

Data Types, Tasks, Visual Encodings

CS 7250 Spring 2020 *Prof. Cody Dunne Northeastern University*

Slides and inspiration from Michelle Borkin, Krzysztof Gajos, Hanspeter Pfister, Miriah Meyer, Jonathan Schwabish, and David Sprague

READING QUIZ

8 min

QUESTIONS?

PREVIOUSLY, ON CS 7250...

Note: these are all really important concepts when it comes time to coding your visualizations...!

Visualization Building Blocks

Channels :

Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) $\rightarrow \bullet$ **} (** Color luminance Color saturation Curvature Volume (3D size)

Same

Same

Expressiveness and Effectiveness

- Effectiveness principle: the importance of the attribute should match the salience of the channel; that is, its noticeability.

 - (i.e., encode most important attributes with highest ranked channels)
- Expressiveness principle: the visual encoding should express all of, and only, the information in the dataset attributes.
 - (i.e., data characteristics should match the channel)

Data Types

DATASET = collection of information that is the target of analysis

→ Geometry (Spatial)

NOW, ON CS 7250...

Analysis

What data is shown?

Why is the user analyzing / viewing it?

How is the data presented?

DATA ABSTRACTION

TASK ABSTRACTION

VISUAL ENCODING

Analysis

DATA ABSTRACTION

TASK ABSTRACTION

VISUAL ENCODING

Analysis

Learn what are data types and dataset types

- Learn what are attribute types
- Learn how to pick appropriate visual representations based on attribute type and perceptual properties

GOALS FOR TODAY

Data Types

DATASET = collection of information that is the target of analysis

→ Geometry (Spatial)

Data Types

DATASET = collection of information that is the target of analysis

Fields

Grids

Positions

Attributes

Geometry

Items

Positions

Clusters, Sets, Lists

Items

Attribute Types

→ Categorical

e.g., fruit (apple, pear, grape), colleges (CAMD, CCIS, COE)

→ Ordered

→ Ordinal

→ Quantitative (continuous)

e.g., sizes (xs, s, m, l, xl), months (J, F, M)

e.g., lengths (1', 2.5', 5'), population

Categorical

Estimated Heat Accumulation

Quantitative

100 zettajoules

1980

change.html

Categorical

MiseryMap [™]Back to main site

236 DELAYS

between 3 PM and 7 PM (all cancellations today) (all delays today)

CANCELLATIONS

Quantitative

Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) $\rightarrow \bullet$ **} (** Color luminance Color saturation Curvature Volume (3D size)

Same

Same

Quantitative

Position Length Angle Slope Area Volume Density Color Saturation Color Hue Texture Connection Containment Shape

Figure 15: Ranking of Perceptual Tasks. The tasks shown in the gray boxes are not relevant to that type of data.

<u>Mackinlay (1986)</u>

Figure 15: Ranking of Perceptual Tasks. The tasks shown in the gray boxes are not relevant to that type of data.

(Categorical) Nominal

Mackinlay (1986)

Figure 16: Analysis of the Area Task.

- AREA
- Tuesday Wednesday Ο Hawk Jay O

type of data.

Nominal

Position Color Hue Texture Connection Containment Density Color Saturation Shape Length Angle Slope Area Volume

Figure 15: Ranking of Perceptual Tasks. The tasks shown in the gray boxes are not relevant to that

Mackinlay (1986)

DATA ABSTRACTION

→ Geometry (Spatial)

Dataset Availability

→ Static

VISUAL ENCODING

Analysis

DATA ABSTRACTION

GOALS FOR TODAY

- Learn what "Tasks" are and why they are so important.
- Learn the differences between high, mid, and low level task classifications.
- Begin practicing how to classify tasks (key step in visualization design process!).

Why abstract?

Avoids domain specific terms thus easier to apply to other cases (broadly applicable results).

		Why?
Station	S	Targets
		All Data
Present	→ Enjoy	→ Trends → Outliers → Features \downarrow \downarrow \vdots \downarrow
		Attributes
et known	→ Derive → √√ Target unknown	 → One → Many → Distribution → Dependency → Correlation → Simi → Extremes
• Lookup	• . Browse	Network Data
•> Locate	< `.⊙. Explore	→ Topology
Compare	→ Summarize	 → Paths → Spatial Data → Shape ↓ ↓ ↓ ↓ How?

Why abstract?

Avoids domain specific terms thus easier to apply to other cases (broadly applicable results).

542 x 279 10.1/17.8 Mb; 10/9 ms

1.1:853

Visualization Tools

Why abstract?

Avoids domain specific terms thus easier to apply to other cases (broadly applicable results).

		Why?
Station	S	Targets
		All Data
Present	→ Enjoy	→ Trends → Outliers → Features \downarrow \downarrow \vdots \downarrow
		Attributes
et known	→ Derive → √√ Target unknown	 → One → Many → Distribution → Dependency → Correlation → Simi → Extremes
• Lookup	• . Browse	Network Data
•> Locate	< `.⊙. Explore	→ Topology
Compare	→ Summarize	 → Paths → Spatial Data → Shape ↓ ↓ ↓ ↓ How?

Analyze (\rightarrow)

ACTIONS define user goals.

High-level

→ Consume

→ Produce

→ Annotate

→ Record

→ Derive

ACTIONS define user goals.

Original Data

trade balance = exports – imports

Derived Data

ACTIONS define user goals. Mid-level

	Target known	Target unknown
Location known	• • Lookup	• • • Browse
Location unknown	Locate	Explore

→ Search

		Target known	Target unkn
	Location known	• • Lookup	• • • Brow
Nort	Location unknown	Locate	K Exp
2			
Ruggles 💂			
+////			

		Target known	Target unkr
	Location known	••• Lookup	• • • Bro
Nort	Location unknown	Locate	COCO Exp

Ruggles 💂

What is the address of Ryder hall?

Nort	Location unknown	Locate	COLO Exp
	Location known	• • Lookup	Bro
		Target known	Target unkr

Where is Ryder Hall?

		Target known	Target unkr
	Location known	• • • Lookup	• • • Bro
Nort	Location unknown	Locate	K OC -> Exp

What buildings are near Ryder Hall?

		Target known	Target unkr
	Location known	• • Lookup	• • • Bro
Nort	Location unknown	Cocol Locate	K OX -> Exp

Ruggles 💂

What is south of Huntington Ave?

ACTIONS define user goals. Low-level

multiple targets

TARGETS are aspects of the data interest that are interest to the user.

➔ Topology

 \rightarrow Paths

Spatial Data

→ Shape

 $\bigstar + \bigcirc$

ACTIONS define user goals.

Lots of other task taxonomies...!

High-level

Mid-level

Target known	Target unknown			
• • • Lookup	• Browse			
COLOCATE	C O Explore			

Analytic Task Taxonomy Low-level

- Retrieve Value How long is the movie Gone with the Wind?
 - Filter What comedies have won awards?
- Compute Derived Value How many awards have MGM studio won in total?
 - Find Extremum What director/film has won the most awards?
 - **Sort** Rank movies by most number of awards.
 - **Determine Range** *What is the range of film lengths?*
- Characterize Distribution What is the age distribution of actors?
 - Find Anomalies
 - Cluster
 - Correlate
- Are there exceptions to the relationship between number of awards won and total movies made by an actor?
- Is there a cluster of typical film lengths?
- Is there a trend of increasing film length over the years? Amar et al., 2005

AN EXAMPLE OF TASK ANALYSIS -> VISUALIZATION DESIGN

Hierarchical Task Analysis

During a type 1 diabetes clinical visit with a Certified Diabetes Educator...

+

1	lay	3	iresk:	ast.			Diabet	es Lab	ook				
1-	_	Instalia	Carts	ann	1-	Lune	h		Dista	-			
1 4	Virg	24		-	10000	Carbo	Ghacon	e Inesite	Out			Bedila	-
\vdash	-+			166.	1 13	41	40	1		Gracow	Ineska	Carbo	an
261	m [10	24		\vdash			1.3	10	41	-	0	-
	+		-		10	41	2	40			Y		-
0901	"/	(* I	u [.	0	21	-+			~	10	1	1	
14/20	1.	,	+	-+		"	245	19 /	20	at	-+	7	_
-	Ľ	1	• /	143 .	22	T	-1	-+-			Y	\rightarrow	-
kryn	11	1 24	1	+	4	1		0,0 /	n / ,	21	-	オ	-
	F	1.	1'	** / '	15 / 41	- /	£5		+		1	1	$^{\sim}$
112	10	1 4	1 1		-				"],	-	1	T	
. 1		+-	+	1	1 40	1.	10 1 0	1 1 40	1	+-	+-	1	
"	ņ.	1 14	1 401	1 11	1	1-	+	1-	1-	1	th		
80	d					1 4	10 / 10	1 46	20		\pm	7-	4
_		nening b	eine i	esding in	ed.		_	_				7	•1

Zhang et al., 2018 44

0.

Develop a treatment plan and educate patients

<u>Zhang et al., 2018</u> 45

0.

Task Specificity Increasing Develop a treatment plan and educate patients

Design Requirements

- DR1. Composite Visualization of Integrated Data
- DR2. Visualization of Folded Temporal Data
- DR3. Align and Scale Temporal Data
- DR4. **Summary** Statistics

Hierarchical Task Analysis

14-Day Overview

Detail View

Task Abstraction

Design

Summary **Statistics** Panel

Zhang et al., 2018 48

IN-CLASS EXERCISE: MOCK INTERVIEW, TASK ANALYSIS

Interview Advice

- Have a designated note-taker and designated leader
- Be prepared. (Have some questions prepared in advance.)
- Start slow, safe, and personal.
- Coax, don't hammer.
- Make some questions open ended.
- Ask what you don't know.
- Let the interviewees wander a bit-but be careful.
- Listen, really listen.
- For software, look for "work arounds" and hacks.
- Make sure to write down your thoughts and impressions immediately after the interview.
- You are the visualization expert don't ask them what vis they want, don't think too early about what vis to build.

www.forbes.com/sites/shelisrael/2012/04/14/8-tips-on-conducting-great-interviews/+&cd=3&hl=en&ct=clnk&gl=us 50

Task Analysis

Visualization for Public Transit Development

15m

INSTRUCTIONS:

- Break-out into groups of ~3 people.
- Pretend you are transportation engineers, e.g., for the MBTA, City of Boston.
- Discuss the "domain tasks" and classify the tasks.
 - Save your notes for a later exercise!!!

Retrieve Value	How long is the movie Gone with the Wind?
Filter	What comedies have won awards?
Compute Derived Value	How many awards have MGM studio won in total?
Find Extremum	What director/film has won the most awards?
Sort	Rank movies by most number of awards.
Determine Range	What is the range of film lengths?
Characterize Distribution	What is the age distribution of actors?
Find Anomalies	Are there exceptions to the relationship between number of awards won ar movies made by an actor?
Cluster	Is there a cluster of typical film lengths?
Correlate	Is there a trend of increasing film length over the years?

and total

Actions

Analysis

DATA ABSTRACTION

VISUAL ENCODING

GOALS FOR TODAY

• Learn about visual encodings, esp. arranging tables

Learn how to pick appropriate visual representations based on attribute type and perceptual properties

VISUAL ENCODING

Now...

Marks: Marks as Items/Nodes Points → Lines $/ / \sim$ ••••

→ Areas

Marks as Links

→ Containment

→ Connection

Visualization Building Blocks

Channels:

Channels: Expressiveness Types and Effectiveness Ranks

type of data.

Figure 15: Ranking of Perceptual Tasks. The tasks shown in the gray boxes are not relevant to that

Mackinlay (1986) Munzner's VAD 56

IN-CLASS EXERCISE: ENCODINGS WORKSHEET

Encoding Match-up

Encoding Match-up

Arrange Tables

Separate, Order, Align Regions (\rightarrow)

→ Order → Separate

Key: an independent attribute that can be used as a unique index (Tableau Dimension) Value: a dependent attribute (i.e., cell in a table) (Tableau Measures)

→ Align

→ Many Keys **Recursive Subdivision**

Categorical or Ordinal

Categorical Ordinal, or Quantitative

Example Keys

Date	Precipitation	High Temperature
May 1, 2016	0"	60
May 2, 2016	0.3″	62
May 3, 2016	1″	55
May 4, 2016	0"	67
	e	

Кеу

Student	College	HW1 grade (out of 10)
John	COS	9
Jane	Khoury	10
June	Khoury	8
Joe	Khoury	8

Arrange Tables - no key

SCATTER PLOT

BAR CHART

Arrange Tables - one key

LINE GRAPH

Arrange Tables - two keys

Stacked Bar Chart

ΗΕΑΤΜΑΡ

Arrange Tables - Two Keys (Network) \rightarrow 2 Keys Les Misérables Co-occurrence Matrix

Source: The Stanford GraphBase.

 Order: by Cluster

This matrix diagram visualizes character co-occurrences in Victor Hugo's Les Misérables.

Each colored cell represents two characters that appeared i the same chapter; darker cells indicate characters that cooccurred more frequently

Use the drop-down menu to reorder the matrix and explore the data.

Built with d3.js.

https://bost.ocks.org/mike/miserables/

67

\rightarrow 2 Keys Matrix

HiGlass 🔀

HiGlass is a tool for exploring genomic contact matrices and tracks. Please take a look at the examples and documentation for a description of the ways that it can be configured to explore and compare contact matrices. To load private data, HiGlass can be run locally within a Docker container. The HiC data in the examples below is from Rao et al. (2014) [2].

A preprint of the paper describing HiGlass is available on bioRxiv [1].

Single View

Arrange Tables - Two Keys (Network)

About Examples Docs 👩

http://higlass.io/

