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Abstract 1. Dependent Contracts: Lax or Picky?

Behavioral software contracts supplement interface information Software engineers embrace behavibsalftware contracts for two
with logical assertions. A rigorous enforcement of contracts pro- reasons. On one hand, contracts help explain and protect the inter-
vides useful feedback to developers if it signals contract violations face of components, e.g., modules, classes, procedures, figictio
as soon as they occur and if it assigns blame to violators with On the other hand, programmers can use the familiar programming
precise explanations. Correct blame assignment gets programmersanguage to specify contracts, which makes it easy to read, write,
started with the debugging process and can significantly decreaseand interpret them.
the time needed to discover and fix bugs. While both arguments obviously apply to contracts for first-
Sadly the literature on contracts lacks a framework for mak- orderlanguages, Findler and Felleisen (2002)’s introduction of con-
ing statements about the correctness of blame assignment and fotracts for higher-order functions raises subtle, yet practically in-
validating such statements. This paper fills the gap and uses theteresting questions. One particular question concerns dependent
framework to demonstrate how one of the proposed semantics forhigher-order contracts—that is, contracts that can state assertions
higher-order contracts satisfies this criteria and another semanticsrelating the potentially higher-order argument to the potentially

occasionally assigns blame to the wrong module. higher-order result. Such contracts come with two distinct seman-
Concretely, the paper applies the framework tol#xeenforce- tics in the literature. The first is the so-called semantics of Find-
ment of dependent higher-order contracts and ioky one. A ler and Felleisen, which uses the argument in the assertion without

higher-order dependent contract specifies constraints for the do-monitoring the argument contract. In contrast, the secpiclly se-
main and range of higher-order functions and also relates argu-mantics of Blume and McAllester (2006) monitors the argument
ments and results in auxiliary assertions. The picky semantics en-contract during the evaluation of the componant during the
sures that the use of arguments in the auxiliary assertion satisfiesevaluation of the assertion.

the domain contracts and the lax one does not. While the picky
semantics discovers more contract violations than the lax one, it
occasionally blames the wrong module. Hence the paper also in-
troduces a third semantics, dubkiady, which fixes the problems

of the picky semantics without giving up its advantages.
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Blame Assignment

To make this discussion concrete, consider the dependent func-
tion contract in figure 1. This Racket fragment (formerly known as
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bersx, the slope off atx is within d of the value off p atx. A
pickyinterpretation enforces thatandf p are applied to real num-
bers and produce such numbers during the evaluation of the post-
condition; alax interpretation does not check these specifications.
Greenberg et al. (2010) compare these two forms of depen-
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Types T = o|1T—T1
o = num| bool
Terms e = Vv|x|ee|yuxte| ete
| e—e]eAe]|eve]| zero?(e)
| ifeee
Values v = 0|1] —-1]...]|AxTte
| tt | £f
E.Contexts E = [|]|Ee|VvE|E+e]|Vv+E

| E-—-e|v—E | EAe|VAE
| Eve| VvVE | zero?(E)
| ifEee

Figure2. PCF syntax

the contract may thus misapply the picky interpretation catches
this potential problem, while thiax one doesn’t. Our experience
shows, however, that Greenberg et al. (2010)’s result doesifyt tr
settle the issue. Whengacky contract signals a contract violation,
it may blame the wrong party.

In this paper, we develop a third notion of contract monitor-
ing and demonstrate that it satisfies an intuitive correctness crite-
rion. We start from the observation that Greenberg et al. are correct
in that apicky interpretation is important for dependent contracts.
If the “dependency assertion” violates a contract, the computation
may go wrong in all kinds of ways. The question is which party
the monitoring system should blame for such a problem. ity
interpretation blames either the server or the client. Our new inter-
pretation, dubbeéhdy, treats the contract as an independent party
and blames it for problems whepécky blames the wrong party.

To compare the three possible interpretations, we develop a uni

contracts, a contract type, and new terms for attaching contracts to
terms and raising contract violations. Second, we extend our type
system with rules for the extra terms. The resulting language is
CPCF, PCF with contracts.

CPCF is equipped with two kinds of contracts: flat contracts,
flat(e), and higher-order contractg; — k». The former are
predicates on base values. The latter combine a conitactn
the arguments of a function with a contracs, on the result of the
function.

Contracts K
Types T
Terms e

flat(e) | K=K
. | conr)

. monI I(K,e) | error

+e:o0— bool
I+ flat(e) : con(o)

MEkp:con(ty) T HKo:con(Ty)
IF Ky +—Ko:conty — T2)
Itk :con(T)

re monll-("l (k,e): 1

MN-e:t

I+ error' i1

Figure 3. CPCF: syntax and types

The most important new construct is the monitoring construct
monlj(’l (k,e), which places a contragtbetween a terra (the server)
and its context (the client). It demands that any value that flows
betweene and its context is monitored for conformance with the
contract. For a flat contract, the predicate is applied to the value;

-for a higher-order contract, the pieces of the contract are attached

fied semantic framework, based on a reduction semantics (Felleiserfo the argument and range position of a wrapper function and the

et al. 2009) for a PCF-like language with contracts. The three inter-

contract is monitored as the function flows through the program.

pretations are expressed as three different, one-rule extensions that A monitor comes with three labefsa pair of distinct blame
specify the semantics of dependent contracts. We then enrich thelabelsk andl for the two parties to the contract and a contract label

framework with the necessary information to track code ownership
and contract obligations, two novel technical notions that might
prove useful in other contexts. This enriched framework is used
to formalize the following correctness criterion: a contract system
should only blame a party the party controls the flow or return of
values into the particular contract check that failed.

We can prove that our neimdy interpretation satisfies this cri-
terion while picky fails to live up to it. Inspired by our theoretical
result, we equip Racket with andy dependent contract combina-
tor, - >i , in addition with the existindgax combinator; >d.

Finally, we explain how to use the framework to implement
a tool that explains the responsibilities that contracts imposes.
Specifically, the tool teases out contract obligations from com-
plicated contracts and highlights them with colors. We have im-
plemented the tool and include some screenshots to illustrate its
usefulness.

2. Contract PCF
PCF (Plotkin 1977) is the starting point for our model; figure 2

j, for the origin of the contract. In source code, the contract label
usually differs fromk andl but under some circumstances it may be
equal to either of the two. Labels are drawn from the enumerable set
L. The labely is used as the label of the whole progrdrdenotes a
subset ofl.. When a contract fails a contract erretror', is raised
wherel denotes the party responsible for the violation.

E.Contexts E 1= o monI (K E)
kil kil 1.k
E [mon’’ ( 1—Kz,V)] —  E[Axmonj” (K2, Vmon;" (K1,X))]
E[mony’ (flat( e),v)] — E[if (eV) v error¥|
Elerror'] +—— error!

Figure4. CPCF: semantics

The introduction of contracts requires small changes to the
reduction semantics. Figure 4 spells out the details, starting with

summarizes the well-known syntactic domains. In this setting, a the slight modification of the set of evaluation contexts. The bottom
program is a closed term. Also, we equip the language with a stan-half shows the reduction rules for contract checking and blame
dard type system and a call-by-value reduction semantics, thoughassignment, adapted from Findler and Felleisen (2002)’s original
for lack of space, we omit the details (Plotkin 1975; Felleisen et al. semantics. A higher-order monitor is split into two parts:

2009). Similarly, we use type annotations only when needed.

2.1 Adding Higher-Order Contracts

Adding plain higher-order contracts (Findler and Felleisen 2002)
to PCF is straightforward: see figure 3. First, PCF is enriched with 21n an implementation, these labels are synthesized from tgram text.

1. a monitor for the argument with reversed blame labels;
2. amonitor for the result with the original blame labels.




A first-order monitor is transformed to & statement that checks  them can control the flow of values into the responsible monitor.
whether the guarded value satisfies the contract’s predicate. If theTo illustrate this point and to provide an alternative, we introduce
predicate is satisfied, the value is returned; otherwise a contracta third contract monitoring system that considers contracts as inde-
error is signaled using the first blame label to pinpoint the guilty pendent entities. When a dependent contract abuses a value accord-
party. Finally, when a contract error is raised the evaluation is ing tok1, this revised system blames the contract for the violation.
aborted and the contract error is returned as the final result. Here is the reduction rule:

k|
i ‘
In contrast to conventional contracts for first-order functions, the E[)\x.mon‘j“I ({mon'j"J(Kl,x)/x}KLVmon'j’k(KLx))]

higher-order contracts of the preceding section cannot express de- ) . ) .
pendencies between arguments and results. Therefore Findler and he rule makes the contract responsible if it supplies an inappro-
Felleisen (2002) equip CPCF with a functional contract form that Priate value to a function argument during the evaluation of the

2.2 Adding Dependent Contracts E[mon’" (K1+% (AX.K2),V)] i (indy)

parameterizes the result contract over the argument: “dependency.” It accomplishes this switch of responsibility with
. the creation of a new monitoring expression for the argument with
Contracts Kk = ... | K (AXK) the contract label as the negative blame label. This new argument

Findler and Felleisen (2002)'s reduction rule for thespendent ~ €XPression is substituted into the range part of the coritract.
contractscaptures this intention: For an example, consider this monitor expression:

0_ ki
Efmon!t' (k1 % (Axk2),v)] (lax) M° = monj” (K,AX.(—0—)) Ax.(—1—)
E [)\x.mon'j"I (Kz,Vmonlj’k(Kl, X))] where
A dependent monitor acts like a higher-order monitor. The subtle K = Kl'i’()\f-f}at()\x-f (Ax.(—2—)) > 0))
difference is that the parameterof the proxy function captures Ky = (P?—P?)>(Ag.flat(Ax.g3>0))

the free occurrences ofin the contract's postconditior,. As a
result, any argument to the proxy function is substitutedfiork,
and is then used in the argument position, suitably wrapped with an
argument monitor.

Blume and McAllester (2006) observe that the precondikipn
is not enforced during the evaluation of postcondit@nThis gap
opens the door for potential abuses of the argumex,ine., uses
that don't conform ta;. They rightly consider this a problem and,

in turn, they propose the following change to the rtile: monll-'j (K1, AX.(—1—)) .

E[monij("(K1£> (AxK2),v)] —p (picky) Sincek is a dependent contract, too, the story continues. When
k|l Ik Ik the postcondition is eventually checked, this proxy function for
EAxmonj” ({monj™ (K1, X)/x}K2, vmon;™(K1,X))] Ax.(—1—) is applied toAx.(—2—). In that case, the latter flows
Specifically, every free occurrence &fin k» is replaced with ~ to the postcondition ok; and replaceg with another monitored

Ik . : domain contract.
mon: (K1,X). Thus, any argument to the function remains protected . . .
j
by K1 even insidek,. Note how the injected monitor carries the rinEc?Car:I o\fN?ee)t:er(rale ruIe\/sVitg;t:ves rlsivtﬁe?esl:ﬁrga{rlltlcsi ;o:oCPe(tZF. In
same blame labels as the monitor for the argument in the body of P pal, . m . Pl tog
the three complete reduction relations. Since there is no danger

the function? g .
. of ambiguity, we overload the symbel—n, and use it for the
Greenberg et al. (2010) compare thr andpicky contract sys- complete semantics.

tems and conclude that the former signals strictly fewer contract
errors than gicky contract system. More precisely, for any pro- 2.3 Two MoreFlavors
gram, the following statements hold:

Here the server is the functiorx.(—0—), while the client is the
context[ | Ax.(—1—). The mediating contraet is a higher-order,
dependent contract whe®? checks for positive numbers, i.e.,
P?=flat(Ax.x > 0) and> has the standard recursive definition.

The argumenix.(—1—) flows to the postcondition of and
replacesf. To protect it from potentially misbehaving contract
code, it is wrapped with a monitor that enforegs

The treatment of contracts as independent parties is compatible

* neither contract system signals a contract error; with some practical uses in our Racket implementation. First, con-

tracts for Racket's unit system are given as part of the signature.

Strickland and Felleisen (2009) show that linking such units may

* thepicky contract system discovers a contract violation and the necessitate blaming the signature itself. Our framework finally pro-
lax system does not raise a contract error. vides a semantic explanation for this phenomenon.

Second, in Racket’s first-order module system, contracts are

¢ both raise an error and blame the same party; or

Their results characterizes two different philosophies of contract o . . ; . :
code. On the one hand,lax contract system treats contracts as specified viaprovi de/ cont ract, i.e., in the export interface of
trusted code. Both parties have agreed to the contract and have premOdU|es‘ This form combines identifiers with contracts and a-
sumably ensured that its evaluation doesn't violate any invariants. taches contracts to these values as they fiow across the module
On the other hand, picky contract system considers contracts to boundary. When things go wrong with the dependencies in such
contain potentially faulty code. To enforce the contracts within this

code, epickysystem protects values that flow into the contracts. with the contract label. In that case, the value flow is eltivthin the

The problem with thepicky system is that it may blame the  c,qiract party and should strictly speaking not be monitofednodel this
server or the client for violations of a contractwhen neither of behavior, we would have to add the side conditig# j and add a second

5Morally, the monitor should not apply when the client is athpabeled

rule:
31n principle, this reduction rule should usé et to preserve a strict call- Kl J Kl |k
by-value regime. But, due to the restrictions on our grammacdotracts, Efmonj” (k1= (AxK2),V)]  +—i  E[Axmonj” (K2,Vmon;"(K1,X))]
a straight substitution is technically correct and superio if 1 =j

4 An alternative definition for thpickyrule is tonot switch the blame labels Both variants ofindy satisfy the main theorem, which is why this paper
on the internal monitor. Doing so does not affect our results. focuses on the theoretically simpler approach.



contracts, the monitoring system considers the contract a part of Again thelax system does not signal contract violations, while the
the server module and blames the server module. We can expressther four report one. Here thady system blames the contract

this idea—dubbed-indy—in our framework with the small change
of using the module name as the contract label.
Finally, Typed Racket (Tobin-Hochstadt and Felleisen 2010,

itself rather than the client, which is blamed by fliekyand—indy
systems. Therindy system blames the server.
Together the two examples demonstrate that none of our new

2008) protects the interaction of typed and untyped modules with monitoring rules are logically related foicky if we take blame
contracts derived from types. Since one of the basic assumptionsinto account. In short, the introduction of contracts as independent

of Typed Racket is that untyped modules stay unchanged, it imple-

ments this protection mechanism witkequi re/ contract. This

contract form guarantees that values from an untyped module sat-

isfy the specified contract. Put differently, the form protects the im-

parties calls for a comparison that takes into account why a contract
violation is detected and why the accused party is blamed.

Note, however, that thendy contract system signals an error
when thepicky system signals an error and vice versa, though the

port boundary. If a programmer attached dependencies to these conerrors aren't necessarily labeled with the same party.
tracts, the code would have to be considered as a part of the client

module. We can capture this semantics, dubbely, by using the
importing module’s name as the contract label.

2.4 Comparing Contract Systems

Equipped with three additional contract monitoring systems, we
can now explore their relationship. Consider this example:

mon®! (K, A f. 42) Ax.x
wherek = (P?+— P?)+S (M f.flat(Ax.f 0> —1))

nl

The example uses the placeholddor the contract label so that we
can includetindy and—indy—the two additional flavors ahdy—
in our comparisons. As needed, we replacwith k for +indy,
with | for —indy, and a distinct labej for indy. Recall that the
reduction rules for théax and picky contract monitoring systems
do not employ the contract label.

The evaluation of1! yields the following results for the five
different contract monitoring systems:

program * monitoring system  result
nt  — lax 42
nt — picky errork
nt j indy error]
nt k ~+indy errorK
nt I —indy error!

The table demonstrates several points. First, when a program yield

a plain value according to thax system, th@ickysystem may still

find a fault during contract checking and signal a violation. Second,

the picky system here blames parky the server component, for
a contract violation. The specific violation is thhatis applied to

0 in the dependency assertion, even though the domain contrac

promises that the function is only applied to positive numbers.
Third, theindy system blames the contract itself, rather than the
server. Fourth, the system based on-hedy rule agrees with the

picky system, because it considers all code in a contract as part of

the server. Finally, the-indy system blames party after all, the
misapplication off is internal to the client, which chooses to defy
the restrictions on the domain éf

Another example shows thgicky can also blame the client
when things go wrong with the contract:

M2 mon®! (K, A f.f Ax.X) Ag.g 42
wherek = ((P?— P?)+L (A f.flat(Ax.f 0> —1))) — P?

Specifically, evaluatin@l? yields the following results:

program * monitoring system  result
n- — lax 42
n2 — picky error'
M2 j indy error]
M2 k ~+indy errorK
M2 I —indy error!

S

t

PROPOSITIONL. e+ errorK iff & —p error¥

PROOF IDEA. By a straightforward bi-simulation argument. The
bi-simulation used for the proof relates two expressions that are
structurally identical except that their labels can differ.

3. Tracking Ownership and Obligations

While the preceding section illuminates the problems ofpticky
contract system and the difficulty of comparing contract systems
in general, it also implies a new way of thinking about contract
violations. The first major insight is that thgicky system may
blame either the server module or the client module when, in fact,
the contract itself is flawed. From here, it is obvious to inspect what
a contract monitoring system would do if contracts were a part of
the server, a part of the client, or a third party. Doing so produces
the second major insight, namely, that none of these alternatives
agrees with th@icky semantics.

Putting the two insights together implies that we need a seman-
tics that (1) for each party, keeps track of its contract obligations
and (2) for each value, accounts for its origin. Once a semantics
provides this additional information, we can check whether a con-
tract system ever blames a party for violating an obligation if the
party has no control over the value’s flow into the contract. In this
section, we equip CPCF’s semantics with ownership and obligation
information, which is maintained across reductions. In the next sec-
tion, we use this information to state a contract correctness property
and to measure how the various monitoring systems fare with re-
spect to this property.

3.1 Ownership...

To model an ownership relationship between parties and code, we
extend CPCF with a new construct that relates terms and values to
parties®

Terms e
Values v v

During reductions, terms and values come with a stack of own-
ers, reflecting transfers from one party to another. The notations

lef' and |e||'" are short-hands for such stacks, abbreviating
[...llel"... )" and]|... le|"...||', respectively. Ownershipfor

an expression means its result is attributed.ttn turn, a value
with an ownershig originates from componetor is affected by

a traversal through compondnt

3.2

CPCF contracts consist of trees with flat contracts at the leafs.
Exploiting the analogy with function types, Findler and Felleisen
(2002) implicitly decompose these trees into obligations for servers

o | el

...and Obligations

6The inspiration ofownershipcomes from the work of Zdancewic et al.
(1999) onprincipals For a comparison, see section 6.



(positive positions) and clients (negative positions). Their seman-

tics tracks this connection via labels; errors use them to pinpoint

contract violators. IlFer ke e Ie
Dimoulas and Felleisen use this idea for a static decomposition IFe e | FAxe | - puxe

of contracts into server and client obligations. They define two

functions from contracts to contracts that tease out the respective

obligations. The one for teasing out server obligations replaces flat

contracts in negative positions with = flat(Ax.tt) and then

reconstructs the overall contract; analogously, the decomposition IFer

IlFer IFe Ilhe
IFife e e3

map for teasing out client obligations replaces flat contracts in | - zero?(e;)
positive positions withT. For instance the contract of tHa2
example in section 2 yields these decompositions: ! FI ilel—:;ez ! FI ilel ! ;92
| (P?— P2+ (A f.flat(Ax.f 0> —1))) — P? Fe, ke be, Ihe
server (T +— P2 (AF.T)) — P? IFe Nep e ve
client | ((P?+ T):& (Mf.flat(Ax.fO> —1)))— T
l+n I+tt |- £f I+ x

Decomposition implies that each flat contract imposes obliga-
tions on a specific component, i.e., party to a contract. Since one
and the same server may connect with many different clients and
sinceindy systems may use the contract itself as a component, it is
not just one party that is associated with a flat contract but many. . . . ) .
Hence we modify the syntax of contracts to statically associate flat & clientand a server, implying this shape for the judgment:
contracts and owners: |- monl;"l (K, Her)

Figure5. Ownership coincides with contract monitors

Contracts k :=|[flat(|e]")]' | k=K | K (AXK) It says that ifl owns the context ank is the blame label for the

) ) L — server, then the blame label for the client shouldlbend the

In contrast with ownership, obligations come as sets of lahels wrapped expressioa should come with an ownership annotation

not vectors. After all, there is no need to order obligations or t0 that connects it td. Next, e must be well-formed with respect to

change them during an evaluation. Of course, a static attribute aboutjg ownerk, because it may contain additional contract monitors.

a dynamic obligation calls for a way to determine whether such gyt even with this antecedent, the well-formedness judgment is

annotations are well-formed. incomplete. After all, the contragtthat governs the flow of values

3.3 Waell-formed Ownership and Obligations between the server and the client contains code and this code must
be inspected. Furthermore, we must ensure that all flat contracts

Only some annotations make sense for a source program. Bothwithin k are obligations of the appropriate parties including the

ownership and contract monitors specify boundaries and, at the contract monitor itself, which is represented by the contract label

source level, these boundaries should coincide. We therefore intro-  Putting everything together, we get this well-formedness rule

duce a well-formedness judgment to enforce these conditions for for contract monitors in source programs:

source programs. Before doing so, we present the simple typing kke {K:{};jok

rules for the two new constructs: SRSEL

kil
| - mon;” (K, =S

I-e:o0— bool M-e:t
M Lflat(e)Jl : con(o) M= HeH' T It r(_elies on a secondary well-formedness judgment for contracts, to
which we turn next.

Concerning ownership annotations, a CPCF source program
may contain those at only two places: in contract monitors and
in flat contracts. Since contract monitors establish a boundary be-
tween the client component and the server component, we demand
an ownership annotation on the server component and that a match

Lkis>ki  klj>ko
K1;j > Ky — Ko

of these annotation with the positive label of the monitor. Con-

versely, the context of such an expression must belong to the client.
Finally, flat contracts must come with ownership labels consistent
with the surrounding monitors because they are turned into plain

Lku{jhiick  klj>ka

kil j > K1 (Axkz)

jFe

code during the evaluation, and the semantics must track where
they originated from.

We express this constraint with the well-formedness relation
| - e, which says thal “owns” e and checks that is well-formed.
Equivalently| is the owner for the context &f A closed expression _
eis a well-formed program if, - e wherel, is the label reserved Roughly speakingdk;|; j > K says that contraatis well-formed
for the owner of the program. for sets of positive and negative obligation labklandl, respec-

Figure 5 defines most of this well-formedness judgment. For tively, and the ownerj of the contract monitor that attaches the
terms that do not involve monitors and contracts the definition contract to a boundary. As the definition in figure 6 shows, the two
is a structural judgment, and base values and variables are well-sets are swapped for the antecedents of higher-order (dependent)
formed under any owner. The actual key is the one for contract contracts. For the negative positions in the precondition of depen-
monitor, which we present separately. According to our informal dent contract labe] is added to indicate that these are also obli-
description, a well-formed contract monitor is a boundary between gations of the owner of the contract monitor. For flat contracts the

KI;j > |£1at(ell) ¢

Figure 6. Obligations coincide with labels on monitors



positive obligation labels must coincide with the obligation labels

of the contract. E'l- ] —m E'[]

Note tha_t the WeII-_formedne_s_s of flat contracts also enforces Hn1|\i+||n2||r ) n wheren; + 1y =n
an ownership annotation. Specifically, the owner of the context— - -
which, by assumption, is a contract monitoring construct labeled |Ina/l* —n2]|* - n wheren; —nz =n
with j—is also the owner of the predicate in the flat contract. zero?(]|0||!) . tt
The antecedent of the rule recursively uses the well-formedness ol 11K . £t i n20
judgments for ownership to ensure tleatself is well-formed. zer°ﬁ-(||n|| )T if n#
3.4 Ownership and Obligations Semantics HVlHE A ”VZHT -V wherevy Avz =V
The final change to the CPCF model concerns the reduction seman- IVl VHVZH ‘ v wherevy Vv =v
tics. Specifically, we change the reduction relations so that each re- 1if \|tt\|ie1e2 : €1
duction step keeps track of ownership rights and obligations. While iz ||f£|' ee . &
ownership and obligations do not affect the semantics per se, the Kl K
information is critical for characterizing the behavior of contract  mon; (K1 — K2,V) © AXmonj (K2,Vmon;™(K1,X))
monitoring systems, as we show in the next section. monj’l (Lﬂat(e)J"’V) . if (ev) v errork

Our first step is to equip the grammar of evaluation contexts
with a parameter that accounts for the owner of the hole. In the
parameterized grammég, , of figure 7 the parametdrpoints to
the ownership or contract annotations that is closest to the hole of
the context.

Figure 8. Ownership and obligation propagation

The relation says that after tagging the value with the ownership
labell of the context, the value moves under the ownership annota-

E.Contexts E: = G: A | tions of the function. The result is a value whose innermost owner
G = Ge|vG |G +e|v+G is | and whose outermost ownerlisof I:
| G-e|v-G |Gnre|vaG -
|  G've|vG | zero?G) [[v[''n
. 1k
it G,I e e | monj"(k,F) The properly annotated value is then substituted into the leady
| monlj K, &) | IEI S the function for its parametet. The result itself is owned by the
F == []|Fe|VvF|F+e]|v+F same ovynerastht_ef_unction. _ _ o
| F-e|Vv—F|FAe|VAF Put differently, it is best to view function application as a form

of communication between two components: the function and its

2
| Fve|vF | zero?(F) context. The context picks the argument, declares itself its owner,

| ifFee and then passes it to the function. The function accepts the argu-
- - - ment, adjusts its ownership, and integrates the result into its body.
Figure7. Parameterized evaluation contexts Recursion is treated as a special form of function application:

Evaluation contexts are labeled with the lakgkthe label re- | | |
served for the whole program—if they do not contain an owner- E'luxe +—m E'[{lluxel /x}e]
ship or contract constructs on the path from the hole to the root: The owner of the context and user of the recursive function
El=F. declares itself owner gfixe before substituting it in the body of
From now on, all reduction relations assume labeled evalua- the recursive function.
tion contexts. This implies that newly created values are always  All the complexity of tracking ownership is due to dependent
assigned an owner. For the reduction relations concerning primi- function contracts. Consider the simplest varidat,
tive operators and conditionals, the changes are straightforward and Kl J
summarized in the top part of figure 8. For the rules concerning E[monj” (K1 (AXK2),V)] (lax)
monitors with flat and plain higher-order contracts and their blame E[)\y.mon;(’l ({y/x}Kz,Vmon'j’k(Kl,y))]
assignments, specified in the lower part of the same figure, we also ) . . )
know that they do not need to manipulate any ownership annota- FOr emphasis, this version of the reduction rule ugess the
tions. These reduction rules remain unchanged, modulo the labeledP@rameter of the proxy function on the right hand side. The use
evaluation contexts. The obligation annotation on flat contracts is Of ¥ as parameter demands that we also replace all occurrences of
ignored. For details, see the bottom part of figure 8. We add one Xin K2 with y so that when the proxy function is applied, the actual

last simple rule separately: argument is substituted into the dependent range contract; without
| K K the substitution, the reduction would create free variables.
E'[error] ——merror Rewriting thelax rule in this way reveals that it encodes a

Since the act of signaling errors erases the surrounding evaluationmasked function application. The problem is that, as discussed

context, the format of this rule doesn't fit the table. Note that the above, a function application must add the label of the responsi-
context on the right i$ J' andl may not equal,. ble owner at the bottom of the stack, and this label is not available

The reduction offy redexes typically demands several re- here. Instead, it is found at the flat leafs of the contract, which—
alignments with respect to ownership. To start with, the function according to the static semantics of the preceding subsection—
and the argument may belong to different parties. Furthermore, Must come with an ownership annotation. The solution is to intro-
the context brings together the operand and operator, and the seduce the substitution functiofe/°x}k, which copies the ownership
mantics should keep track of this responsibility. Together, the two label from flat contracts to the substituted term.
observations suggest the following relation:

. _ . " The valuevis unaffected by this change of parameters, because we assume
E! [||)\X.e\|In V] E! [H{HV||“n/X}eH|n} the usual hygiene condition (Barendregt 1984) for metalstesa



With this substitution function in place, it is easy to specify the propagates this information so that it can be used to characterize
three variants for the reduction of dependent functional contracts: execution states. In order to formulate this statement, we use the
£l = symbol—= " for the transitive-reflexive reduction relations of

...
p ) El-] section 2 and—,,>"™ for the relations of section 3.
(K1+=> (AXK2),V)
kI

2

mon
j .
Axmon't ({x/Cx}Kg,Vmon'j’k(Kl,x)) (lax) PropPoOsITION3. The following statements hold for@{l, p,c}.
mon® (k1% (AXKp),V) 1. Let e be a well-formed CPCF programs It e. Lete be the
j ) p . . LN f .
AX mon'-‘"({monl»’k(K X) /XK Vmonl-’k(K X)) (picky) plain CPCF expression that is like e without annotations. If
k.l j i 1 25 i 1, e)_*>manno e(’ thene )_*>mcpcf e.
mon’ (K1+% (AXK2),V) ¢ 2. Leté be a plain CPCF program. There exists some labeled
k.l I, c Ik ; CPCF program e such thag |- e. Furthermore, ie—5,,°"" €,
Axmonj” ({monj” (K1,X)/°X}K2, vmon;"(K1,x))  (indy) hon eiga"”"e/. aé m
We conclude this section with the definition of the auxiliary ) o .
substitution function: PROOFIDEA. By a straightforward bi-simulation argument.
c N " N One consequence of this proposition is thiakyandindysignal
{e/x}f1at([€])) = [f1at({e]" /x}|I€]")] still the same number of contract violations (proposition 1).
{e/x}k1—Ky = {e/°k}k1— {e/°x}Kz _ ]
{e/%%k1rs (AxK2) = {e/%}Kk1rs (AxK2) 4.2 Subject Reduction
{e/% k1% (Ayk2) = {e/Sx}k1+S (Ay.{e/°x}K>) While | - e specifies when source programs are well-formed, the
wherex#£y reduction semantics creates many expressions that do not satisfy

The definition is total. The redefinition of the contract syntax en- these namow constraints. For examplek, |a weII-fokrmed progr_am con-
" (K, ||eo]|). A reduction

forces that flat contracts always have the annotations expected byf&ins only monitor terms of the forgmon;” ( _
the domain of the substitution function. This also guarantees that Sequence may contain programs with differently shaped monitors,

the reduction relations—, are well-defined. however. In particular due to the reductions of higher-order de-
pendent contracts, the monitored expressions may be applications,
4. Correct Blame monlj(’I(K., leol“ &), or variablesmon‘j“I (k,X). Fortunately, such de-

Using ownership and obligation annotations, we can formulate Vviations are only temporary. In the case of the application the ar-

what it means for a contract system to correctly blame a violator. gumenter is always well-formed unddrand, when it is absorbed

After all, the tracking of ownership and obligations is entirely by [|e|[¥, the monitor expression is once again well-formed. In the

independent of the contract checking, and it is thus appropriate to case of the free variable we can show thistalways replaced with

use tracking as an independent specification of contract monitoring. a value of the formj|vo||¥, which conforms to the standard form.
Values should be originating from one of the parties of the To formulate a subject reduction theorem, we must generalize

contract are checked only against flat pieces of the contract for both the judgment for well-formed prograns; e, and the one for

which the party is responsible. Now we can phrase this property well-formed contractsk;|; j > k. First, we equip the two relations

in terms of ownership and obligations: when the evaluation reacheswith an environment that records the label of bound variables:

a redex that checks a flat contract on a value, then the owner of Lrw{x:I}Fe LM\ {x}Fe

the value must be the same as the positive party of the monitor and

in addition the positive party is included in the obligations of the Lr-Axe LT xe
contract. With environments, it becomes possible to check variable occur-
rences in monitor terms.
DEFINITION 2 (Blame Correctnessh contract system m llame Second, we add a rule for checking expressions that already
correctif for all terms g such that$ - eg, and have an owner:
eo —m E'[mon (| £1at(e1)]',v)] krte
;T F ek

v= |v1|¥ and ke I. The identity of the" labels is irrelevant. ) o _ _
o ) While these terms show up only within monitors in source pro-
The definition says that when the reduction of a well-formed grams, they flow into many positions during evaluations. Using this
program reaches a state in which it checks a flat contract, then thepew rule, we can check these cases, too.
server (positive) label of the monitor and the ownership labelonthe  Al| other rules—except those concerning monitors—propagate
value must coincide and, furthermore, the set of 0b||gat|0ns for the the environment and otherwise check expressions in the same way
flat contract must contain this label. Conversely, if these obligations as the corresponding rules of the preceding section. The rule for
are not met, the monitor may blankefor a contract failure even  variables ignores the environment. Variables not in monitor terms

though the party had no control over the flowvahto this monitor. can be replaced with well-formed terms of any owner. For details,
We can prove that thiedy contract system and even tlae sys- see figure 9.
tem are blame correct, whilgicky isn't. The proof of the positive The purpose of the environment is to check expressions without

theorem directly follows from a subject reduction theorem for own- ownership annotations in monitor terms. Here is the key rule:
ership annotations. This latter theorem requires a complex proof,

which is the subject of the second subsection. The third subsection klrike {kh{l}iir>k

explains how to prove the two main theorems. To start with, how- ;T Fmon®' (k, €)

ever, we clarify that ownership annotations and obligations do are I

orthogonal to semantics. To check whether the wrapped expression is well-formed, it dele-

gates to the auxiliary relatioki " I- e. The contract is checked as
before, though, with an environment.

The addition of ownership and obligation annotations does not  With k;I" I e, we can check the ordinary ownership terms but
affect the behavior of any programs. Our revised semantics simply also applications and variables as introduced during reductions. For

4.1 Itisall about Information Propagation
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Figure 9. Obligations coincide with labels on monitors (2)

function applications, the label serves as ownership label for the
operator and the operand, similar to the standard application rule:

k'ter klMke
kT I lex]< e

For free variables, the environment serves as the source of the
ownership label:

rx)=k

kI IFx
After all, the variable in this position is going to be replaced by a
value via a function application, and the substitution is going to use
a value with the specified label. Finally, for a guarded term with an
ownership annotation, it suffices to check if it is well-formed with
respect to the specified owner:

ke

AR

A well-formed program in the sense of the preceding section is
a well-formed program in the sense of revised judgment, too.

PROPOSITION4. For alle and I, I e implies o - e.

PROOF IDEA. By straightforward induction on the height of the
derivationl - e.1

A program that is well-formed according tol™ - e reduces to
well-formed programs. This statement holds for a contract system
using thelax reduction rule as well as for or those usingly.

THEOREMS5. Let e be a program such thaf; o - e. Then:

1. ife— ey, then b; o + ep;
2. ife—j ey, then b; @ F .

PROOF (1) We proceed by case analysis on the reductiaa of

o E'[ng| % + 2] '] — E'[u]. By assumptionlo; - e, for

which lemma 6 implies thdt @ F ||ng || +|jn2|| ' . We can use
the same label to cheakvia the inference rules, i.€.,& F n.
Hencelo; @ - E'[n].

The cases for other primitive operations are similar to the first.

E'[uxe] — E'[{||uxe||' /x}€]: By assumption and lemma 6,
I; @ pxe. From lemma 7 we get thata - {||uxe|' /x}eand,
inturn,lo; @ - E'[{||uxe]' /x}€].

E'[IAx.eo] % v —1 E'[II{|Iv|"* /x}eo]| ¥]: Again by assump-
tion and lemma 6, we conclude thBtz F ||]Ax.ep|/ ¥ v and,
therefore); @ F | Ax.eo|| K andl; @ - v.

Next we distinguish two cases, depending on the lengtk. of
First assume the vector is empty. In that case, the inference rules
imply I;{x: 1} I eg. Combining this judgment witth; & - v,

we may conclude thdt @ + {||v||' /x}ep via lemma 8. Finally
from here it is easy to gab; @ - E'[{||v|]' /x}ep], the desired
conclusion.

Second, lek; be the first element ok. In that case, the infer-
ence rules implks; {x: k1 } F eg. Sincel; @ - v still holds, we

conclude again via lemma 8 that & - {HV\|'E/X}60. Sinceks
is the outermost element &f we finally get the desired conclu-
sion,lo; & - E'| {|Iv]['k /x}eo ¥].

E' [monlj("I

K: The
assumptions imply; @ F mon'j‘"(Lflat(ec)J",v) via lemma 6
and henceg; = ||€.||! with j;@ I €.. Furthermore, the same
reasoning yields = ||vp||K andk; @ I vo. Since the rules for
well-formed expressions imply; & I if (e V) v errorK is
well-formed, the desired conclusion follows immediately.

k| k| 1.k .
E' [mon;” j i (K1, X))
With the usual reasoning, we gkt + mon'j‘"(Kl — K2,V),
v = ||vo|[%, andk; @ I vo. The contract check yields two pieces

of knowledge:
{1} {k} ;9 > K1

(|£1at(es)]",v)] — E'[if (e V) V error

(K1 — K2,V)] —| E'[Axmon"" (k2,vmon

and

{kh {1} 52 > K2
From an additional application of the inference rules for well-
formedness we gét {x: |} I- vmon;"(k1,X) and, with the help

!
of lemma 9J;{x: 1} F mon'j"I (KZ,Vmon'j’k(Kl,x)). Finally from

a last application of the inference rules for well-formedness we
getl; o+ )\x.mon'j“I (Kz,Vmonj’k(Kl,X)).

Kl (k1% (Ax.k2),v)] and observe that

j
e—1 E'[\xmon!" ({x/°x}K2, vmon|*(k1,%))].
(k1+% (AX.K2),V) . Thus,

Finally, lete = E' [mon

J
I

Via lemma 6 we derive; & mon;

v = ||v|[¥ with k; & I- v, but also

{13k i} >k
and

{KL{1} o> ks .
The rest of this argument uses the same strategy as the preced-
ing case, except that we use lemmas 10 and 14 to derive the key

result,l; {x:1} monlj('l ({X/CX}KQ,Vmonlj’ (K1,X)).



(2) The proof of part (2) differs from the proof of part (1)

only in the case for monitors with dependent contracts. Therefore

lete=E!' [monIJ(I(Klni> (AX.K2),Vv)] and recall that the contraction
proceeds as follows:

e E'\xmon®" ({mon| (k1,x) /*} K2, vmon|* (k1 x))].
Once again, we deriiea mon'j"I (K1+% (AX.K2),V) via lemmas 6.
Hencey = ||v||X with k; @ F v, but also

{14k i} ii9 >k
{kh{l}:io>ka.

By the well-formednesss; {x: 1} I+ Vmonlj’k(Kl,X). Now, with the
help of lemmas 12 and 14, we can derive

and

I {x: 1} F mon'" ({mon;’ (ky,x)/°X}K2, Vmon|*(k1, %)) .

Thus we conclude the proof with another application of the infer-

ence rules for well-formedness.

The proofs of the central lemmas depend on a series of auxiliary
lemmas about the properties of well-formed terms and contracts

substitution, and contract substitution.
LEMMA 6. If1; o - EK[¢] thenk o - e.
PROOFIDEA. By induction on the size dK.1
LEMMA 7. IfI;T Fe, kI Fep, and x¢ dom(T), I;T - {||ep[*/x}e.
PROOFIDEA. By induction on the height dfI" - e.1
LEMMA 8. IfI;Tw{x: k} Fe, v=|vo|[<and kT I vo then
I;T F{v/x}e
PROOFIDEA. By induction on the height df M W {x: k} -e.1
LEMMA 9. Ifl;T e and x¢ dom(l"), then f T w{x: k} -e.
PROOFIDEA. By induction on the height df " - e.1
LEMMA 10. If k;I; j;T > k and x¢ dom("), then
K1 T w {1} > {x/°K .

PROOF I DEA. By induction on the height d;1;1; > k. For the
flat contracts case we employ lemma 1L.1.

LEMMA 11. If ;I e and x¢ dom(T"), I; 7w {x: k} - {||x]' /x}e.
PROOFIDEA. First, we generalize the lemma’s statemenit; llf- e
andx ¢ dom(l"), I; T w{x: k} - {||x]|!/x}e. Then we proceed by
induction on the height df ' -e.1

LEMMA 12.1f k1;j;T >k and k@ {x:1} + mon‘j‘"(K’,x), with
x ¢ dom(T") thenk;; j; T {x: k} > {mon'" (k',X)/°X}K

PROOF I DEA. By induction on the height d&[; j;I > k. For the
flat contracts case we employ lemma 1.3.

LEMMA 13. If 13T ke, ;M {x: Kk} I-mon'"' (K',x), & x ¢ dom(I"),
then £ T {x: k} F {||mon’"' (k".%) [ /x}e

PROOF IDEA. First, we generalize the lemma’s statement as fol-

lows: If I';7 - &, 1;7 w {x: k} -mon" (k',x), & x ¢ dom(T"), then
;M w {x: k} F {|lnon" (', x)|'/x}e We proceed by induction on
the heightof ;T - e.1

LEMMA 14. If E;I_;j;l' >k, K C kandl’ C I thenk’;1’; IHE
PROOFIDEA. By induction on the height d&1; j;I > k. 1

4.3 Main Theorems

" When a program is well-formed, its monitors obviously satisfy the
blame correctness criterion.

THEOREM15. —| and——; are blame correct.

PROOF. This theorem is a straightforward consequence of theo-
rem 5. To wit, the subject reduction theorem says that a program
satisfies the subject including when its redex is a monitor term con-
taining a flat contract. From the proof of the subject reduction the-
orem, we know that the subject implies

1;2 - mon's! (| £1at ()|, V][

The label on the context is the same as the client label by lemma 6
but we also need to know that the server labed a member of

the contract’s obligationB. This has to be the case given that the
monitor term is well-formed. Note how the proof is independent of
the reduction semantics as long as it satisfies the subject reduction
property1

Thepickycontract system fails to satisfy an analogous theorem.
' THEOREM 16. There exists a program e such thatd e and
e—p E'lnon?(|f1at(e &', IvI")]
but k7’é |1.
PROOF. Here is one such program wheee- |o:
MN? = monf® (K|, |Ah1.hy Ax.5 (Ag.g 1)[|X) (Af.Ahp.hp Ax.6)

The restriction on the labels intuitively corresponds to the compo-
sition of the two different moduldsandl, through the contraey;.
Note thatI'I|3 is a family of programs, one per lablel This label
is the label of the contract monitor and, consequently, must be the
owner of all embedded flat contracts. In princiglesould be the
label of the client, the server, or any other non-top-lelgl label
but in the end, our choice must obey subject reduction.

While I'I|3 performs no interesting computation, its contrect
plays a critical role. To explain the contract though, it is best to start
with the type ofh;:

[(hum— num) — {([num— nun] — num) — num}| — num

The type tells us thdt; consumes a complex higher-order function
and produces a number. Instead of plain numbers, however, we
wish to deal with positive numbers only. We thus know thatnust

have at least something like the following shape:

(P — P2) = {([PA + PAA] — PR) = PA}] v P2
Next we add two dependencies:

(P2 —P2) % (AFA([P2 — PA] % (\gPA)) — P })] — P2

The two key points to notice are: (1) in this contragtjs in
the scope off and (2) whilef originates in the server (wrapped
expression)g originates in the client (context) and both flow into
the contract.

Equipped with this informal and approximate understanding,
we can now turn to the actual contract:

K| ((LP'?U'"'—’LP'-’IJk)d( K})) = [P J
KL= ((1P3)= [PA)) S (o)) o [P
Ki [ £1lat(]|AX. zero')(f 1- gO)||')j

P? flat(||Axx> 0"

Note how»<,2 invokesf on a positive number arglon 0.
Now we show that must be set tdy in order to satisfy blame
correctness. First, note that for for dlk L, I + I'I|3 if k#lo.



Second, the reduction 6I‘|3 eventually checks that 1 is greater than
0, i.e., that the post-condition contraciis satisfied:

M7 —p Esmon ([P ], |11 2]'|")]

In order for thepicky system to satisfy the blame correctness con-
dition, | must be equal t&,, which means the term looks like this:

ESmom*([P2, )", [112]°]")]

Unfortunately, the next few steps of the reduction process pro-
duces a state that is inconsistent with blame correctness. Specifi-
cally, K|2 also checks thay's pre-condition holds for O:

lo,k
morn,”
0

([P ), 12ffo'o)] —p
Ep [mon{"'°([P2, ', | []0]'*]">)]

lo

This last state, however, is inconsistent with the subject because
k cannot equaly. Indeed, the next few reduction steps result in a
failed check. The contract monitor blamesvhich isn’t the owner
lo of the value. Theickysystem fails to assign blame propeily.

In essence the proof of the theorem shows that there is no correct
strategy for associating (pieces of) contracts with components in
a picky semantics. No matter which labeling strategy we use, a

el
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simple-client.rktv (define ..)¥

#lang racket

(provide/contract
[pick-one (-> (cons/c number? (listof number?))
number?)])

(define (pick-one 1)
(list-ref 1 (random (length 1))))
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#lang racket

(provide/contract
[pick-one (-> (cons/c number? (listof number?))
number?)])

(define (pick-one 1)
(list-ref 1 (random (length 1))))

10 136.96MB | |}
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contract violation may blame a component that has no control over
the faulty value.

5. Consigliere

Our model introduces two concepts that are potentially useful for
practical programmers: obligations and ownership. According to
our judgments for well-formed contracts and expressionmra
tractual obligationis a static property of contract text. When con-
fronted with complex contracts, a programmer may benefit from
displaying such information in the IDE. In contrastynership in-
formationis a dynamically evolving property, and it is particularly
useful in a debugger for determining the creator and current owner
of values as they flow from one component to another.

To test the practicality of displaying obligation information, we

Figure 10. Obligations and assumptions fame- of

is colored in red, because any userpdtk- one is required to
use a non-empty list of numbers as an argument. Also, because
the client may assume thpi ck- one is a function and not some
arbitrary valuegconsiglierecolors the- > contract constructor with
green. The reverse reasoning explains the coloring of the lower part
of figure 10, which shows the result of usingnsiglierein server
mode.

For a second example, consideteai v function with the con-

have implemented a tool that analyzes modules and contracts andract from section 1. Its contract is significantly more complex than

annotates them with obligation information. The tool is a plug-in
for DrRacket (Findler et al. 2002), our IDE for the Racket program
ming language. In this section, we refer to the tootassigliere
though in DrRacket, it is simply a part of tiizheckSyntatool.

The consiglieretool operates on Racket modules in two differ-
ent modes. Irservermode,consigliereanalyzes the module from
the perspective of the supplier of services. It retrieves all the con-
tracts that are attached to exported identifiers and uses

e redto tag the server’s obligations;

e greento highlight the server’'s assumptions, i.e., the parts of the
contract that the other party is responsible for; and

* yellowto signal that a part of the contract is both an assumption
and an obligation.

In client mode consigliereanalyzes the module from the per-
spective of a consumer of services. Once it has the results, it pro-
ceeds as in server mode except that it uses red for the client’s obli-
gations and green for the client’'s assumptions.

For a simple example, consider the module in figure 10. The
modulepr ovi de/ cont ract specification lists one exported func-

pick-one because it comes with two higher-order components and
a post-condition. Note that this contract uses-thiecontract com-
binator, turning the contract provider into a party with obligations
and assumptions. Here the contract provider is the server module,
meaning- >i is interpreted using theirdy semantics. Practically
speaking, the obligations and assumptions of the server also include
the obligations and assumptions of the contract provider.

The top screenshot of figure 11 shows the result of using the
tool in client mode. The color assignment roughly follows the
same contravariant traversal of pattern as the contract in figure 10.
When it comes to thé: post —cond code, however, the color of
the keyword indicates that the post-condition is an assumption for
the client just like the other post-condition of the contract.

The lower screenshot depicts the server’s obligations and as-
sumptions, which are more interesting than the client’s. The dif-
ference is due to the server's dual role as both a service provider
and as the owner of the contract. Recall that the contract provider
is responsible for meeting the pre-conditionsfoéndfp in the
post-condition, while the server may assume thaindfp meet
their post-conditions. As a result, the colors usedffdrom the
server’s perspective coincide with those used in the client mode.

tion, pi ck- one. According to its contract, the function consumes a For f p, however, both parts are colored yellow because the obli-
non-empty list of numbers and returns an number. A code inspec- gation of the server is the contract provider's assumption and vice
tion shows that the function actually returns a random element of versa. Since the server is both the server and the contract provider
the given list. party in this case, the user must be ready to treat the pre-condition

The top of figure 10 shows the result of using the tool in and post-condition dfp either as an assumption or as an obligation
client mode. As expected, the non-empty list part of the contract depending on the use.
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#lang racket

(provide/contract
[deriv (->i ([f (-> real? real?)] [ real?])

[fp (-> real? real?)]

#:post-cond

(for/and ([1 (in-range @ n)])
(define x (random-number))
(define slope

¢ (= (f (- x 8)) (f (+x 8)))
™2

(<= (abs (- slope (fp x))) 8)201) |+
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deriv-me.rkt - DrRacket

deriv-me.rkt¥ (define ..J¥ Check Syntax @ Run £ Stop @

#lang racket

(provide/contract
[deriv (->1 ([f (-> real? real?)] [6 real?])

[fp (-> real? real?)]

#:post-cond

(for/and ([1 (in-range @ n)])
(define x (random-number))
(define slope

&/ (= (f (- %)) (F G+ x e
*2 )

(<= (a@bs (- slope (fp x))) 801D

Determine langua...> 2.28 15130me [ |}

Figure 11. Obligations and assumptions fier i v

the client employs abstract types and if the type system soundly
enforces type abstraction, stuck states become unreachable during
computation.

Although both principals and ownership annotations point to the
source of values and functions, the principal semantics differs sub-
stantially from our ownership semantics. Most importantly, prin-
cipals may change the evaluation of a program; ownership does
not. When a function from one server is applied to a value from a
client or a different server, the principal semantics is stuck. In con-
trast, ownership annotations are simply propagated in our reduction
rules; they do not affect computation. Ownership information is in-
stead used to formulate a criteria for determining the correctness of
blame assignment. We can imagine using an ownership semantics
to formulate syntactic soundness proofs for type abstraction, while
we do not see any advantages over the principals semantics for this
application.

As explained in the introduction, Greenberg et al. (2010) study
the full relationship between lax and picky contract systems on one
hand and manifest contract systems on the other. For the latter,
the type system propagates some of the contract constraints. While
Gronski and Flanagan (2007) established a tight relationship for a
world without dependent contracts, Greenberg et al. (2010) demon-
strate that the full picture is rather complex. In particular, they show
that as far as contract violations are concerned, manifest contracts
sit strictly between lax contracts and picky contracts.

In general, this work extends our decade-old linguistic investi-
gation of behavioral software contracts. Meyer (1988, 1991, 1992)
introduced software contracts via the design of the Eiffel program-
ming language and the creation of a contract-oriented software en-
gineering curriculum. Since then contracts have been used both
for extended static checking (Detlefs et al. 1998; Barnett et al.
2004) and runtime monitoring of higher-order programs (Findler
and Felleisen 2002). Blume and McAllester (2006) introdpicky
contract monitoring and explore a quotient model for higher-order

6. Related Work

Provenance is the book-keeping of origin, context and history infor-
mation of data. It plays an important role for the correct and secure
behavior of large software and hardware systems (Simmhan et al.
2005; Bose and Frew 2005). The study of provenance from a for-
mal linguistic perspective is still at an initial stage (Cheney et al.
2009). Our notion of ownership is a means of keeping around some
origin and context information about program values. So it can be
viewed as a form of provenance. Also ownership can be used as
a basis for studying formal properties of this kind of provenance.
However our technique and its use to prove properties of contract
systems is not related to any provenance tracking technology.

Tracking information flow in a computer system is a specialized
k!nd of provenance. Se_cu_re information flow'as pioneered by Den- of formal properties but do not reach a definite conclusion.
ning (1976) is the restriction of flow of data in a computer system

X Finally, in the context of JML (Leavens et al. 1999), Rudich
only between agents that have the appropriate level of clearance.et al. (2008) develop a method for proving the well-formedness of

There are both software and hardware techniques for imposing e+, ;.o _method specifications and they discuss how their technique
cure information ﬂOW.' Our Instrumentation of the dynamic seman- an benefit from automated theorem proving. The goal of this line
tics resembles techniques used for proving sound type systems thal ragearch is significantly different than ours. It concerns extrac-
enfgace secure |nfo|rmziggg flc_)w. d incioal tion of proof obligations for the verification of JML contracts in-
ancewic et al. (1999) introduce (program) principals as a 4o consistency. Unfortunately, JML contracts capture only first-
means to prove type abstractlo_n properties re_Iated to |nfc_>rmat_|0n order properties, and it is unclear if their technique is applicable
fow with a syntactic proof technique. In a principal semantics, dif- p, 5 pigher-order world. Furthermore, their static semantics lacks a

ferent prlnC|paI§ own dlf_ferent components_a_nd eXPO”Gd valges formalization of the contract parties which plays an important role
carry the principal of their component of origin. Since the prin- our work

cipals semantics prevents reductions that involve values with dif-

ferent principals, a client component is obliged to use a server’s 7. Conclusion

functions on the server’s values. In short, the semantics dynami- °

cally enforces a form of information hiding. It is now easy to see This paper introduces a new semantics for dependent contracts in
how a principals semantics supports a syntactic soundness proof forresponse to Greenberg et al. (2010)' s comparison of two alter-
abstract types. If the interface between the server component andhatives. Our work acknowledges the motivation behind gloky

contracts and use it to prove properties of Findler and Felleisen’s
higher-order contracts. Findler et al. (2004; 2006) propose an al-
ternative view, namely, “contracts as projections,” which relates
contracts to Scott (1976)'s denotation model of types. Gronski and
Flanagan (2007) relate Findler and Felleisen’s higher-order con-
tract to type casts. Their result motivates a type-oriented form of
extended static checking (Knowles et al. 2006), which Greenberg
et al. consider a manifest form of contract. Xu et al. (2009) use
Blume and McAllester’s ideas to develop static contract checking
for Haskell using symbolic evaluation. Hinze et al. (2006) and Chi-
til et al. (2003) both introduce contracts to Haskell but end up with
two different contract systems. The first performs eager contract
checking while the second is lazy. Degen et al. (2010) compare ea-
ger and lazy contract checking for lazy languages through a series



contract system and turns thex system into a choice for the pro-
grammer. Like thepicky system, the nevndy system protects ar-

R.

guments and results inside dependency assertions. In contrast to the

picky system, each contract is treated as an independent party withr.

its own obligations to meet.

Most importantly, we introduce a semantics that tracks value
ownership and contract obligations, and we formulate the first ever R.
correctness criterion for blame assignment. Our major theorems
show that theéndy system guarantees that contract monitors blame

only components that are in control while thieky system fails to
satisfy this intuitive correctness property for blame assignment.

R.

Our results suggest several changes to the implementation of

contracts in Racket. First, even though tae semantics is blame
correct, we now support thedy semantics for dependent contracts

to ensure that only guilty parties are blamed. Second, by instantiat-

ing the contract party, we obtain flavors of emly semantics that

support the entire variety of Racket contracts in use: server-side
contracts, client-side contracts, and contracts for ML-like modules M.

C.

M.

where signatures have an independent existence.Third, the notion

of well-formed contractual obligations is the basis of a DrRacket

tool that can remind module programmers of their obligations and J.

assumptions in complex, higher-order contracts.
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