

Trees and Networks

CS 7250 SPRING 2020 *Prof. Cody Dunne Northeastern University*

Slides and inspiration from Michelle Borkin, Krzysztof Gajos, Hanspeter Pfister, Miriah Meyer, Jonathan Schwabish, and David Sprague

BURNING QUESTIONS?

PREVIOUSLY, ON CS 7250...

details on demand." - Ben Shneiderman "The Shneiderman Mantra"

"Overview first, zoom and filter, and

Shneiderman, 1996 4

Interaction

Why interaction?

- Complexity reduction
- Static = specific story told to you, versus interactive =
 - viewer discovers the story
- Enables data exploration, insight, reasoning for oneself
- Makes it personal to the viewer
- Dive deeper!

Interaction

A few footnotes...

Interaction requires human time and attention

 Human-guided search vs. Automatic feature detection vs. Interactive visualizations

the human in the loop to detect patterns

- Find balance between automation and relying on

Based on Slide by Hanspeter Pfister 6

NOW, ON CS 7250...

TREES & (MAINLY) NETWORKS

GOALS FOR TODAY

- Learn the definition of a network (including node, edge)
- Learn the definition of a tree
- Learn common visual encoding techniques for network data (i.e., node-link diagram, adjacency matrix), and the advantages of each one.

Hall of Fame or Hall of Shame

US presidential election network for 2012 primaries.

- Nodes: key entities from noun phrases. Sized by degree.

- Edges: relationships from verbs. Colored by positive (green) and negative (red) weights.

Sudhahar et al., 2015 11

A subset of the election network, coloured by partitioning it via the first eigenvalue of the symmetrised adjacency matrix (see Appendix A8). Note that the split captures well the expected distinction between the Republican (red) and Democratic (blue) camps. The orange and green links show negative and positive relations between entities.

Download figure | Open in new tab | Download powerpoint

Sudhahar et al., 2015 12

NBA Passing

line thickness = average number of passes per game

Andrew Bergman, 2014 13

→ Geometry (Spatial)

→ Networks (graphs)

Network = entities and relationships between them

Tree = *undirected*, *connected*, *acyclic* network

Networks

- A network G consists of a set of nodes N and a set of edges E
- An edge $e_{n1,n2} \in E$ connects two nodes $n1, n2 \in N$
- E.g., $G = \{1,2,3,4\}, E = \{(1,2),(1,3), (2,3),(3,4),(4,1)\}$

Note all the same network, just different layouts!

Modified from slide by Frank van Ham 16

A bunch of definitions

A directed graph

Modified from slide by Frank van Ham 17

Arrange Networks and Trees

Node-Link Diagrams

✓ NETWORKS ✓ TREES

Adjacency Matrix Derived Table

✓ NETWORKS ✓ TREES

Enclosure

Containment Marks

🗙 NETWORKS 🖌 TREES

"Treemap"

- Primary concern is the *spatial layout* of nodes and edges, a.k.a. graph drawing
- The goal is often to effectively depict the graph structure for *topology-based tasks*:
 - connectivity, path-following
 - network distance
 - clustering
 - ordering (e.g., hierarchy level)
- But not always topology-based tasks. E.g., understanding attributes, statistics, metrics

Slide based on Miriah Meyer 19

Mackinlay, 1986

Spatial Layout

Same

Least

Identity Channels: Categorical Attributes \bigcirc Spatial region Most Color hue € Motion Shape Effectiveness Same

Cleveland & McGill, 1984 Heer & Bostock (2010)

Flickr Query for "Mouse"

Tweets of the #Win09 Workshop

http://londonist.com/2016/05/the-history-of-the-tube-map

IBM Watson News Explorer

recent news about Current events

person

Barack Hussein Obama II (US /bəˈrɑːk huːˈseɪn oʊˈbɑːmə/; born August 4, 1961) is an American politician who is the 44th and current President of the United States. He is the first African American to hold the office and the first president born outside the continental United States. Born in Honolulu, Hawaii, Obama is a graduate of Columbia University and Harvard Law School where he was president of the

California endures more wildfires, 1 sparked by a hot car

Mass shooting at Halloween party leaves at least 4 dead in California

US role in Syria grows more complex with Trump claim to oil

What is Dia de los Muertos and when is it celebrated?

Chicago girl, 7, shot while trick-ortreating, in critical condition

Timeline news articles across 7 days, 11 hrs, 2 min, 0 sec up to the current date: 11/1/2019

http://news-explorer.mybluemix.net

28

Gestalt Principles: Grouping, Proximity, Connectedness

29

- Nodes are distributed in space, connected by straight or curved lines
- Typical approach is to use 2D space to break apart breadth and depth
- Often space is used to communicate hierarchical orientation

Node-Link Visualizations

Slide based on Miriah Meyer 30

Node-Link Visualizations

- understandable visual mapping
- can show overall structure, clusters, paths
- flexible, many variations
- Cons:

Pros:

- automatic layout algorithm deficiencies
 - -time consuming to run
 - -non-deterministic results
 - -heuristics with sometimes poor results
- not good for dense graphs hairball problem!

Slide based on Miriah Meyer 31

Dimensionality Reduction

Projection Transitions

Lagrange

Mike Bostock

Layout Algorithm: D3 Force-Directed

https://observablehq.com/@d3/force-directed-graph

Force-Directed Layout Algorithms

<u>Kobourov, 2012</u>

Dashboard of the **COVID-19 Virus** Outbreak in Singapore 2020.01.21-03.12

<u>Upcode, 2020</u>

Dashboard of the **COVID-19 Virus Outbreak in** Singapore 2020.01.21-03.12

<u>Upcode, 2020</u>

<u>In-Class Curation</u> <u>Network Planarity Party</u>

~25 min

	x
2	
	- 1
•	

Layout Algorithm Comparisons

Graph A

Graph B

Hachul & Jünger, 2006

How to compare?

User performance Huang et al., 2007, etc.

Simple rules or heuristics Davidson & Harel, 1996

Global and local readability metrics Purchase et al., 2002 Dunne et al., 2015

<u>Sugiyama, 2002</u>, p. 14

- Quickly run out of space!
- Tree breadth often grows exponentially
- Layout algorithms are slow and heuristics
- Solutions:
- scrolling or panning
- filtering or zooming
- aggregation & simplification

Scale Problems...

Slide based on Miriah Meyer 43

http://www.yasiv.com/graphs#HB/blckhole

https://gephi.org/

Arrange Networks and Trees

Node-Link Diagrams

✓ NETWORKS ✓ TREES

Adjacency Matrix Derived Table

✓ NETWORKS ✓ TREES

Enclosure

Containment Marks

🗙 NETWORKS 🖌 TREES

"Treemap"

Alternate to node-link visualization for dense & weighted networks

Slide based on Miriah Meyer 47

Adjacency Matrix

<u>Henry & Fekete (2006)</u> 48

Pros:

- great for dense graphs
- visually scalable
- can spot clusters

Cons:

- row order affects what you can see
- abstract visualization
- hard to follow paths

Slide by Miriah Meyer 49

Les Misérables Co-occurrence

Source: The Stanford GraphBase.

https://bost.ocks.org/mike/miserables/

Arocime Listolier Fantine Marguerite Fantine Marguerite Fantine Blacheville Favourite Blacheville Favourite Barvais Cochepaille Mme.deR Brevet Brevet Cochepaille Mme.deR Brevet Brevet Cochepaille Mme.deR Barvais Cochepaille Mme.deR Barvais Cochepaille Nudge Cochepaille Mme.deR Barvais Cochepaille Nudge Cochepaille Mme.deR Barvais Cochepaille Mme.deR Scaufflaire Valjean Mme.magloire Count Mme.Magloire Count Mme.Magloire Count Motherlinnocel CountessdeLc Motherlinnocel Motherlinnocel Catibier

Order: by Cluster 🔶

This matrix diagram visualizes character co-occurrences in Victor Hugo's *Les Misérables*.

Each colored cell represents two characters that appeared in the same chapter; darker cells indicate characters that cooccurred more frequently.

Use the drop-down menu to reorder the matrix and explore the data.

Built with d3.js.

WDA-LS clustered co-occurrence

Use the drop-down menu to reorder the matrix and explore the data.

When ordered by cluster, rows and columns are clustered by affinity values using hierarchical agglomerative clustering. Distance measure: Euclidean. Linkage technique: Single.

Rows and columns are then arranged using leaf reordering using the algorithm from: Sakai, Ryo, et al. "Dendsort: modular leaf ordering methods for dendrogram representations in R." F1000Research 3 (2014).

Cell labels show count and color shows normalized affinity.

Cody Dunne and Tim Stutts, IBM Watson Health Cognitive Visualization Lab

Dataset: genes/genes Medline (example) • Edge List

Order: by Cluster •

The query was for genes related to the genes SOX9, TCF7L1, SMAD4, PIK3CA, KRAS in Medline.

	SOX9	TCF7L	SMAD ²	KRAS	PIK3C/
tp53	33	4	406	1295	726
apc	10	1	106	255	91
kras	10	1	166	11277	926
nras	0	0	20	878	269
hras	0	0	9	659	107
f2	2	0	5	407	0
raf1	3	1	12	760	266
alk	0	0	11	339	126
ns2	0	0	0	228	0
sos1	0	0	0	286	8
hspb3	0	0	4	279	9
ptpn11	0	0	6	192	21
cd8a	4	0	7	190	25
cd4	0	0	11	152	34
ifng	0	0	14	118	12
myc	18	1	50	278	80
mlh1	0	1	34	190	50
smad4	13	1	3052	166	53
smad2	21	1	828	12	12
smad3	20	0	658	6	12
smad7	5	0	281	0	0
smad1	17	0	262	0	6
tgfb1	23	0	230	16	7
inhbe	12	0	164	0	0
tgfbr2	5	0	123	22	6
cdkn2a	13	0	222	330	150

HiGlass 🔀

HiGlass is a tool for exploring genomic contact matrices and tracks. Please take a look at the examples and documentation for a description of the ways that it can be configured to explore and compare contact matrices. To load private data, HiGlass can be run locally within a Docker container. The HiC data in the examples below is from Rao et al. (2014) [2].

A preprint of the paper describing HiGlass is available on bioRxiv [1].

Single View

http://higlass.io/

MatLink

(a) Node-Link(NL)

(b) Matrix(MAT)

(d) Zoom on MatLink

NodeTrix

Henry et al, 2007

MapTrix

(a) Bundled Flow Map

(b) OD Map

https://vimeo.com/182970812 https://vimeo.com/278433529 (c) MapTrix

Yang et al., 2016; Demo

