

Cody Dunne Northeastern University

LECTURE 4: HEURISTIC LAYOUT ALGORITHMS, READABILITY CS 7295, FALL 2021

Course Homepage on Canvas

(project details + assignments to be added)

https://c.dunne.dev/cs7295f21/

Feel free to interrupt with questions!

Plan for Today

Discuss:

- Layout Objectives & Readability
- Layout heuristics

For next time:

For W 2021-10-06:

Project 1a — Initial Idea Pitches & Related Work (discussion post, presentation, PDF slides)

CHECKING IN

PREVIOUSLY, ON CS 7295...

Note: these are all really important concepts when it comes time to coding your visualizations...!

Visualization Building Blocks

Channels :

How to pick? User study results!

<u>Munzer, 2014</u> Cleveland & McGill, 1984 Heer & Bostock, 2010 Mackinlay, 1986 Panavas et al., 2021 (under submission)

NOW, ON CS 7295...

LAYOUT OBJECTIVES

Sugiyama's Graph Drawing Rules

ТҮРЕ	DRAWING RULES	CLASSIFI- CATION AXES
Semantic Rules	1. A specified sequence of vertices is placed on a straight line.	USLB
	2. A specified sequence of vertices is placed on a specified curve.	USLB
	3. Vertices are drawn with a specified size.	UMLB
	4. A specified set of vertices is placed at the boundary of the drawing.	NTLB
	5. A specified set of vertices are drawn near to each other.	NTLB
	6. A specified set of vertices is placed near the center.	NTLB
	7. An upper limit to the number of edge crossings is specified.	NTLB
	8. An upper limit to the number of edge bends is specified.	NSLF
	9. The lengths of specified edge have a specified upper limit.	NMLF
	1. Vertices of high degree are placed near the center.	UTLB
	2. Isomorphic subgraphs are always drawn identically.	USGB
	3. The vertices of isomorphic subgraphs are always placed identically.	USGB
	4. Hierarchical structure is clearly shown vertically or horizontally.	NTGH
	5. The number of edge crossings is minimized.	NTGB
	6. The ratio of length to breadth of the drawing area is balanced.	NSGB
	7. Symmetry is clearly shown.	NSGB
	8. The number of edge bends is minimized (using straight lines wherever possible).	NSGB
	9. The number of faces drawn as convex polygons is maximised.	NSLH
Structural	10. Children of a vertex are symmetrically placed.	NMGH
Rules	11. Crossings among outlines are eliminated. (see Figure 3.2.7)	NMGB
	12. The density of the placement and the routing is uniform.	NMGB
	13. The drawing area is minimized.	NMGB
	14. The total edge length is minimized.	NMGB
	15. The difference in sizes of vertices is minimized.	NMGF
	16. The average length of edges is minimized.	NMGF
	 The difference between the length of contours of vertices and the length of edges is maximized. 	NMGF
	18. The differences in edge lengths is minimized.	NMGF
	19. The length of the longest edge is minimized.	NMLF
· ·	20. Vertices on the boundary are placed with uniform density.	NMLF

Figure 2.3.1. Simple examples of better (right) and worse (left) layouts.

Drawing rules can be classified using the following axes. A classification according to these 4 axes is noted in the right hand column of Table 2.3.1.

- (1) Whether the solution to a rule can be obtained uniquely (U), or not (N).
- (2) Whether the rule is topological (T) (specifying only the placement relationship between elements), shape-oriented (S) (specifying the direction also), or metric (M) (specifying distances as well).
- (3) Whether the rule applies globally, to the whole drawing (G), or locally, only to a part of the drawing (L).
- (4) Whether the rule is hierarchical (H), or flat (F), or both (B).

Sugiyama, 2002

11

Dunne et al.'s Readability Metrics

- Node overlap
- Edge tunnel
- Group overlap
- Drawing space used

IBM Watson	Graph L ×	
← → C 🗅	graph-layout-dev	.sl.clo <mark>u</mark> d9
	atson Graph	^{Lab} າ Layo
	🖌 Visual vari	iables
	Node label:	Defaul
	Node size:	Unifor
	Edge width:	Unifor
	Node color:	Overla
	Edge color:	Crossi
	♀ Opacity	
	Node opacity:	
	Edge opacity:	
	Editing	
	New node:	Ctrl + m
	Delete node:	Del or 'o
	New edge:	Ctrl + m sour
	Scaling	
	Node radius:	Ctrl + m
	Edge width:	Shift + r
	Node title:	Alt + mo
	Scale to view:	Click wi or 's

Global & Local!

<u>Dunne et al., 2015</u>

Node Overlap Node-Local Metric

Edge Crossing Edge-Local Metric

Distance Coherence Edge-Local Metric

File Name
ar_base.graphml
ar_test2.graphml
ar_test3.graphml
$GraphML\text{-}10201_v2_scale_und{\sim}1$
GraphML-10201_v2_scale_und~2
small-good_ec-good_eca.graphml
small-med_no.graphml
small-poor_ec-good_eca.graphml
small-poor_ec-ok_eca.graphml
small-poor_ec-poor_eca.graphml
gg-18806.graphml
gg-18807.graphml
gg-19242.graphml
gg-19243.graphml

Nodes	Edges	EC	NO	ECA	AR_M	AR
9	10	1.00	1.00	1.00	0.72	0.7
9	10	1.00	1.00	1.00	0.53	0.5
9	10	0.96	1.00	0.88	0.65	0.6
311	564	0.98	0.92	0.73	0.57	0.5
311	564	0.98	0.76	0.71	0.60	0.6
4	4	1.00	1.00	1.00	0.47	0.4
4	4	1.00	1.00	1.00	0.37	0.4
4	4	0.00	1.00	0.83	0.45	0.4
4	4	0.00	1.00	0.84	0.43	0.4
4	4	0.00	1.00	0.03	0.33	0.4
10433	11944	1.00	0.88	0.68	0.93	0.9
10433	11944	0.99	1.00	0.71	0.92	0.9
2658	4039	0.98	0.38	0.68	0.64	0.6
4099	3350	1.00	0.31	0.62	0.94	0.9
bad						

Dunne et al.'s Readability Metrics

- Raise awareness of readability issues
- Compare layouts of a graph
- Localized identification of where improvement is needed
- Interactive optimization
- Feed into algorithms

itive Visualization	
 ∠ Visual vari	iables
Node label:	Defau
Node size:	Unifo
Edge width:	Unifo
Node color:	Overl
Edge color:	Cross
Node opacity:	
Edge opacity:	
Editing	
New node:	Ctrl + r
Delete node:	Del or
New edge:	Ctrl + r sou
Scaling	
Node radius:	Ctrl + r
Edge width:	Shift +
Node title:	Alt + m
Scale to view:	Click w or 's

÷ ⊦ B

Dunne et al., 2015

In-Class Algorithms: Network Planarity Party

INSTRUCTIONS:

Aim of the assignment:

In this exercise you will learn about network layout readability criteria, especially edge crossing minimization. You will work in teams to eliminate edge crossings from several node-link network visualizations. You will do this using Planarity Party, a puzzle game we created that will let you connect with your group members and work to solve the puzzle together. Your goal is to solve as many puzzles as possible within 15 minutes.

Background information:

A planar graph is a graph that can be drawn with no edge crossings. However, actually drawing the graph quickly but with no edge crossings can be a challenging algorithmic task.

Instructions:

(3 min) Setup

- Break into groups of 3–4
- Pick a leader for your group.

• The leader should load Planarity Party, preferably in Firefox or Chrome:

https://michaschwab.github.io/VisConnect/examples/planarity/

• Click the link icon at the bottom-right corner to copy invite link for your group to the clipboard. It looks like this:

• Share the link to your group members and wait for them to join. You will be able to see how many people are connected by the number in the bottom. You will also be able to see the mouse cursor of all members as a small colored circle.

(15 min) Start solving puzzles!

Each can be solved by dragging around the nodes until there are no edge crossings. The number of crossings is shown at the top, along with the number of moves you all have made.

• When all edge crossings are removed the nodes will turn yellow and you will be able to move to the next graph. A force-directed layout of the network will also appear at the bottom of the screen for comparison.

• Every new network will be harder than the last one. See how far you can make it in 15 minutes!

Wrap up:

(4 min) We will discuss the exercise as a class.

Troubleshooting:

Unfortunately, Planarity Party is a research demo and can be a bit finicky. If you have any problems:

- Please reach out to the teaching staff.
- Try starting from scratch with a new instance of Planarity Party.
- Try a different browser / private browsing window.
- Have a different student create the instance.

19

HEURISTIC LAYOUT ALGORITHMS

Projection Transitions

Lagrange

D3 Force-Directed Layout

Force-Directed Algorithms

Kobourov, 2012 25

	×
2	
	- 1
•	

Graph A

Algorithm Comparisons

Graph B

Hachul & Jünger, 2006

How to compare?

User performance, controlled experiments *Huang et al., 2007*, etc.

Simple rules or heuristics Davidson & Harel, 1996

Global and local readability metrics <u>Purchase et al., 2002</u> <u>Dunne et al., 2015</u>

<u>Sugiyama, 2002</u>, p. 14

For Next Time & Communication

Homepage: <u>https://c.dunne.dev/cs7295f21/</u> (project details + assignments to be added)

For next time:

- Discussion lead 1 Topic Areas
- Assignment 1 Read the Syllabus

Everyday Required Supplies:

- 5+ colors of pen/pencil
- White paper
- Laptop and charger

Use Canvas Discussions for general questions, email the instructor for questions specific to you.