0
el
(5]
_|_O
n
(=]
(=]
o
[
(=]
v

Lecture 3:JS Development,
Projects

> |

CS 7250
SPRING 2021

Prof. Cody Dunne

NORTHEASTERN UNIVERSITY

Slides and inspiration from Michelle Borkin, Krzysztof Gajos, Hanspeter Pfister, _ _
Miriah Meyer, Jonathan Schwabish, and David Sprague Y SN >

CHECKING IN

STAFF INTRODUCTIONS

. Cody Dunne
Assistant Professor
Instructor

Sara Di Bartolomeo
TA

David Saffo
TA

Sophia Gunzberg
Service-Learning TA

PREVIOUSLY, ON CS 7250...

JAVASCRIPT DEVELOPMENT

Slides and inspiration from Sara Di Bartolomeo

THIS 1S MY
FAVORITE
LANGUAGE

A

@redcoders

javascnpt

11"+ 1= *111"

117-1 =10

Javascript i bad

JavaScript is good

® You can change the appearance and behavior of everything that
you see in a webpage

® Extremely easy to make other people access your work

® You can write good code if you know how

Starting a Project

index.html python3 -m http.server Browser open on

(or py, python... whatever 127.0.0.1:8000
your python 3 is called)

Running your code - loading page in the browser

Starting a Project

index.html|

You can open index.html|
directly from the
browser without having
a server running, but
you will encounter
problems with CORS

python3 -m http.server

Run this in the root folder
of your project

Browser open on
127.0.0.1:8000

IF W@E OREN

“

“

YOU

BENJINDEXHTIML UJ%S[ID]@ RILE//2

A

NSTRUCTC
{l)

i

HG0

NA HAVE

‘_"‘ FI:I -_’LVA_—IE Image credit: South Park

Starting a Project

index.html|

You can open index.html|
directly from the
browser without having
a server running, but
you will encounter
problems with CORS

python3 -m http.server

Run this in the root folder
of your project

Browser open on
127.0.0.1:8000

Starting a Project

index.html python3 -m http.server Browser open on

127.0.0.1:8000

style.css script.js

Editor recommendations

All of them are pretty light, very customizable and ready out of the box

VS Code (by Microsoft)
- some additional features like autocompletion are built in
- runs on electron (very customizable but heavier than necessary on resources)

Sublime
- lightweight but you can obtain everything you need through plugins
- the only one in this list that is not open source

Atom (by Github)
- runs on electron too

Brackets (by Adobe)
- runs on electron too

Notepad++
- Windows on C++

Not ready out of the box:
Vim
- only recommended if you want to spend a good chunk of time configuring it and learning new shortcuts.

https://code.visualstudio.com/
https://www.sublimetext.com/
https://atom.io/
http://brackets.io/
https://notepad-plus-plus.org/

Where do | put my script?

Where do | put my script in an HTML page?

<IDOCTYPE html>
<html|>
<head>
<meta charset="UTF-8">
<title>title</title>
</head>
<body>
<div>content...</div>
<div>content...</div>
</body>
</html>

http://htmishell.com/

Inline

<IDOCTYPE html>

<html>
<head>
<meta charset="UTF-8">
<title>title</title>
</head>
<body>
<div>content...</div>
<div>content...</div>
<script>
... your code ...
</script>
</body>
</html>

- does NOT scale

- will make you very confused when
your code becomes longer

- only good for fast prototyping

From another file

<IDOCTYPE html>
<htmlI>
<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./main.js"></script>
</head>
<body>
<div>content...</div>
<div>content...</div>
</body>
</html>

- much better, can add as many files as
you want and divide your code effectively

Ways to run a script

From another file (better)

<IDOCTYPE html>
<htmlI>
<head>
<meta charset="UTF-8">
<title>title</title> </head>
<body>
<div>content...</div>
<div>content...</div>
<script src="./main.js"></script>
</body>
</html>

- scripts at the end avoid need for dealing with
async, defer, or onload event handlers

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>title</title>
</head>
<body>
<div>content...</div>
<div>content...</div>
</body>
</html>

Head

Body

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./mainl.js"></script>
<script src="./main2.js"></script>
</head>
<body>
<div>content...</div>
<script src="./main3.js"></script>
<div>content...</div>
<script src="./main4.js"></script>
</body>
</html>

In head:
Executed before everything else
Can be used to make sure that some resources are

<IDOCTYPE html> accessible before everything else is loaded
<htmlI> - Can’t access DOM objects (because they have not been
<head> created yet) unless forced to wait
<meta charset="UTF-8"> - Loading of this script is blocking towards the loading of the
<title>title</title> rest of the resources and scripts

<script src="./mainl.js"></script>
<script src="./main2.js"></script>
</head>
<body> In body:

<div>content...</div> / - Executed after some content and before some other
<script src="./main3.js"></script> content

«div>content...</div> Only useful for very small, localized scripts

<script src="./main4.js"></script>
</body>

</html> End of body:

Able to access every DOM element created in body

Executed after everything else, won’t block loading of the
body

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./mainl.js"></script>
<script src="./main2.js"></script>
</head>
<body>
<div>content...</div>
<script src="./main3.js"></script>
<div>content...</div>
<script src="./main4.js"></script>
</body>
</html>

Workarounds to keep in mind if you have issues with
flow control:

Option 1:
document.addEventListener(
'DOMContentLoaded’, function() { }

)

Use this as a starting point to wait for all content to have
loaded in the DOM regardless of where you position your
script

The event DOMContentLoaded is automatically

dispatched by the browser as soon as all the resources are
loaded.

Option 2:

Build system / task runner tool set up to do flow control
(out of the scope of this class, Google if you want to know
more)

Using the browser console

Open the browser console

Ctrl+shift+k on Firefox
Ctrl+shift+j on Chrome
Or click anywhere on the page with your right click

and select “Inspect Element” then click “Console”
in the menu

Lw Inspector () Console [Debugger 14 Network {3} Style Editor () Performance 4k Memory D__| see X

m Errors Wamings Logs Info Debug CSS XHR Requests -;:',E—

» |

} Inspector () Console [Debugger 4N Network {} Style Editor () Performance 4k Memory [j__| see X

» | M

Errors Warnings Logs Info Debug CSS XHR Requests -l:f-

Will allow you to select any element in the page and see
its properties, position in the DOM, etc.

I Inspector Console [© Debugger 1Ty Network {]' Style Editor () Performance ﬁ Memory D) |j__| eee X

il Y Filter Output Errors Warnings Logs Info Debug CSS XHR Requests -I:[-

» | M

Will allow you to select any element in the page and see

its properties, position in the DOM, etc.

CSS associated to
selected element

G‘ -I:} Inspector Cﬂnsnle [© Debugger ‘Ny Network {} Style Editor mPerfnrmance EDEMemur}r » ET.I .
Q Search HTML 4+ £ Y Filter Styles hov cs + (B

p <div class="row"> = </div> A element {:} { inline A
p <div class="row"> = </div> }
¥ <div class="row">=* </div> label, legend {3 { skeleton.css:271
Selected w <div class="row"> display: block;
. P <dive s <fdiv> margin-bottom: .5rem;
elementin w <div clace="two columnz™> font-weight: 600;
the DOM <label i1d="matchscoresliderlabel™ for="bbb"> }
Match score: 18</label:> Inherited from form
:}Ziiz-w1dth= 100%"> ==+ </div> element { O inline

font-size: small;
text-align: center;

p <div class="two columns™> =+ </div>

b <div class="two columns™» ==+ </div>y v }

£ welvecolumns » form » divrow » div.two.columns > label#matchscoresliderlabel » .
Inherited from body v

} Inspector () Console [Debugger 4N Network {} Style Editor () Performance 4k Memory |jj see X

Errors Warnings Logs Info Debug CSS XHR Requests -l:(-

» | M

Will allow you to select any element in the page and see

its properties, position in the DOM, etc.
{:} Inspector ([J Console [Debugger 1N Network {3} Style Editor () Performance {F Memory m L
O S - _

+ X | Y Filter Styles hov s 4+ (2
p <div class="row"> ' </div> A element {3 { inline A
p <div class="row"> = </div> }
p <div class="row"> '+ </div> label, legend {3 { skeleton.css:271
w<div class="row™ display: block;
p <divy = <fdiv> margin-bottom: .S5Srem;
w <div class="two columns"> } font-weight: 600;
. : . <label id="matchscoresliderlabel™ for="bbb">
Will allow you to answer questions such as: e e o form

p <div width="100%"> = </div>

What is the id of this element that | am seeing? /i clewnt { & inline
s this element in the correct position in the DOM? < clasonttn oaluma MRl v) (e e

What events are associated to this element? $ retve.columns > form > divrow > divtwo.columns > labefmatchscoreslideriabel)
How would this element look like if | make it red

without having to re-run the whole page?

Inherited from body v

Lx | Console [© Debugger TN Network {} Style Editor () Performance {k Memory > E'D see X

Errors Warnings Logs Info Debug CSS XHR Requests -l:(-

» | M

Shows the structure of the page plus CSS style associated
with it

(w nspectc- Debugger TN Network {3} Style Editor () Performance 4k Memory »» |j__| see X
]ﬁ] Y Filter Qutpdt Errors Warnings Logs Info Debug CSS XHR Requests -I:I-
» | 0D

Shows print output and errors
Can run scripts after page is loaded

(W {:} Inspector Console [© Debugger 1TV Network

»»> document.body
example: e b <body> O

»»> document.body.style.backgroundColor = "red’
+ 'IIr.EdII

|

Everything is an object

And everything can be printed in the console
If you print an object in the browser console, you can navigate the fields of the object and the functions
associated with it

.......
= imat e + 5

Iapl1mata" Tregs
.

Note: you can access any DOM element too as JavaScript objects

Callbacks and events

Callbacks and events

“Event-driven architecture”: the flow of a program is defined by
events.

Events can be generated by the user or by the browser. Examples of
events that you will want to use a callback for:

user interacts with an element

loading of a resource is completed

browser window is resized

request to some API is returned

Callbacks and events

Most of the events that you will use are already defined by the browser.

Examples:
mouseover: cursor enters the bounding box of a specified element

mouseout: cursor exits the bounding box of a specified element
onClick: user clicks on specified element

onWindowResize: browser window is resized
onDocumentReady: all resources in document are loaded

You can also define and dispatch your own events

Callbacks and events

a callback

Adding an event listener to an item: /

item.on(‘mouseover’, function(){
console.log(‘hello’);

/)

Events are usually managed using callbacks.

Callbacks are nameless functions that are executed after a condition is
verified.

Callbacks and events

. . . a callback
Adding an event listener to an item: /
item.on(‘mouseover’, function(){ ~ item.on(‘mouseover’, () =>{
console.log(‘hello’); console.log(‘hello’);
))

Events are usually managed using callbacks.

Callbacks are nameless functions that are executed after a condition is
verified.

Callbacks and events

Callbacks are not only for events:

myArray = [1, 2, 3, 4, 5, 6]
result = myArray.filter(

)
// returns [2, 4, 6]

In this case, we use a callback to filter an array, keeping only even numbers

Callbacks and events

Similar to lambdas in python

JS Python
myArray = [11 2/ 31 41 51 6] myArray = [1, 2, 3, 4, 5, 6]
result = myArray filter(function(a) = { result = list(filter(lambda a: (a%2 == 0),

042 ==
return a%2 myArray))

/ // returns [2, 4, 6]

// returns [2, 4, 6]

Ways to declare a variable

X =5 Global (or error in strict mode)

Varx:S’y=6’2:7; Global

let x = 5- Scope of the variable is constrained to the scope in which it
' has been declared.

const x =5; Scope limited, x has to be constant.

Recommended to generally use let
and const instead of var

if (true) { if (true) {
var foo = 5; let foo = 5;

J J

console.log(foo); //5 console.log(foo); // undefined

Always be aware of the data type that you are dealing with

ShadowCheetah v

[@shadowcheets

Javascript is weird.

> ('b' + 'a' + + 'a' + 'a').toLowerCasel()
"banana"

1:30 PM - Aug 12, 2019 - TweetDeck

65 Retweets 206 Likes

https://github.com/denysdovhan/wtfjs

Ways to declare a function

name("Ted");

Function declaration
function name (params) {

Function expression
let name = function (params) {

Arrow function
let name = (params) => {

All of these will have *almost* the same effect

In arrow function: this, arguments from outer
function; no constructor; implicit return

Hoisting: a function will be positioned at the top of
the scope and made available at any point of its own
scope even before its own declaration

Arrow functions will let you write a lot of fun oneliners:

// custom sorting function
[3, 1, 2, 4].sort((a, b) =>a < b)
- (1, 2, 3, 4]

// custom filtering function
[1, 2, 3, 4].filter(a => a%2 == 0)
- [2, 4]

// sum of all elements in an array
[1, 2, 3, 4].reduce((a, b) =>a + b, 0)
- 10

// sort then filter then sum
[3, 1, 2, 4].sort((a, b) => a < b).filter(a => a%2 == 0).reduce((a, b) =>a + b, 0)
-6

Style guides

Google style guide: https://google.github.io/styleguide/javascriptguide.xml

Airbnb: https://github.com/airbnb/javascript

Standardjs: https://standardjs.com/#the-rules

ldiomatic: https://github.com/rwaldron/idiomatic.js

https://google.github.io/styleguide/javascriptguide.xml
https://github.com/airbnb/javascript
https://standardjs.com/#the-rules
https://github.com/rwaldron/idiomatic.js

Linting Automated code review

Linters force you to write code following some pre- one of many tools to check issues in
established policies. your code:

https://www.codacy.com/

Jslint: http://www.jslint.com/

(example)
https://app.codacy.com/app/picorana
/sparqgling/files?bid=7480002

jshint: https://jshint.com/ started as a fork of jslint,
customizable

prettier: https://prettier.io/ customizable

http://www.jslint.com/
https://jshint.com/
https://prettier.io/
https://www.codacy.com/
https://app.codacy.com/app/picorana/sparqling/files?bid=7480002

IN-CLASS PROGRAMMING —
JAVASCRIPT

~25 min total

https://northeastern.instructure.com/courses/63405/assignments/874492

THE NESTED MODEL FOR
VISUALIZATION DEVELOPMENT

Used for your Projects

TEXTBOOK

CRC Press
Taylor &Francis Group

AN A K PETERS BOOK

N

S

Visualization
Analysis & Design

4 4
-
-

S

J

e,
e

Additional “recommended” books as resources in syllabus

@ CRC Press
Taylor & Francis Group

AN A K PETERS BOOK

Visualization
Analysis & Design

Tamara Munzner

Illustrations by Eamonn Maguire

Tamara
Munzner

“Nested Model”

Ad. Domain situation
Observe target users using existing tools

Example

FAA (aviation)

What is the busiest time
of day at Logan
Airport?

Map vs. Scatter Plot vs.
Bar

http://www.urban.org/author/jonathan-schwabish

Nested Model

a N
Human-centered
design

- \
Designer understands

user
Abstract domain

tasks

Visualization design

Implementation

Nested Model

L Domain situation

@ Data/task abstraction

Visual encoding/interaction idiom

m Algorithm

|dentified

Desighed

51

£Design Studyj NEStEd MOdEI £ Technique j

TOP-DOWN BOTTOM-UP
“broblem- “technique

driven /7 L Domain situation -driven /7

@ Data/task abstraction \Jost dlfflCUlt Step!

Visual encoding/interaction idiom

m Algorithm

Mistakes
propagate
through model!

Nested Model

53

Threats to Validity

Threats to Valid |ty v Final Project validation

L Domain situation

@ Data/task abstraction

Visual encoding/interaction idiom

m Algorithm

Final
oroject
follow-up

55

PROJECTS

(Using the nested model via design study “lite” methodology)
https://northeastern.instructure.com/courses/63405/pages/project-overview

56

https://northeastern.instructure.com/courses/63405/pages/project-overview

EXPERIENTIAL LEARNING PROIJECTS

Why are we doing experiential learning?
Design Study “Lite” Methodology (Borkin et al. 2017, Syeda et al. (2020))

Design studies are a growing and valuable research area.

Real-world data visualization experience.

Visualization for exploration and communication.

A more realistic experience of creating visualizations, and doing work in general.
Teaches design, interview, evaluation, communication, and feedback techniques
difficult to replicate in a classroom.

Higher-stakes deliverables.

Professional development.

Make a positive impact in the community.
Publication?

57

http://hdl.handle.net/2047/D20255923
https://doi.org/10.31219/osf.io/mghj3

EXPERIENTIAL LEARNING PROIJECTS

What are the challenges?

Real-world data is messy and difficult to gather and process.

Partners may not have clear goals and expectations.

There is communication and scheduling overhead, inc. for teaching staff to
differentiate assighment grading if necessary.

Project areas may be too predefined.

Project areas may be too ambiguous.

May not actually make a meaningful impact.

Reduces time for white-room technical education.

More ambiguous expectations and grading challenges.

Possible variation in student workload.

Students may not know they are signing up for Service-Learning in advance
(common problem with our registrar).

58

EXPERIENTIAL LEARNING PROIJECTS

Who to blame for getting you into this?

[IIE |
THE IIIIIII’IAIII]

Michelle Borkin Cody Dunne

59

EXAMPLES OF SUCCESSFUL
COURSE PROJECTS

(Albeit with different requirements per course)

Just TYPEical: Visualizing Common Function Type Signatures in R

Cameron Moy (©* Julia Belyakova Alexi Turcotte Sara Di Bartolomeo Cody Dunne

Northeastern University

- w i=.null
B&m 23m 23m
symbol double 54
B&6m 23m 23m
LANGSNP double
146m 23m

if { Internal = function
21m 40m 21m 204 20m
LANGEXP Integer pairlist
82m 20m 20m
logical environment integer
44m 21m 20m

Figure 1: Our type flow visualization showing type signatures for a subset of R’s base package functions. Function names are
listed at the top followed by the first two argument types. Complete signatures are shown in the full visualization (Fig. 2).

ABSTRACT

Data-driven approaches to programming language design are uncom-
mon. Despite the availability of large code repositories, distilling
semantically-rich information from programs remains difficult. Im-
portant dimensions, like run-time type data, are inscrutable without
the appropriate tools. We contribute a task abstraction and interactive
visualization, TYPEICAL, for programming language designers who
are exploring and analyzing type information from execution traces.
Our approach aids user understanding of function type signatures
across many executions. Insights derived from our visualization are
aimed at informing language design decisions — specifically of a
new gradual type system being developed for the R programming
language. A copy of this paper, along with all the supplemental
material, is available at osf.io/mc6zt

Index Terms: Human-centered computing—Visualization

1 INTRODUCTION

Programming languages commonly evolve by decree. Often, the
language designer decides that a new feature is necessary, or that a
past feature was ill-conceived. Thus, the language moves forward —
forcing its users to adapt to the changes. However, rarely is language
design informed by empirical data on how programmers actually
write software in practice [6].

Thanks to the prevalence of open source code, it is feasible to
collect data on the use of popular programming languages. Vast
quantities of code are publicly available on language-specific pack-
age servers. To inform programming language design, this collected
data needs to be analyzed and interpreted. Programs are complex and
highly structured, so researchers often employ static and dynamic

*E-mails: [camoy | belyakovay | alexi]@ccs.neu.edu, [dibartolomeo.s |
c.dunne]@northeastern.edu

analyses to gather information about specific aspects of programs.
Even then, it may be difficult to make sense of the results of these
analyses, especially if the data set is large.

Programming language design, and type system development in
particular, can make use of run-time type signature information. A
type signature describes the argument and return types a particu-
lar function is called with at run time. A fype system provides a
conservative approximation of run-time types. Understanding the
frequency of type signatures in the wild is key for the development
of new gradual type systems, whose adoption depends on integrating
well with existing code. Without data-driven tools, type system
designers are left to guess how their language is used in practice.

Our aim is to eliminate such guesswork by assisting designers
during multiple phases of development. For example, exploratory
analysis can identify unexpected edge cases or weed out language
designs incompatible with existing code. We followed the Design
Study “Lite” methodology [14] over 7 months to help the developers
of a new gradual type system for the R programming language.

The contributions of this ongoing design study are:

*» A task abstraction for programming language designers ana-
lyzing run-time type signatures for type system development.

» The design and implementation of TYPEICAL, an interactive
visualization of run-time type signatures that supports: filtering
data down to interpretable subsets; understanding argument
and return types; and comparing type signatures.

* [Initial validation of our system design with a usability study.

TYPEIcAL builds on a data set of run-time type information
recorded during the execution of test and example code from the
most widely used libraries in the R ecosystem. Our visual de-
sign links two well-established visualizations, parallel sets [7] and
Treemaps [4] [11], to view and navigate these type traces. While
our design study focuses on R, TYPEICAL should be useful for
analyzing any language where similar data are available.

A copy of this paper, source code, and data are available at
osf.io/mc6zt, and a demo is online at typeical.github.io

PROJECT EXAMPLE — JUST TYPEICAL

CS 7250 SPRING 2020:
INFORMATION VISUALIZATION:
THEORY AND APPLICATIONS

Website

Moy et al. VIS 2020

https://osf.io/pyqac/
https://typeical.github.io/

TYPEical:
A tool for
programming <

language designers f
ahs s called with comp Lex
| and returns double (5K times)

Loch Prospector: Metadata Visualization for Lakes of Open Data

Neha Makhija (* Mansi Jain
Sara Di Bartolomeo

Nikolaos Tziavelis Laura Di Rocco

Cody Dunne

Northeastern University

Select the data type that you are interested in:

Al Numerical

Categorical

Adjust the weights according to when two datasets are

similar

(higher weight places more importance to an attribute)

Number of row

Filters

Number of Numerical Columns

ﬁotho!e Reports
ows: 2943
Columns(Total) : 15

Null Values(Total): 12.31%
Unique Values(Total): 41.63%

r— Distribution Summary
[]
T—

Number of Rows

Count

Number of Columns

Count

—
Percentage of Null Values

Count

Percentage of Unique Values

Figure 1: LOCH PROSPECTOR visualizes available datasets in Open Data lakes using four linked components. A multidimensional
scaling (MDS) [16] plot € shows a point for each dataset, organized spatially by similar metadata characteristics. Weights for the
MDS algorithm can be tuned for particular types of metadata using the Visualization Configuration Box @. Dynamic Filters [2]

© can be used to explore datasets of interest, with Summary Statistics € shown for the currently selected datasets.

ABSTRACT

Data lakes are an emerging storage paradigm that promotes data
availability over integration. A prime example are repositories of
Open Data which show great promise for transparent data science.
Due to the lack of proper integration, Data Lakes may not have a
common consistent schema and traditional data management tech-
niques fall short with these repositories. Much recent research has
tried to address the new challenges associated with these data lakes.
Researchers in this area are mainly interested in the structural proper-
ties of the data for developing new algorithms, yet typical Open Data
portals offer limited functionality in that respect and instead focus on
data semantics. We propose LOCH PROSPECTOR, a visualization to
assist data management researchers in exploring and understanding
the most crucial structural aspects of Open Data — in particular,

*Corresponding author. E-mails: [makhija.n | jain.man | tziavelis.n |
la.dirocco | dibartolomeo.s | c.dunne |@northeastern.edu

metadata attributes — and the associated task abstraction for their
work. Our visualization enables researchers to navigate the contents
of data lakes effectively and easily accomplish what were previously
laborious tasks. A copy of this paper with all supplemental material
is available at osf.io/zkxv9

Index Terms: Human-centered computing—Visualization

1 INTRODUCTION

Recently, the database community has shifted its attention to the
data management challenges introduced by data lakes (e.g., [21] [26]
[36]). In this paper, we focus on lakes of Open Data [11] [32] due to
their prevalent use in data science [19] and by governments and orga-
nizations embracing data transparency. Data in these lakes is usually
stored in a tabular format but is mainly semi-structured — often as
CSV files — due to the dynamic nature of the dataset. Therefore,
data in Open Data lakes may lack important structural information
typically found in a traditional database management system such
as column names, data types, and functional dependencies.

Before a researcher is able to develop, optimize, or test algo-
rithms that operate on a lake of Open Data, they must first (1) gain
insight into the variation in structural properties and (2) filter to an
appropriate subset of the data lake. Understanding the structural
properties of data in the lake is key for algorithm design, as these
properties directly affect algorithmic operations and performance.
E.g., the recommended algorithms for searching, cleaning, and pro-

PROJECT EXAMPLE — LOCH PROSPECTOR

CS 7250 SPRING 2020:
INFORMATION VISUALIZATION:
THEORY AND APPLICATIONS

Website

Makhija et al. VIS 2020

https://osf.io/2s76d/
https://lochprospector.github.io/

CerebroVis: Designing an Abstract yet Spatially
Contextualized Cerebral Artery Network Visualization

Aditeya Pandey, Harsh Shukla, Geoffrey S. Young, Lei Qin, Amir A. Zamani, Liangge Hsu,
Raymond Huang, Cody Dunne, and Michelle A. Borkin

Topology Separation

Cerebral Arteries
Tree Visualization

Circle of Willis
Cyclic Metwork

Spatial Constraints

Fig. I: CerebroVis is a novel network visualization for cerebral arteries. CerebroVis uses a abstract topology-preserving visual
design which is put in spatial context by enforcing constraints on the network layout. Here we show the conversion of an almost
symmetrical healthy human brain cerebral artery network from a 2D isosurface visualization (left) to CerebroVis (right). Each artery
has the same categorical color in both views (see Sec.for alegend).

Abstract—BIlood circulation in the human brain is supplied through a network of cerebral arteries. If a clinician suspects a patient has a

stroke or other cerebrovascular condition they order imaging tests. Neuroradiologists visually search the resulting scans for abnormalities.

Their visual search tasks correspond to the abstract network analysis tasks of browsing and path following. To assist neuroradiologists in
identifying cerebral artery abnormalities we designed CerebroVis, a novel abstract—yet spatially contextualized—cerebral artery network
visualization. In this design study, we contribute a novel framing and definition of the cerebral artery system in terms of network theory
and characterize neuroradiologist domain goals as abstract visualization and network analysis tasks. Through an iterative, user-centered
design process we developed an abstract network layout technigue which incorporates cerebral artery spatial context. The abstract
visualization enables increased domain task performance over 3D geometry representations, while including spatial context helps
preserve the user’s mental map of the underlying geometry. We provide open source implementations of our network layout technigue and
prototype cerebral artery visualization tool. We demonstrate the robustness of our technique by successfully laying out 61 open source
brain scans. We evaluate the effectiveness of our layout through a mixed methods study with three neuroradiologists. In a controlled
experiment our study participants used CerebroVis and a conventional 3D visualization to examine real cerebral artery imaging data and
to identify a simulated intracranial artery stenosis. Participants were more accurate at identifying stenoses using CerebroVis (odds ratio
2.5, absolute risk difference 13%). More broadly, we discuss the applications of our design approach to a general design paradigm we call

Abstraction with Context. A free copy of this paper, the evaluation stimuli and data, and source code are available at/osf.io/e5sxt

Index Terms—Network Visualization, Spatial Context, Abstract Design, Flow Network, Medical Imaging, Cerebral Arteries.

1 INTRODUCTION

Arteries in the human brain form a network of blood flow, and a blockage
or leakage in this network can lead to life-threatening cerebrovascular
conditions such as a stroke or aneurysm. Strokes alone are the fifth lead-
ing cause of death as well as a leading cause of serious long-term disabil-
ity in the United States, and is globally the second leading cause of death
after heart disease [32]. Early detection and diagnosis of these conditions
1s essential for effective life-saving treatment. Conventional diagnostics

* Aditeya Pandey, Harsh Shukla, Cody Dunne,
and Michelle Borkin are with Northeastern University. E-mail: {pandey.ad,
shukla.h] @ husky.neu.edu, {c.dunne, m.borkin} @ northeastern.edu
* Geoffrey 8. Young, Amir A.
Zamani, Liangge Hsu, and Raymond Huang are with Brigham and Women's
Hospital. E-mail: {gsyoung, azamani, lhsul, ryvhuang] @ bwh.harvard.edu
* Lei Qinis with the Dana-Farber Cancer Institute. E-mail:
lgin2 @partners.org

Manuscript received xx xxx. 201x; accepted

xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx.
201x. For information on obtaining reprints of this article, please send e-mail
to: reprints@ieee.org. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

rely on an expert neuroradiologist identifying vascular abnormalities
through examination of medical images (e.g., CTA, MRA). This data is
commonly rendered in 3D in order to assist the doctor with identification
of the abnormalities. However, prior research indicates that existing
representations of the 3D cerebral arteries—e.g., isosurface, volume
rendering, and Maximum Intensity Projection (MIPS)—introduce visual
artifacts and task performance challenges such as overplotting/occlusion
[19], false impression of geometry [19], and excessive artery bends.

In this design study, we present a novel 2D visualization of the
cerebral artery system designed to assist doctors in the identification
of cerebrovascular abnormalities. Inspired by existing visualization
research which has demonstrated the effectiveness of 2D representations
for spatial search tasks in other medical imaging cases, e.g., cardiovas-
cular arteries [6] and connectomics [33], we present a novel 2D abstract
representation of the cerebral arteries. To our knowledge, this is the
first attempt to approach the cerebrovascular diagnostics tasks faced
by neuroradiologists from the perspective of network science and using
an abstract 2D visual encoding.

In this paper we first offer a novel framing of cerebral arteries using
network theory. Next, we characterize the domain goals and present
them as network analysis tasks. In an iterative user-centered design with

PROJECT EXAMPLE — CEREBROVIS

CS 7260 FALL 2017/:
VISUALIZATION FOR
NETWORK SCIENCE

Pandey et al. VIS 2019

https://aditeyapandey.github.io/CerebroVisProject/

Y

il ’)

PROJECT EXAMPLE — CEREBROVIS

MCA MCA
ACA ACA
PCA
PCA
Acomm.
PComm PComm.
IC BA IC

Pandey et al. VIS 2019

https://aditeyapandey.github.io/CerebroVisProject/

EXAMPLE OF A SUCCESSFUL
DIFFERENTIATED COURSE PROJECT

(Requires prior instructor approval to waive / alter requirements)

PROJECT EXAMPLE — DIVERSIFORM TIMELINES

Evaluating the Effect of Timeline Shape on Visualization
Task Performance

Sara Di Bartolomeo © Aditeya Pandey (© Aristotelis Leventidis
David Saffo ' , Uzma Haque Syeda ', Elin Carstensdottir
Magy Seif El-Nasr =, Michelle Borkin ©, Cody Dunne
Northeastern University
(dibartolomeo.s | pandey.ad | saffo.d | syeda.u)@husky.neu.edu, elin@ccs.neu.edu,
(magy | m.borkin | c.dunne)@northeastern.edu

Spiral Circle

Recurrent Non-recurrent

Mixed

Vertical Horizontal
line line

Figure 1. We evaluate the effect on task performance of four timeline shapes (left to right) across three types of temporal event sequence data (top to
bottom). The images are simplified versions of the stimuli that we used in our experiment. Each dot on a timeline represents an event and has a specific
categorical color to highlight where the dataset has recurrent events. Dashed lines highlight the recurrent intervals or a set of recurrent events.

ABSTRACT

Timelines are commonly represented on a horizontal line,
which is not necessarily the most effective way to visualize
temporal event sequences. However, few experiments have
evaluated how timeline shape influences task performance. We
present the design and results of a controlled experiment run on
Amazon Mechanical Turk (n = 192) in which we evaluate how
timeline shape affects task completion time, correctness, and
user preference. We tested 12 combinations of four shapes —
horizontal line, vertical line, circle, and spiral — and three data
types — recurrent, non-recurrent, and mixed event sequences.
We found good evidence that timeline shape meaningfully
affects user task completion time but not correctness and that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish.
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI "20, April 25-30, 2020, Honolulu, HI, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376237

users have a strong shape preference. Building on our results,
we present design guidelines for creating effective timeline
visualizations based on user task and data types. A free copy
of this paper, the evaluation stimuli and data, and code are
available at https://osf.io/qr5yu/

Author Keywords
Timelines; Temporal Event Sequences; Information
Visualization; Controlled Experiments

CCS Concepts

*Human-centered computing — Human computer inter-
action (HCI); Visualization design and evaluation; Informa-
tion visualization;

INTRODUCTION

A timeline is a visual representation of a series of events in
time. The use of timelines dates back to 17th century [32]
when Joseph Priestly designed a visualization that showed
the rise and fall of empires in Europe’s history. In the mod-
ern era, timelines have become prevalent in our daily lives as
the de facto representation to show financial trends, weather

CS 7340 FALL 2018:;
THEORY AND METHODS
IN HUMAN COMPUTER

INTERACTION
Di Bartolomeo et al. CHI 2020

https://osf.io/2kdb9/

PROJECT EXAMPLE — DIVERSIFORM TIMELINES

Spiral Circle Vertical Horizontal
line line

Non-recurrent

Recurrent

Mixed

Di Bartolomeo et al. CHI 2020

https://osf.io/2kdb9/

PROJECT IDEAS:
VIS + X

Where X = a CS subfield (ML | SEC | NLP | HCC | GAM | NS | SYS | ...)
OR
Where X = a domain application (health, energy, transportation, astronomy, crime...)

74

POTENTIAL VENUE:
JEEE VIS 2021 SHORT PAPERS

Deadline 2021-06-13

L
LR ¥ - -y - . " e = =
"q-';':"'ll"u" IS LD._‘I ~onlribube Evenls & Communily Crrgantzabion & Hislory

Short Paper Call for Participation

EEE VIS 2021 solicits submissions in a short paper format. Short Papeors welcome submissions
describing original work with focused and concise research contributions, incremental work such as
fallow-up extensions or evaluations of existing methods, or exploratory work. Shart papers also
welcome papers describing new systems or tools that offer practical value.

SUBMIT YOUR WORK

PApErs

Short Papers
Short Papers often fall into one or mare of five main categories: technigue or algorithm, system ar
tool, application or design study, empirical study, theory or model. The contributions of a short
paper should be commensurate with the nature of the paper. Technique or algorithm papers should
provide clear yet concise technical contributions. System or tool papers should state the value, Waorkshops
articulate the target audience, and make an effort toward accessibility (e.g., software release).
Papers focusing on visualization application or design study should demonstrate design lessons
learned or insights gleaned for visualization research on which future contributors can build.
Empirical study papers should justify the validity and importance of the resulls, including, where
appropriate, the definition of hypatheses, tasks, data sets, the rigorous collection and
examination /analysis/coding of data, the selection of subjects and cases, as well as validation,
discussion, and conclusions, Theory or model papers should illuminate how visualization
technigues complement and exploit properties of human vision and cognition, as well as how

researchers conduct effective and rigorous visualization studies. SUBMISSION FROCESS

The short paper submission deadline is June 13, 2021, creating an oppartunity to showcase late- Submission Information

breaking research results. Review Process

Short Paper Examples:

Paper Type: Techniguae or Algorithm

The Anatomical Edutainer
mMarwin Schindler, Hslang-yYun, Renata Georgia Raidou
EEE VIS Short Papers 2020 |Best Faper)

Periphery Plots for Contextualizing Heterogeneous Time-Based Charts
Aryce Morrow, Trevor Manz, Arlene E. Chung, Nils Gehlenborg, David Gotz
EEE WIS Short Papers 2019 [Best Paper]

Paper Type: System or Tool

Encodable: Configsurable Grammar for Visualization Components
krist Wongsuphasawal
LEE WIS Short Papers 2020 [Honorable Mention]

Learning vis Tools: Teaching Data visualization Tutonals
Leo Yu-Ho Lo, Yao Ming, Huamin Qu
EEE VIS Short Papers 2019 [Honorable Mention]

Paper Type: Application or Design Study

PRAGMA: Interactively Constructing Functional Brain Parcellations
Roza Gunes Bayrak, Mhung Hoang, Colin Blake Hansen, Catie Chang, Matthew Berger
EEE WIS Short Papers 2020 [Honorable Mention)

Graph-assisted Visualization of Microvascular Networks
Pavel Govyadinov, Tasha Womack, Jason Eriksen, David Mayerich, Guoning Chen
EEE VIS Shart Papers 20719 [Honarable Mention]

VIS 2021 Short Paper CFP ’°

http://staging.ieeevis.org/year/2019/info/call-participation/shortpapers
http://ieeevis.org/year/2021/info/call-participation/shortpapers

PROJECTS

In-class project pitches: F 2021-02-12
What questions do you have for me?

77

Upcoming Assignments & Communication

https://northeastern.instructure.com/courses/63405/assienments/syllabus

Look at the upcoming assignments and deadlines regularly!
® Textbook, Readings, & Reading Quizzes — Variable days
® In-Class Activities — 11:59pm same day as class
This F: Lecture & in-class activity on Tableau
Next F: Lecture & in-class activity on D3
® Assignments & Projects— Generally due R 11:59pm
This R (2 days): Assignment 2 due
Next R (9 days): Assignments 3a, 3b due
Next-Next R (16 days): Project 1 (pitches) due
® Project Overview

Everyday Required Supplies:
® 5+ colors of pen/pencil
® White paper

® Laptop and charger

Use Canvas Discussions for general questions, email the TAs/S-LTA/instructor
for questions specific to you: codydunne-and-tas@ccs.neu.edu. Include links!

https://northeastern.instructure.com/courses/63405/assignments/syllabus
https://northeastern.instructure.com/courses/63405/pages/project-overview
mailto:codydunne-and-tas@ccs.neu.edu

