
Subset Selection for Subspace Clustering

M. Clara De Paolis Kaluza
Class Project: EECE 7370 Advanced Computer Vision

Northeastern University, Spring 2017
clara@ccs.neu.edu

Abstract

Many high-dimensional data, such as those in many
computer vision applications, actually lie in a union of low-
dimensional subspaces. In general, the dimensionality of
these subspaces, the number of subspaces in the union, and
the segmentation of the data is unknown. Solving these
linked problems is addressed by the task of subspace clus-
tering or segmentation. In this work, the subspace cluster-
ing problem is cast as a subset selection problem where a
small set of representative models are chosen among a large
set of candidates. A candidate set of subspaces is gener-
ated by fitting local subspaces to points in the data set. The
distance between data points and the candidate subspaces
is calculated, and a small subset of subspaces are selected
by solving the dissimilarity-based sparse subset selection
[4]. Experiments on motion segmentation in videos show
the ability of the method to segment subspaces successfully
in real-world applications.

1. Introduction
In computer vision and other machine learning fields,

data are commonly high-dimensional, with a large number
of features per data point. For example, an image may be
represented by the intensity of its pixels in each color chan-
nel or by several low-level features extracted from the im-
age. However, in many applications the information of in-
terest has a much lower-dimensional structure. For instance,
data may lie in a single lower-dimensional space and dimen-
sionality reduction can be performed using PCA to discover
an underlying low-dimensional structure of the data. In the
general case however, data may exist in the union on sev-
eral subspaces of the original higher-dimensional ambient
space (see Figure 1 for an example). In such cases finding
these subspaces is complicated by the fact that the subspace
to which each data point belongs is unknown, the cluster-
ing of points is unknown, the subspaces themselves, includ-
ing their dimensionality and bases are also unknown, and in
general, the number of subspaces may also be unknown.

(a) (b) (c)

Figure 1: (a) Example of points in a 3 dimensional ambient
space that lie in a union of three two- and one-dimensional
subspaces of R3. (b) Segmentation of points according to
their subspace. (c) Our method chooses 3 of the candidate
subspaces that best represent the data, denoted by the non-
zero row of the matrix Z.

Beyond the problem of both the subspace parameters and
the data subspace membership being unknown, subspace
clustering suffers from several challenges that models must
address. First, data may contain noise, outliers, or missing
data that make characterizing their subspaces more difficult.
Secondly, subspaces may intersect and therefore points near
the boundaries of the intersection may be very close in the
original space and their subspace assignment may be dif-
ficult to distinguish. Furthermore, data may be arbitrarily
distributed in the subspace on which they lie rather than
being distributed closely around a cluster center or cluster
centers may be close in the ambient space while lying on
different subspaces. Finally, since the number of subspaces
and their dimensionality is unknown, model selection must
balance adding more subspaces of fewer dimensions or hav-
ing fewer subspaces with greater dimensions to more ade-
quately represent the data. Many approaches have been pro-
posed to address some of these problems, and in Section 2
we review the methods most closely related to our work.

Many problems in computer vision may be framed
as subspace clustering problem. Images of a three-
dimensional object under varying lighting conditions have
been shown in [9] to lie a low dimensional subspace, with

1

different objects having images that lie in distinct sub-
spaces. Thus, finding the segmentation of the subspaces
provides a clustering of the objects. This property has
been used to perform facial recognition since images of
the same subject under varying lighting conditions lie in a
low-dimensional subspace of the high dimensional ambient
space of the image features. Motion trajectories of rigid ob-
jects have also been found to lie in lower-dimensional sub-
spaces of the ambient space of image sequences. Objects
with different motions, i.e. different objects, have motion
trajectories that lie on different subspaces [3], thus segment-
ing the subspaces identifies the distinct objects in a video
that move relative to each other.

Contribution In this paper, we consider the subspace
clustering problem as a model selection problem that we
solve as a dissimilarity-based sparse subset selection among
a collection of candidate models (subspaces). We We apply
our method to the task of motion segmentation in the ex-
periments section and show that our method is competitive
with previous work.

Organization The remainder of this paper is as follows.
Section 2 provides a review of subspace clustering methods,
with the works most closely related to the method proposed
here highlighted. This section also provides a background
on subset selection in the context of model selection. Sec-
tion 3 provides the details of the proposed work. In Section
4, we provide an analysis of the method through experi-
ments on synthetic data as well as experiments on the mo-
tion segmentation benchmark dataset Hopkins 155[15]. We
provide conclusions and future directions in Section 5.

2. Background

2.1. Subspace Clustering

Many approaches to subspace clustering have been pro-
posed Algebraic methods for subspace clustering focus on
finding a low-rank factorizing of the data matrix and use
its structure to segment the data, e.g.[3], or fitting the sub-
spaces with a polynomial, i.e.[17]. Iterative methods solve
the problem by alternatively assigning points to subspaces
and updating the subspaces to fit the points assigned to
them, analogous to k-means for clustering e.g.[1]. Statisti-
cal methods fit the data to subspaces by making assumptions
on the distribution of the data in each subspace, e.g.[14],
[13]. Finally, spectral clustering methods seek to form
an affinity matrix on which to define a graph on the data,
where more strongly connected components will belong to
the same subspace and more weakly connected components
will belong to different subspaces. For these methods, the
clustering is found by spectral clustering methods but the

subspaces clustering methods differ on how the affinity ma-
trix is defined, e.g.[6], [11].

As a means of comparison to our work, we highlight a
few methods in the above categories to explain in further
detail. The Random Sample Consensus (RANSAC) algo-
rithm [8] is a statistical method that finds one subspace at
a time by fitting the data to a single subspace and identify-
ing points as outliers if the residual (normal distance) to the
subspace is above some threshold. The remaining points are
considered inliers and removed from consideration in find-
ing the remaining subspaces. The process continues until
some minimum amount of inliers are identified or a certain
number of subspaces are fit to the data. In this method, the
subspaces are found by sampling d random points and fit-
ting a (d − 1)-dimensional subspace to those points. Once
all the sets of inliers are found, a optimal basis for the sub-
space on which those points lie can be found using PCA.
This step improves the subspaces since they are now re-
quired to fit only the inliers found in the first step and not
the outliers.

The Local Subspace Affinity (LSA) [18] method is sim-
ilar to RANSAC in that it also fits subspaces to a subset of
points as a first step. However, in contrast to RANSAC,
LSA is based on the assumption that data points that are
close in the ambient space should lie on the same subspace.
Thus, local subspaces are fit to each point and its k near-
est neighbors as measured by their distance in the ambient
space. This process produces one subspace Ŝi associated
with each point i. The goal of LSA is to cluster point which
have lose-by subspaces. This aim is achieved by calculat-
ing the principal angles {θ1ij , θ2ij , · · · θ

min(di,dj)
ij } between

the bases of the subspaces Ŝi and Ŝj for two points i and
j and constructing an affinity matrix A with (i, j)-th entry
given by

Aij = exp

−min(di,dj)∑
m=1

sin2(θmij)

 (1)

Here, di is the dimension of the i-th subspace Ŝi and θmij
is the m-th principal angle between Ŝi and Ŝj . This affin-
ity matrix is used for spectral clustering of the points. If
the principal angles between the subspaces associated with
points i and j are small, the subspaces are close to each
other and Aij is large (close to 1). Therefore, points i and j
will be likely clustered together when spectral clustering is
applied to the affinity matrix. In contrast, if the angles are
large, and the subspaces are far apart, Aij will be small and
i and j are unlikely to appear in the same cluster.

The most closely related method to ours is Facility Lo-
cation for Subspace Segmentation (FLoSS)[10] algorithm.
FLoSS constructs a candidate set of subspaces by fitting
subspaces of dimension d − 1 to random sets of d points,

2

as in RANSAC. As in RANSAC, the normal distances from
each point and each subspace is calculated. The final step
differs from RANSAC. Instead of using these candidate
subspaces to identify the segmentation, a small subset of the
candidates are chosen by solving the facility location prob-
lem approximately. Abstractly, the facility location is an op-
timization problem where there is a set of “customer” and
a set of “facilities.” There is a distance between customers
and facilities and a cost associated with opening/operating a
facility. The optimization problem seeks to find an assign-
ment of customers to facilities such that the distance be-
tween them minimized, the cost of facilities is minimized,
and each customer is assigned to exactly one facility. In
the context of subspace clustering, the normal distance be-
tween points and subspaces serves as the distance measure
and [10] assigns the cost of choosing a subspace to represent
some data points as the sum of all the pairwise distances
between points “assigned” to that subspaces. This cost cap-
tures a similar assumption as is made by LSA that points
that are close in the ambient space should be represented
by the same subspace. In [10] the NP-hard facility location
problem is solved approximately using message passing.

2.2. Subset Selection

Similarly to [10], we consider the problem of subspace
clustering one of choosing a small set of models (subspaces)
to model the data. However, we solve the optimization in a
different way than does [10]. Since our method is based on
the Dissimilarity-based Sparse Subset Selection (DS3) [5],
we review it here. DS3 is a subset selection method that
seeks to find a small number of representative elements to
encode all the data points in a dataset as defined by a pair-
wise dissimilarity measure between elements of each set.
The set of candidate representatives is the source set, X,
and the set of data points to encode is the target set, Y. In
the case that the source set and the target set are identical,
the representatives are elements of the dataset itself. How-
ever, the source and target sets are not restricted to being
identical or even to be elements of the same type.

Let X be the source set of M elements
{x1,x2, . . . ,xM} ∈ X and Y the target set of N el-
ements {y1,y2, . . . ,yN}. Assume there is a measure
of dissimilarity dij between each element xi and yj . A
matrix D ∈ RM×N can be constructed where the i, j-th
element is given by the dissimilarity dij . Given this matrix,
DS3 seeks to find a small number of elements of X to
efficiently represent all the elements of Y. Concretely, the
method seeks to optimize a set of variables zij to indicate
whether or not xi is a representative for yj . If it is, zij = 1
and otherwise zij = 0. These variables can be arranged
in a matrix Z ∈ RM×N with i, j-th element zij . The

optimization to find the values of Z is given by

min
{zij}

λ

M∑
i=1

I(‖zi‖p) +
N∑
j=1

M∑
i=1

dijzij (2)

s.t

M∑
i=1

zij = 1, ∀j; zij ∈ {0, 1}, ∀i, j.

Here, ‖zi‖p is the `p-norm of the i-th row of Z, I(·) is the
indication function which equals one when its argument is
nonzero and is zero otherwise. The second term in objec-
tive captures the sum of the distances between each point
in Y and its chosen representative in X. The `p-norm of zi

is nonzero only when there is at least one nonzero element
in that row, indicating that the i-th element was chosen as
a representative for at least one element of Y. Therefore,
the first term is a count of the nonzero rows of Z, with a
parameter λ serving as a trade-off between the two terms
in the objective. The constraints encode the goal of each
element of Y being represented by exactly one element of
X and the assignment indicated by zij should be a hard as-
signment, either zero or one. Since this problem is NP-hard,
DS3 proposes a convex relaxation where the indicator func-
tion is replaced by the sum of row norms and the variables
zij are no longer binary

min
{zij}

λ

M∑
i=1

‖zi‖p +
N∑
j=1

M∑
i=1

dijzij (3)

s.t

M∑
i=1

zij = 1, ∀j; zij ≥ 0, ∀i, j.

This formulation is convex for p ≥ 1 but the `1 norm pro-
motes sparsity in the rows. This behavior is not desired
since we want each chosen representative to represent as
many points in Y as it can encode well, according to D.
Therefore, p is chosen as either 2 or∞, with∞ leading to
solutions closer to hard assignment, where zij is close to
binary. The optimization can be equivalently represented in
matrix form as

min
Z

λ‖Z‖1,p + tr(DTZ) (4)

s.t 1TZ = 1, Z ≥ 0,

where ‖Z‖1,p =
∑M

i=1 ‖zi‖p and tr(·) is the trace operator.
Again, λ controls the relative importance of the two objec-
tives: encoding well the elements of Y and having few rep-
resentatives chosen from X. When λ is large, the first term
dominates the minimization and fewer representatives are
chosen. When λ is small, the encoding cost in the second
term dominated the objective function and more represen-
tatives are chosen so that points in Y are better represented.
It is shown in [5] that when λ is set above some threshold

3

λmax, only one representative from X is chosen. This value
depends only on the characteristics of the dissimilarity ma-
trix.

The optimization in (4) is solved efficiently using the Al-
ternating Direction Method of Multipliers (ADMM) frame-
work [2]. Briefly, this method splits the optimization by
introducing a new auxiliary variable C and the matrices Z
and C are optimized in (5) iteratively until they converge.

min
Z,C

λ‖Z‖1,p + tr(DTC) +
µ

2
‖Z −C‖2F (5)

s.t 1TC = 1, C ≥ 0, Z = C

3. Subset Selection for Subspace Clustering

To solve the subspace clustering problem using DS3,
we define the problem as follows. Consider N data points
{yi, . . . ,yN in aK-dimensional ambient space arranged in
a matrix Y ∈ RN×K . These data form the target set Y.
Since we are concerned with subspace clustering, we as-
sume these data come from a union of n subpaces of RK

{Si}ni=1 each with dimension dimi � K. We form a set
of m candidate subspaces {Xi}mi=1 to define a source set X.
As in RANSAC and FLoSS, we define the distance dij from
data point yj ∈ Y to a subspace Xi as the normal distance
from the projection of yj on Xi. We arrange these distances
to form the dissimilarity matrix D ∈ Rm×N with the i, j-
th element of D equal to dij . By formulating the problem
in this way, DS3 can be applied to find a small number of
subspaces among the candidate set {Xi}mi=1 that will repre-
sent the all the data points in Y. Our proposed method is
outlined in Algorithm 1 and detailed as follows.

3.1. Forming the Candidate Set

To form a suitable candidate set of subspaces, we fit lo-
cal subspaces to the points in Y. To find these local sub-
spaces, we fit a subspace to each point yi and its k near-
est neighbors as defined by the Euclidean distance in the
K-dimensional ambient space. This method reflects the as-
sumption that points that are nearby in the ambient space
may belong to the same subspace. However, unlike in the
LSA method, we do not restrict a point to be modeled by
this local subspace. This process only generates a large set
of candidate subspaces from which a small subset will be
chosen to represent the data. Note that this candidate set dif-
fers from FLoSS and RANSAC in that the subspaces are lo-
cal to each point, not a random sample among all the points
in the dataset.

Since this proposed method of generating the subspace
candidate set produces one subspace for each point in the
dataset, the optimization required for the subset selection
step would be computationally costly as the number of
points increases. To promote better scaling as the data

Algorithm 1 Dissimilarity-based sparse subset selection for
Subspace Clustering
Input: Matrix Y ∈ RN×K of N data points with ambient
space dimension K, neighborhood size k.

1: Initialize empty candidate set of subspaces S = {}
2: Initialize empty dissimilarity matrix D
3: for yi ∈ Y do
4: find k nearest neighbors {y1, . . . ,yk} to yi

5: fit subspace Si to {y1, . . . ,yk} ∪ yi

6: if Si is sufficiently far from every subspace Sj ∈ S
then

7: S = S ∪ Si
8: end if
9: end for

10: for Si ∈ S do
11: D(i, j)← distance from yj to Si ∀yj ∈ Y
12: end for
13: Solve the DS3[5] problem to find representatives indi-

cated by Z
14: Assign each data point the subspace with the largest

value in the corresponding row of Z
Output: clustering Z

grows, we also propose an optional step of pruning the can-
didate set. When a local subspace is fit to a point, we add it
to the candidate set only if it is sufficiently different than the
subspaces already in the set. We measure the similarity of
subspaces by the principal angles between their bases. If a
subspace is found such that the sum of the principal angles
are lower than some threshold, the new candidate subspace
is not added to the set and we move on to fitting the next
local subspace.

3.2. Segmentation

Once the candidate set is formed and the distance from
each point to each candidate subspace is calculated, DS3
can be applied to the dissimilarity matrix D to find a ma-
trix Z. The nonzero rows of Z indicate the subspaces cho-
sen as potential representatives. Because the optimization
in (4) is a convex relaxation of (2), the variables zij are no
necessarily binary. Thus, a column Z :,j , corresponding to
the point yj , may have several nonzero entries. This means
that several subspaces may be suitable to be representatives
of yj . To solve this, we assign point yj to subspace Xi if
zij > zkj∀k 6= i. That is, subspace Xi is chosen to repre-
sent point yj if the maximum element of the column Z :,j is
at position i.

4. Experiments

To motivate the strength of our method, we conduct ex-
periments on some synthetic data to illustrate some compo-

4

(a) σ = 0 (b) σ = 0.0025 (c) σ = 0.005

Figure 2: Synthetic data experiments with varying amounts of noise. The amount of Gaussian noise is listed under each
image

nents of our method and we also apply out subspace cluster-
ing method to a real-world dataset for motion segmentation.

4.1. Synthetic Experiments

To gain some intuition about our method, we perform
some experiments on a synthetic dataset constructed in
three-dimensional ambient space as a union of two two-
dimensional subspaces and a one-dimensional subspace,
shown in Figure 2. As the one-dimensional subspace does
not contain the origin, it is an affine subspace rather than
linear. Figure 2 shows the segmentation results of our
method on this dataset with varying amounts of Gaussian
noise added to the data. The variance of this noise is listed
under each figure. For this experiment we have fixed the
regularization parameter λ to be (0.01)λmax. As the noise
increases, the performance degrades slightly, and more rep-
resentative subspaces are chosen for the same setting of λ.
For all case, we set k = 3 for fitting the local subspaces to
the k-nearest neighbors.

In a second experiment, we show the results for vary-
ing sizes of datasets. Figure 3a shows the segmenta-
tion results for a dataset composed of 1000 points in
each two-dimensional subspace and 100 points in the one-
dimensional subspace. Figure 3b shows a dataset with
100 points per two-dimensional subspace and 10 points in
the one-dimensional subspace. Finally, Figure 3c shows a
dataset of 50 points per two-dimensional subspace and 10
points in the one-dimensional subspace. In each of these
case, we show the results for a noise-free dataset. Again,
we fix k = 3 to fit the local subspace. The results show that
even when the subspaces are very sparse and the points are
very far in the ambient space, our method is able to success-
fully segment the subspaces. This is especially pronounced
in the one-dimensional subspace which exhibits a large gap
with no points in the middle. These results motivate the

strength of our method to segment subspaces even when
they are sparse and intersect each other. Namely, the one-
dimensional subspace has points that are close to the other
subspaces in the ambient space, but our method is able to
accurately identify the underlying subspace of those points.

(a) 1000, 100 (b) 100, 10 (c) 50, 10

Figure 3: Synthetic data experiments with varying number
of points per subspace. Under each figure, the number of
points in the 2d subspaces is listed first, then the number of
points in the 1d subspaces.

4.2. Motion Segmentation

The task of motion segmentation addresses separating
moving objects in video sequences, identifying their loca-
tion in space across the frames of the video. The first step
of many motion segmentation methods is to extract motion
trajectories of points in the video sequence. Under the affine
projection model, these motion trajectories of n rigid bod-
ies lie in union of affine subspaces of R2F , where F is the
number of frames in the video sequence. Each subspace has
a dimension of at most three. Subspace clustering of these
trajectories provides a segmentation of the motions in the
video.

The Hopkins 155[15] dataset provides 155 videos and
extracted motion trajectories for videos of either two or

5

(a) Checkerboard (3): 1R2TCRT (b) Traffic (3): cars9 (c) Other (2): people2 (d) Other (2): kanatani3

Figure 4: The first frame from a few example sequences of the Hopkins 155 motion segmentation dataset. Tracked points
are denoted by a cross or circle on the images. The category, number of motions, and sequence name are listed under each
image.

three motions. A few different types of sequences are pro-
vides. The Checkerboard sequences are videos in an indoor
setting with objects covered in a checkerboard patter move
and rotate. The camera also undergoes rotation and trans-
lation. The Traffic sequences are videos of outdoor traf-
fic scenes with trajectories tracked on vehicles with non-
stationary camera. Lastly the Other sequences contain ar-
ticulated motions just as those of people moving or walking
and cranes working. The dataset contains noise, but outliers
have been manually removed. Examples of these sequences
for each type are shown in Figure 4.

As in previous work, we pre-process the data by project-
ing it into a lower-dimensional ambient space using PCA.
As in [7], we chose to project the data into R2F . This step
reduces the dimensionality of the ambient space to match
the assumption of the affine projection camera model. As
in the synthetic experiments, we fix k to be equal to the am-
bient space. This choice is motivated by the findings in [18]
that the choice of k is not crucial as long as it is at least as
large as the subspace dimension. Better results might have
been found by setting k to 4 to match the assumption that
the affine subspaces are at most three-dimensional, but we
leave this to future work. We keep the value of λ constant
for all sequences, setting it large enough to not merge clus-
ters that belong to different subspaces. Thus do not explic-
itly restrict the number of subspaces we find, unlike in other
work. An example of our segmentation and the associated
Z matrix is shown in Figure 5.

As we do not restrict the number of subspaces chosen by
our method, we do not report the classification error. In-
stead, we evaluate the cluster purity [12], defined as fol-
lows. Let N be the number of data points, in this case the
number of motion trajectories. Let Ci represent the points
assigned to the i-th chosen subspace, Ni = |Ci| be the
number of points in Ci, and Nij the number of points in
cluster Ci that belong to the class (motion) j. For exam-
ple, if 100 tracked points were assigned to a subspace from
the candididate space and 85 of those 100 points belonged

to motion 1 and the remaining 15 points belonged to mo-
tion 2, then Ni = 100, Ni1 = 85, and Ni2 = 15. Define
pij :=

Nij

Ni
. This quantity represents the empirical distribu-

tion of classes (motion labels) for cluster Ci. For the exam-
ple above, pi1 = 85/100 = 0.85 and pi1 = 15/100 = 0.15.
Define pi := maxj pij as the fraction of points in cluster
Ci that belong to the majority class in Ci. Returning to
our example, this value would be pi = max{pi1, pi2} =
max{0.85, 0.15} = 0.85. Finally, the purity is a measure
of the average of pi for all clusters Ci:

purity :=
∑
i

Ni

N
pi (6)

This measure ranges from 0 (worst) to 1, indicating that all
clusters contain only a single class. To form an error mea-
sure comparable to those reported in earlier works, we mod-
ify the purity measure as an error by subtracting the measure
from 1 and multiplying by 100 to get a percent.

purity error rate := 100×

(
1−

∑
i

Ni

N
pi

)
(7)

We report the purity error rate in Table 1b for two mo-
tion sequences and Table 2b for three motion sequences.
The average number of clusters found for 2 motions is 5.30
clusters and for three motions 8.14 clusters. The low pu-
rity error rates we report indicate that each chosen subspace
represents mostly points from a single class (motion). This
result indicated that an additional step to merge clusters may
be used to find good segmentations of the motion data.

We also list the results for the methods we described
in Section 2 as well as top-performing method of Sparse
Subspace Clustering (SSC) [7]. In the case of SSC, in-
stead of using PCA to project the data to R2F , better re-
sults are achieved by random Normal projections. This
pre-processing step may serve to improve the results of our
method as well, but leave this to future work. The results
of previous methods are listed in Table 1a for two-motion

6

(a) (b) (c)

Figure 5: The three-motion checkerboard sequence ‘2RT3RCR’ in the Hopkins 155 dataset. The ground truth segmentation
for the first frame is shown in 5a. The segmentation from our method on the first frame is shown in 5b (best viewed in
color) with the corresponding Z matrix shown in 5c. The columns of Z represent the individual motion trajectory points
and the rows correspond to the candidate subspaces. The rows are shown ordered by their true clustering, with the first 100
columns corresponding to the first motion, columns 101 through 237 to the second motion, and the rest corresponding to
the third motion. Notice the structure of the nonzero entries of Z which reflects the underlying segmentation of the motion
trajectories. Our method segments this sequence into 12 subspaces and the purity error rate (7) for this sequence is 0.587%.
This reflects the fact that although each motion is segmented into several clusters by our method, there is almost no overlap
in the clusters assigned to different motions.

Seq. Error RANSAC[8] LSA[18] FLoSS[10] SSC-N[6]
Checker. 78 Mean 6.52 2.57 7.70 1.12

Med. 1.75 0.27 1.23 0.00
Traffic 31 Mean 2.55 5.43 0.14 0.02

Med. 0.21 1.48 0.00 0.00
Other 11 Mean 7.25 4.10 4.69 0.62

Med. 2.64 1.22 1.30 0.00

(a) Classification error (%) of previous work

Seq. Purity Error Ours
Checker. 78 Mean 2.48

Med. 1.40
Traffic 31 Mean 2.15

Med. 1.39
Other 11 Mean 2.17

Med. 1.07

(b) The purity error rate (7) for this work’s clus-
tering

Table 1: Experimental results on the Hopkins 155 dataset for two-motion sequences

Seq. Error RANSAC[8] LSA[18] FLoSS[10] SSC-N[6]
Checker. 26 Mean 25.7 5.80 16.45 2.97

Med. 26.01 1.77 16.79 0.27
Traffic 7 Mean 12.83 25.07 0.29 0.58

Med. 11.45 23.79 0.00 0.00
Other 2 Mean 21.38 7.25 8.51 1.42

Med. 21.38 7.25 8.51 0.00

(a) Classification error (%) of previous work

Seq. Purity Error Ours
Checker. 26 Mean 2.37

Med. 1.94
Traffic 7 Mean 4.28

Med. 4.25
Other 2 Mean 4.79

Med. 4.79

(b) The purity error rate (7) for this work’s clus-
tering

Table 2: Experimental results on the Hopkins 155 dataset for three-motion sequences

sequences and Table 2a for three-motion sequences. Com-
pared to other work, our method offers fairly consistent
results for all features and performs consistently for two-
and three-motion sequences. In contrast, RANSAC, LSA,
and FLoSS exhibit dramatic drops in performance between

the two- and three-motion sequences. Likewise, they per-
form much better on some types of sequences than others.
This suggests that our method is more adaptable to differ-
ent number of subspaces and to the different configurations
of the subspaces realized by different types of sequences in

7

this dataset.

5. Conclusion
We present a method that leverages the dissimilarity-

based sparse subset selection framework to efficiently per-
form subspace clustering. To do so, we propose generating
a large set of local subspaces to the the data and use DS3 to
select a small number of these candidates to best represent
all the data points. We demonstrate the usefulness of this
method on synthetic and real-world datasets. Further opti-
mizations are possible in the choice of candidate subspaces
and the method for pruning this set. We leave this to future
work. Furthermore, the DS3 construction offers a variation
to handle outliers, which we do not address here but leave
this extension of our method to future work.

References
[1] P. K. Agarwal and N. H. Mustafa. k-Means Projective

Clustering. ACM SIGMOD-SIGACT-SIGART Symp.
Princ. database Syst., pages 155–165, 2004.

[2] S. Boyd and L. Vandenberghe. Convex Optimization,
volume 25. 2010.

[3] J. P. Costeira and T. Kanade. A Multibody Factoriza-
tion Method for Independently Moving Objects. Int.
J. Comput. Vis., 29(3):159–179, 1998.

[4] E. Elhamifar, G. Sapiro, and S. S. Sastry.
Dissimilarity-based Sparse Subset Selection. IEEE
Trans. Pattern Anal. Mach. Intell., 8828(c):1–19,
2016.

[5] E. Elhamifar, G. Sapiro, and S. S. Sastry.
Dissimilarity-based Sparse Subset Selection. PAMI,
pages 1–18, 2016.

[6] E. Elhamifar and R. Vidal. Sparse Subspace Cluster-
ing :. CVPR, pages 130–138, 2009.

[7] E. Elhamifar and R. Vidal. Sparse Subspace Clus-
tering: Algorithm, Theory, and Applications. IEEE
Trans. Pattern Anal. Mach. Intell., 35(11):2765–2781,
2013.

[8] M. A. Fischler and R. C. Bolles. Random sample con-
sensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Com-
mun. ACM, 26, 1981.

[9] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Krieg-
man. Clustering appearances of objects under vary-
ing illumination conditions. 2003 IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognition, 2003. Pro-
ceedings., 1, 2003.

[10] N. Lazic, I. Givoni, B. Frey, and P. Aarabi. FLoSS: Fa-
cility location for subspace segmentation. Proc. IEEE
Int. Conf. Comput. Vis., pages 825–832, 2009.

[11] G. Liu and Z. Lin. Robust Subspace Segmentation by
Low-Rank Representation. Matrix, 2010.

[12] K. P. Murphy. Machine learning: a probabilistic per-
spective. MIT Press, Cambridge, MA, 2012.

[13] M. Tipping and C. Bishop. Probabilistic Principal
Component Analysis. J. R. Stat. Soc., 61(3):611–622,
1999.

[14] M. E. Tipping and C. M. Bishop. Mixtures of proba-
bilistic principal component analyzers. Neural Com-
put., 11(2):443–482, 1999.

[15] R. Tron and R. Vidal. A Benchmark for the compar-
ison of 3D motion segmentation algorithms. IEEE
Conf. Comput. Vis. Pattern Recognit., pages 1–8,
2007.

[16] R. Vidal. Subspace Clustering. IEEE Signal Process.
Mag., 28(2):52–68, 2011.

[17] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal
Component Analysis. IEEE Trans. Pattern Analyisis
Mach. Intell., 27(12):1945–1959, 2006.

[18] J. Yan and M. Pollefeys. A General Framework
for Motion Segmentation : Degenerate and Non-
degenerate. Comput. Vis. ECCV 2006, 3954(Chapter
8):94–106, 2006.

8

