvisualization innovations occurring at university, government, and industry research labs.

"Search, show context, expand on demand" - van Ham & Perer

van Ham & Perer, 2009 51

Interaction

- van Ham & Perer approach:
- Search pick subset of data to focus on.
- Show context show connected or relevant data for the user's current interests.
- in a direction of interest.

Expand on demand — user chooses to expand the context

van Ham & Perer, 2009 52

Queries and Filtering

→ Select

- → Navigate
 - → Item Reduction

→ Zoom Geometric or Semantic

→ Pan/Translate

 \rightarrow Constrained

Manipulate

- → Attribute Reduction
 - → Slice

→ Cut

→ Project

€

Gapminder Bubbles

BOUT 下 F	HOW TO USE	Share 🖂 😏 f 🗖 🐠 🛛 English 🔻	0
LEVEL 3	LEVEL 4	Color World Regions V	
		Select Search Afghanistan Albania Algeria Andorra Angola Antigua and Barbuda Argentina Armenia Australia Australia Austria	~
	per person (GDP/capita, PPP\$ inflation-a	Size Population	?
) 16k	32k 64k	Zoom 🕟 @ @ 100%	
2)	A DATA 2000	DOUBTS OPTIONS PRESENT EXPAND	_

D3 General Enter, Update, Exit Pattern

abcdefghijklmnopqrstuvwxyz

Mike Bostock, 2016 (can use <u>selection.join</u> to simplify)⁵⁵

D3 Animated Transitions

flexible transitions

Mike Bostock, 2011 56

Centroidal Voronoi Tesselation

Queries and Filtering

- → Navigate
 - → Item Reduction
 - → Zoom Geometric or Semantic

→ Pan/Translate

 \rightarrow Constrained

Manipulate

→ Attribute Reduction

→ Slice

→ Cut

→ Project

→ Select

Current target: 5 Cursor radius: 75.89579797016441

•

i: toggle info c: toggle cursor t: toggle timing mode r: redraw targets

Bubble Cursors

Grossman and Balakrishnan, 2005; Anand Kulkarni, 2010 60

2007	2008	2009	2010	2011	2012	2013	

Mike Bostock, 2019 61

IN-CLASS EXERCISE

Queries and Filtering

Manipulate

→ Attribute Reduction

→ Slice

→ Cut

→ Project

→ Navigate

- → Item Reduction
 - → Zoom

Geometric or Semantic

Navigation

IN-CLASS EXERCISE

Zoom techniques

EasyPZ Pan & Zoom

</> JS LIBRARY

Pan & Zoom How You Want - Try it!

» Standard

Flick Pan + Double Click, Wheel & Pinch Zoom

These methods are pretty standard. Flick pan means that the content keeps its momentum when you release the pointer, and then slows down. You can also zoom out with double right click.

Show Code

» For the Lazies

Flick Pan + Hold Zoom In + Double Click Zoom Out

Hold zoom in requires much less work to zoom in, particularly when compared against pinching on mobile devices. Notice that you can adjust the zoom position while zooming.

Show Code

In-class activity: experiment with zooming and panning

Michail Schwab PhD student Khoury Data Visualization

Queries and Filtering

- → Navigate
 - → Item Reduction
 - → Zoom Geometric or Semantic

→ Pan/Translate

 \rightarrow Constrained

Manipulate

→ Attribute Reduction

→ Slice

→ Cut

•••••••

→ Project

Queries and Filtering

i sources type the digits of a zip code

<u>Ben Fry, 2014</u>

→ Attribute Reduction

→ Slice

→ Cut

→ Project

K A Y A K	Hotels	Flights	Cars	Packages
vvvvvr	NMLAJT	BOS ↔ 2614 of 511	• WAS 2 flights	Oct 1 Friday
Advice: BUY Learn m	alert	Sort by: P	rice <u>R</u> e	ecommende
 Stops ✓ nonstop ✓ 1 stop ✓ 2+ stops 	▼\$202 \$132 ▼\$416	\$2 Viev	253 v Deal	Rela The mo \$253
Times Take-off Boston (BOS	Show all			JetBlu
Fri 5:00a - 10:00p		Hack	132 er Fare	spirit
Take-off Washington Thu 10:30a - 11:00p	(WAS)	Viev	v Deal	
Show landing times •		I	136	
Airports Depart/Return sa	me	Ur	nited	
Boston BOS: Logan Inter Boston (Back Bay Boston (South St	\$124 /) \$187	Viev	v Deal	

Queries and Filtering

5	Activities	Мо	re ▼								
14 y	→ Oct Thurs	20 day	Eco cab	onomy in	1 travele	ŕ			Cł	nange	
ed	Duration	<u>n</u> More	€ ▼					Roun	d-trip	Segmer	nt
3X nost	your le legroom in nonst	gs, nc n coach. top	ot yo . (Base	our star d on the a Sel	ndard average lect	S. fleet-wide s	Se	je	etE	Blue	2°
	Spirit Ai	irlines /	Unite	d				ē	×	ŝ ∦ ⊡	-
	8:54p	BOS	→	10:29p	BWI	1h 35m		nonstop			
	7:32p	BWI	→	11:11p	BOS	3h 39m		1 stop (l	EWR)		
	Show d	etails				Commut	tair DBA I	United Expre	ess opera	Econom tes flight 4850	y D.
	United							ļ	×		-
	9:25a	BOS	→	1:17p	BWI	3h 52m		1 stop (I	EWR)		
	7:32p	BWI	→	11:11p	BOS	3h 39m		1 stop (I	EWR)		
	Show d	etails				Republic Airlin	IAS DRA I	Inited Exore	ess onera	Econom	y

<u>Kayak, 2020</u>

Commutair DBA United Express operates flight 4850.

→ Attribute Reduction

→ Slice

→ Cut

→ Project

Projection

IN-CLASS EXERCISE

MBTAVis: Excellent WPI course final project

Locations of each train on the red, blue, and orange lines at 6:25 am. Hover over the diagram to the right to display trains at a different time.

Trains are on the right side of the track relative to the direction they are moving.

See the morning rush-hour, midday lull, afternoon rush-hour, and the evening lull.

Service starts at 5AM on Monday morning. Each line represents the path of one train. Time continues downward, so steeper lines indicate slower trains.

Since the red line splits, we show the Ashmont branch first then the Braintree branch. Trains on the Braintree branch "jump over" the Ashmont branch.

Train frequency increases around 6:30AM as morning rush hour begins.

In-Class Critique — MBTAVis 15m

In-Class Critique — MBTAVis

Locations of each train on the red, blue, and orange lines at 6:25 am. Hover over the diagram to the right to display trains at a

Trains are on the right side of the track relative to the direction they are moving.

See the morning rush-hour, midday lull, afternoon rush-hour, and the evening lull

Service starts at 5AM on Monday morning. Each line represents the path of one train. Time continues downward, so steeper lines indicate slower trains.

Since the red line splits, we show the Ashmont branch first then the Braintree branch. Trains on the Braintree branch "jump over" the Ashmont branch.

Train frequency increases around 6:30AM as morning rush hour begins.

→ Change over Time

→ Select

- → Navigate
 - → Item Reduction
 - → Zoom Geometric or Semantic

→ Pan/Translate

→ Constrained

→ Attribute Reduction

Paper Prototyping

Analitico, 2013; Rajkumar, 2017 75

Aaron Brako, 2016 76

Low Fidelity to High Fidelity

Sketching of Interactivity

Hennigs, 2013 78

Example Usability Test with a Paper Prototype

ing crayons to simulate the interaction of clicking and coloring

BlueDuckLabs, 2010 79

Upcoming Assignments & Communication

A look at the upcoming assignments and deadlines

- Textbook, Readings & Reading Quizzes
- 2020-11-24 Project 8 Sprint 3 & Prep for Usability Testing
- 2020-11-25 No Class Thanksgiving
- 2020-11-30 In-Class Usability Testing Final Projects
- 2020-12-06 Project 9 Presentation and Video
- 2020-12-07 In-Class Project Presentations
- 2020-12-09 In-Class Project Presentations
- 2020-12-15 Project 10 Final Project Deliverables and Sharing with Partners

https://c.dunne.dev/ds4200f20

Everyday Required Supplies:

- 5+ colors of pen/pencil
- White paper
- Laptop and charger

Use **Canvas Discussions** for general questions, email the **instructor & TAs** for questions **specific to you**.

If you're emailing about a particular assignment, please include the URL of the Submission Details page. (Canvas documentation.)

If you have a project question, give us your group number. E.g., include: `Group ## — Topic` with '##' replaced by your group number and 'Topic' replaced by your topic.

