

Marks and Channels, Data Types

IN-CLASS PROGRAMMING -

$\underbrace{{ }^{25} \text { mintoat }}_{\text {SOUTH END ALTAIR }}$

Previously, on CS 7250...

"Graphical Integrity"

To achieve graphical "excellence" according to Tufte:

1. Above all else show the data.
2. Maximize the data-ink ratio.
3. Erase non-data ink.
4. Erase redundant data ink.
5. Revise and edit.

"Chart Junk"

Chart junk can... persuade, help with memorability, engage ... bias, limit data-ink ratio, clutter, lower trust Take-away: it depends on your audience, task, and context...

Now, on CS 7250...

Marks and Channels

Goals for Today

- Learn the basic visual primitives of visualizations (marks and channels)
- Understand how marks and channels are assembled to make visualizations
- Learn which marks and channels are most effective for a given task ("perceptual ordering")

Visualization Building Blocks

MARK = basic graphical element in an image
Θ Points

Visualization Building Blocks

Channel = way to control the appearance of marks, independent of the dimensionality of the geometric primitive

Visualization Building Blocks

\# of attributes encoded: 2

Mark:

Channel:

Θ Shape
Θ Tilt

- 米

Θ Size

\rightarrow Length
\rightarrow Area

- ロ
\square

\rightarrow Volume

Visualization Building Blocks

\# of attributes encoded: 2
MARK:

Channel:

Visualization Building Blocks

\# of attributes encoded: 3
Mark:

Channel:

Visualization Building Blocks

\# of attributes encoded: 4
MARK:

Channel:

Visualization Building Blocks

\# of attributes encoded: 2

Mark:

Channel:

Visualization Building Blocks

\# of attributes encoded: 2

Mark:

Channel:

Visualization Building Blocks

\# of attributes encoded:

Mark:

Channel:

Visualization Building Blocks

\# of attributes encoded: ?

+ position in 3D space

Mark:

Channel:

$$
\alpha=\frac{1}{4}
$$

$$
\alpha=\frac{1}{2}
$$

$\alpha=2$

Figure 6: Superquadrics defined by Equation 3. The gray triangle indicates the subset of the shape space employed by superquadric tensor glyphs. Edges indicate the tessellation resulting from uniform steps in ϕ and θ.

Visualization Building Blocks

Marks as Items/Nodes
Θ Points

Marks as Links
Θ Containment

Θ Lines

Θ Areas

Visualization Building Blocks

Marks as Links

Θ Containment

Θ Connection

- -

Visualization Building Blocks

Channels:

Marks as Items/Nodes
Θ Points
Θ Lines

Θ Areas

Marks as Links
Θ Containment

- - - -

Note: these are all really important concepts when it comes time to coding your visualizations...!
Θ Position

Θ Color
/
Θ Shape
Θ Tilt

Θ Size

\rightarrow Volume
-

How do I pick which marks or channels to use?

"Ordering of Elemental Perceptual Tasks"

colon saturation
Figure 1. Elementary perceptual tasks.

"Ordering of Elemental Perceptual Tasks"

Figure 3. Graphs from position-angle experiment.
TASK: Which segment/bar is the maximum, and what is its percentage/value?

"Ordering of Elemental Perceptual Tasks"

Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position-length experiment (top) and positionangle experiment (bottom).

"Ordering of Elemental Perceptual Tasks"

Figure 16. Log absolute error means and 95% confidence intervals for judgment types in position-length experiment (top) and positionangle experiment (bottom).

\section*{"Ordering of Elemental Perceptual Tasks"
 Cevesand | Mctills Results |
| :--- |}

Cleveland \& McGill's Results

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes

Channels: Expressiveness Types and Effectiveness Ranks
Θ Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)

Color luminance

Color saturation

Curvature

Volume (3D size)
1)) $\cdots \square$Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Expressiveness and Effectiveness

Effectiveness principle: the importance of the attribute should match the salience of the channel; that is, its noticeability.
(i.e., encode most important attributes with highest ranked channels)

Expressiveness principle: the visual encoding should express all of, and only, the information in the dataset attributes.
(i.e., data characteristics should match the channel)

My Summary: Prioritize choosing the most appropriate channel for each attribute

Expressiveness and Effectiveness

Figure 11: Incorrect Use of a Bar Chart for the Nation Relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

Expressiveness and Effectiveness

Figure 12: Correct Use of a Plot Chart for the Nation Relation. Since bar charts encode ordered domain sets, plot charts are conventionally used to encode nominal domain sets. The ordering of the labels on the axes is ignored.

Expressiveness and Effectiveness

Car Models Produced by Country (1979)

In-CLASS EXERCISE

3, 12, 42

$3,12,42$

In-class Sketching: "Three numbers"
 20m

1. Break-out into groups of ~ 3 students.
2. Together (15 m) use pens \& post-it notes to sketch as many possible visualizations as you can of these three numbers.
3. No upload required
4. As a class (5 m) we will discuss some of the designs and themes.

Data Types

Goals for Today

- Learn what are data types and dataset types
- Learn what are attribute types
- Learn how to pick appropriate visual representations based on attribute type and perceptual properties

Data Types

TYPE = structural or mathematical interpretation of the data

Θ Data Types
\rightarrow Items \rightarrow Attributes \rightarrow Links \rightarrow Positions \rightarrow Grids
(row, node) (variable, (relationship) (spatial location) (sampling) data dimension)

Data Types

DATASET $=$ collection of information that is the target of analysis

Θ Dataset Types
\rightarrow Tables
\rightarrow Networks

\rightarrow Trees
\cdots
\rightarrow Fields (Continuous)
Grid of positions

\rightarrow Geometry (Spatial)

\rightarrow Multidimensional Table

Data Types

DATASET $=$ collection of information that is the target of analysis

Θ Data and Dataset Types

Tables	 Trees	Fields	Geometry	Clusters, Sets, Lists
Items	Items (nodes)	Grids	Items	Items
Attributes	Links	Positions	Positions	
	Attributes	Attributes		

Relevant to anyone in

 the sciences!
grid types

\rightarrow Fields (Continuous)
Grid of positions

grid choices impact how continuous data is interpreted

\rightarrow Fields (Continuous)

two key considerations:

sampling, or the choice of where attributes are measured interpolation, or how to model the attributes in the rest of space

\rightarrow Fields (Continuous)

"Voronoi Tessellation"

