

Color, Popout, Illusions

CS 7250
Spring 2020
Prof. Cody Dunne
Northeastern University

Burning Questions?

Previously, on CS 7250...

"...avoiding catastrophe becomes the first principle in bringing color to information: above all, do no harm." -Edward Tufte

Three Main Types:

Color Maps

Categorical Does not imply magnitude differences

Race or ethnicity Hispanic White Black Asian

Sequential
People per sq. mile 300.00 to 9316.0 79.6 to 299.9 79.6 to 299.9
7.0 to 79.5 1.1 to 6.9

Diverging
Percent of population under 18 by state 28.0 to 32.2 - 25.7 to 27.9 Critical Value - Nat'1 Avg. $\square 24.0$ to 25.6 20.1 to 23.9 (categorical/nominal data)

Distinct hues with similar emphasis
Best for ordered data that progresses from low to high (ordinal, quantitative data)

Darkness (lightness) channel effectively employed
For data with a "diverging" (mid) point (quantitative data)
Equal emphasis on mid-range critical values and extremes at both ends of the data range

Color Vocabulary and Perceptual Ordering

Darkness (Lightness)

 \square \square

 Saturation $\square \square \square \square$ Hue

"Get it right in black and white."

-Maureen Stone

Darkness (Lightness) Channel

- No edges without darkness difference
- No shading without darkness variation
- Has higher spatial sensitivity than color channels
- Contrast defines legibility, attention, layering
- Controlling darkness is primary rule of design

Now, on CS 7250...

Color

Goals for Today: learn How...

- ...to effectively use color as a channel for visual encodings including different colormap types.
- ...we process color in the visual system.
- ...individual color differences (i.e., colorblindness) should be accommodated in visualizations.
- ...interactions can occur between colors and with lighting.
- ...illusions and tricks can affect perception.

Rainbow Color Map (Hue)

Rainbow Color Map
(a)
(b)

Rainbow Color Map

- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Rainbow Color Map (Hue)

No perceptual ordering (confusing)

(a)

Rainbow Color Map

Rainbow:
3D: 39\%
2D: 62\%

How many diseased regions found?

Diverging:
3D: 71\% ($\Delta+31 \%$)
2D: 91\% ($\Delta+29 \%)$

"Get it right in black and white."

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
by K.K. rebecca lat Jan. 18, 2017
Last year is the hottest year on record for the third consecutive year.
In a database of more than 5,000 cities provided by AccuWeather,
about 90 percent recorded annual mean temperatures higher than
normal. Enter your city below to see how much warmer (or cooler) it was.

Temperature Average: $53.4^{\circ} \triangle \mathbf{1 . 9}{ }^{\circ}$ above normal | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
by K.k rebecca lai JaN 18, 2017
Last year is the hottest year on record for the third consecutive year
In a database of more than 5,00o cities provided by AccuWeather,
normal. Enter your city below to see how much warmer (or cooler) it was.
Boston, Mass.
Temperature Average: $53.4^{\circ} \triangle \mathbf{1 . 9}{ }^{\circ}$ above normal

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

"Get it right in black and white."

Estimated Heat Accumulation

100 zettajoules

| 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1980 | 1990 | 2000 | 2010 |

"Get it right in black and white."

Estimated Heat Accumulation

Rainbow Color Map (Hue)

Why this color map is a poor choice for quantitative data...

- No perceptual ordering (confusing)
- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Color Maps

Color Maps

Color Maps

Sequential (possibly wrong)
Diverging

In-CLASS EXERCISE

In-class exercise: Oilslick

 10 m
INSTRUCTIONS:

- Working individually, go to https://mrgris.com/projects/oilslick/
- Experiment with the different layers, different zoom levels, and different locations

- Think of answers to these questions:

What areas are particularly interesting?
Which layer / color scale works best, and for which tasks?

- Several of you will be asked to share your findings.

Those with deuteranope color blindness (red/green) will have difficulty seeing the numbers.

Color Deficiencies (Color Blindness)

Person with faulty cones (or faulty pathways):
Protanope = faulty red cones

Deuteranope = faulty green cones

normal

Tritanope = faulty blue cones

Color Deficiencies (Color Blindness)

Normal

Protanope

Deuteranope

Check your images/colormaps for issues!

Vischeck

Home	
Vischeck	Try Vischeck on Your Image Files
-Run Images -Run Webpages	Select the type of color vision to simulate:
Daltonize	
Examples \quad llir \bigcirc Deuteranope (a form of red/green color deficit)	
Downloads Protanope (another form of red/green color deficit)	
Info \& Links	
FAQ Sliv Tritanope (a blue/yellow deficit- very	
About Us	
User quotes: Fantastic! Keep up the good work!!! -Zoe N.	Notes:
Web - Vischeck Google Search	- Vischeck accepts most common image formats. However, we recommend that you use PNG or JPEG format for uploading large images as these tend to transfer faster. - For PowerPoint slides, you can save all your slides as PNG images with "Save As..." and run Vischeck on each slide. - If you have many images to process, consider downloading Vischeck to run on your own computer.) - Uploading a large file may take a while - please be patient!
	Please read our terms of use before using Vischeck.

Coblis -
Color Blindness Simulator
you are not suffering from a color vision deficiency it is very hard to imagine how it toons If you are not suffering from a color vision deficiency it is very hard to o magine how it tlook
like to be colorblind. The Color BLIndness Simulator can close this gap for you. Just play around with it and get a feeling of how it is to have a color vision handicap.

As all the calculations are made on your local machine, no images are uploaded to the server. Therefore you can use images as big as you like, there are no restrictions. Be awa there are some issues for the "Lens feature" on Edge and Internet Explorer. All others should support everything just fine.

So go ahead, choose an image through the upload functionality or just drag and drop your
image in the center of our Color BLIndness Simulator. It is also possible to zoom and move your images around using your mouse - try it out, I hope you like it.

Drag and drop or paste your file in the area below or: Browse... No file selected. FREE Color Blind
 and test type and
severity of your color severity of your cy

Interactions between Colors AND WITH LIGHTING

"Lightness Constancy"

The perception that the apparent brightness of light and dark surfaces remains more or less the same under different luminance conditions is called darkness (lightness) constancy.

This is the same gray as the top part of the S in Gloves
"Darkness (lightness) Constancy"

"Color

Constancy"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

Be careful with bars and scatter plot points - the colors may appear differently with different background colors and neighboring colors!

Be aware that colors in legends may appear different than on the plot!

"Simultaneous Contrast"

"von Bezold Spreading Effect"

"von Bezold Spreading Effect"

[^0]Which area is larger (green or red)?

Which area is larger?

Areas are equal(!).
Study participants favored red in the highly saturated case (left) but were more correct with the desaturated case (right)

Pop-Out Effects

Color

A quarterback sneak is a play in American football and Canadian football in which the quarterback, upon taking the center snap, dives ahead while the offensive line surges forward. It is usually only used in very short yardage situations.
https://en.wikipedia.org/wiki/Quarterback sn eak

Which pop-out effects are used in this example visualization?

The Patriots' QB sneaks stand out

QB sneak success rate versus number of attempts on 1 - and 2-yard plays on third and fourth down, 2001-15

Desaturated background, light blue

**NASA has an amazing collection of visualization and imaging experts. As in the example above, background colors are always selected to be desaturated thus making the foreground have a popout effect. The preferred background color is generally light blue which is desaturated and gives a 3D depth effect (i.e., blue sky in the distant background).

Color Mixing Pitfalls

Fig. 12: Illustrative visualizations of a six-dimensional dataset using illustrative parallel coordinates. (a) Ideal visualization with appropriate weightings and color choices, and the use of the local model in overlapping areas. (b) Improper weightings are employed. The blue cluster no longer seems to be in front. (c) The use of improper weightings and the disabling of the local model results in a confusing visualization.
"Aimed at reducing false colors in the overlap regions. ...[Reduce] saturation of the color in the rear object only in the overlap region while keeping its lightness."
Note the swap in blue/red for foreground/background vs. NASA

Tools for Picking Colormaps

Color Brewer

Colorgorical

Other Useful Tools

- Get a list of colors from an image: https://html-color.codes/color-from-image
- Analyze your palette: https://projects.susielu.com/viz-palette
- Analyze the name similarity of colors in your palette:
http://vis.stanford.edu/color-names/analyzer/
- Details on multi-hued color scales:
https://www.vis4.net/blog/2013/09/mastering-multi-hued-color-scales/\#combining-bezier-interpolation-and-lightness-correction
- Easy picking a multi-hued color scale: http://tristen.ca/hcl-picker/
- Easily correcting darkness (lightness) for a scale: http://gka.github.io/palettes/
- Do a ton programmatically: https://gka.github.io/chroma.js/
- virdis colors:
https://cran.r-project.org/web/packages/viridis/vignettes/intro-toviridis.html

Color Advice Summary

Use a limited hue palette

- Control color "pop out" with low-saturation colors
- Avoid clutter from too many competing colors

Use neutral backgrounds

- Control impact of color
- Minimize simultaneous contrast

Use Color Brewer etc. for picking scales
Don't forget aesthetics!

Pop-out Effects

Pop-Out Effects

Color

Pop-Out Effects

Shape

Pop-Out Effects

"CONJUNCTION" (HARDER TO FIND RED CIRCLE!)

Pop-Out Effects

Motion

Pop-Out Effects

line (blob) orientation Julész \& Bergen 83; Sagi \& Julész 85a, Wolfe et al. 92; Weigle et al. 2000

curvature
Treisman \& Gormican 88

length, width
Sagi \& Julész 85b; Treisman \&
Gormican 88

density, contrast
Healey \& Enns 98; Healey \& Enns 99

closure
Julész \& Bergen 83

number, estimation
Sagi \& Julész 85b; Healey et al. 93; Trick \& Pylyshyn 94

size
Treisman \& Gelade 80; Healey \& Enns 98; Healey \& Enns 99

colour (hue)

Nagy \& Sanchez 90; Nagy et al. 90; D'Zmura 91; Kawai et al. 95; Bauer et al. 96; Healey 96; Bauer et al. 98; Healey \& Enns 99

Pop-Out Effects

intensity, binocular lustre Beck et al. 83; Treisman \& Gormican 88; Wolfe \& Franzel 88

flicker
Gebb et a. 55; Mowbray \& Gebhard 55; Brown 65; Julész 71; Huber \& Healey 2005

intersection
Julész \& Bergen 83

$$
\left\lvert\, \begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned} \operatorname{m}\right.
$$

direction of motion
Nakayama \& Silverman 86; Driver \& McLeod 92; Huber \&

Healey 2005

terminators Julész \& Bergen 83

velocity of motion Tynan \& Sekuler 82; Nakayama \& Silverman 86; Driver \& McLeod 92; Hohnsbein \& Mateeff 98; Huber \& Healey 2005

3D depth cues Enns 9ob; Nakayama \& Silverman 86

lighting direction Enns 90a

Basic Popout Channels

Spatial
grouping

Discriminability and Separability

The question of discriminability is: if you encode data using a particular visual channel, are the differences between items perceptible to the human as intended?

Fully separable

Size

+ Hue (Color)

Some interference

Width

+ Height

Some/significant
interference

Red

+ Green

Major interference

Discriminability and Separability

color color color size x-size red-green
location motion shape orientation y-size yellow-blue

Textures

easy

hard

Textures: Interference

The more the background differs in element granularity, in feature similarity, and in the overall contrast, the easier the text will be to read.

Subtle, low contrast background texture with little feature similarity will interfere less.

More (13!) Color Design Tips

R1: Vivid colors (bright, saturated colors) stand out. They guide attention to a particular feature, generating the pop-out effect.

R2: An excessive amount of vivid colors is perceived as unpleasant and overwhelming; use them between duller background tones.

R3: Foreground-background separation works best if the foreground color is bright and highly saturated, while the background is de-saturated.

R4: Colors can be better discriminated if they differ simultaneously in hue, saturation and darkness.

R5: The low-end darkness steps should be very small, while the high end requires larger steps (Weber's Law).

R6: Discrimination is poorer for small objects. Hue, saturation and darkness discrimination all decrease.

R7: Complementary (opponent) colors are located opposite on the color wheel and have the highest chromatic contrast. When mixing opponent colors they may cancel each other, giving neutral grey.

R8: Some hues appear inherently more saturated than others. Yellow has the least number of perceived saturation steps (10). For hues on both sides of yellow, the saturation steps increase linearly.

R9: An opposite effect of R8 is that the brightest lights fall in the yellow range, while blues, violets (purples) and reds are least bright.

R10: For labeling, apart from black, white, grey, there are 4 primary colors (red, green, blue, yellow) and 4 secondary colors (brown, orange, purple, pink). Also, the number of color labels should be $\leq 6-7$.

R11: Warm colors (red, orange, yellow) excite emotions, grab attention. Cold colors (green to violet) create openness and distance.

R12: Important for hue-based labeling is the fact that increasing the darkness (and saturation) does not change the perceived hue.

R13: Also important for labeling is that objects of similar hue are perceived as a group, while objects of different hues are perceived as belonging to different groupings.

ILLUSIONS AND TRICKS

Visual Attention \& Change Blindness

Visual Attention \& Change Blindness

Task: Identify the lumps/nodules in the patient's lungs to look for cancer or abnormal growth.

83% of the radiologists missed the gorilla!
http://search.bwh.harvard.edu/new/pubs/DrewVoWolfe13.pdf

Lie Factor

Lie Factor = (Size of effect in graphic) (Size of effect in data)

Lie Factor = >1, overstating
Lie Factor = 1, accurate :)
Lie Factor $=<1$, understating

This line, representing 27.5 miles per
gallon in 1985 , is 5.3 inches long.
"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

The Dress:

blue/black or yellow/white?

https://en.wikipedia.org/wiki/The dress

Still or moving?

Still or moving?

Shepherd's Table Illusion

Illusion based on how we perceive depth/perspective...

[^0]: Be careful with colors in scatter plots!
 Be aware of color changes when adding borders around bars and plots!
 Be aware that colors in legends may appear different than on the plot!

