
Correct Blame for Contracts
No More Scapegoating

Christos Dimoulas
Northeastern University

Robert Bruce Findler
Northwestern University

Cormac Flanagan
University of California, Santa Cruz

Matthias Felleisen
Northeastern University

Abstract

Behavioral software contracts supplement interface information
with logical assertions. A rigorous enforcement of contracts pro-
vides useful feedback to developers if it signals contract violations
as soon as they occur and if it assigns blame to violators with
precise explanations. Correct blame assignment gets programmers
started with the debugging process and can significantly decrease
the time needed to discover and fix bugs.

Sadly the literature on contracts lacks a framework for mak-
ing statements about the correctness of blame assignment and for
validating such statements. This paper fills the gap and uses the
framework to demonstrate how one of the proposed semantics for
higher-order contracts satisfies this criteria and another semantics
occasionally assigns blame to the wrong module.

Concretely, the paper applies the framework to thelax enforce-
ment of dependent higher-order contracts and thepicky one. A
higher-order dependent contract specifies constraints for the do-
main and range of higher-order functions and also relates argu-
ments and results in auxiliary assertions. The picky semantics en-
sures that the use of arguments in the auxiliary assertion satisfies
the domain contracts and the lax one does not. While the picky
semantics discovers more contract violations than the lax one, it
occasionally blames the wrong module. Hence the paper also in-
troduces a third semantics, dubbedindy, which fixes the problems
of the picky semantics without giving up its advantages.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Constraints

General Terms Languages, Design, Reliability

Keywords Higher-order Programming, Behavioral Contracts,
Blame Assignment

∗ Dimoulas and Felleisen were partly supported by AFOSR (FA9550-09-1-
0110) and NSF (CRI 0855140 & CCF 0540818), Findler by NSF (0846012)
and Flanagan by NSF (CNS-0905650).

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $5.00

1. Dependent Contracts: Lax or Picky?

Software engineers embrace behavioral1 software contracts for two
reasons. On one hand, contracts help explain and protect the inter-
face of components, e.g., modules, classes, procedures, functions.
On the other hand, programmers can use the familiar programming
language to specify contracts, which makes it easy to read, write,
and interpret them.

While both arguments obviously apply to contracts for first-
order languages, Findler and Felleisen (2002)’s introduction of con-
tracts for higher-order functions raises subtle, yet practically in-
teresting questions. One particular question concerns dependent
higher-order contracts—that is, contracts that can state assertions
relating the potentially higher-order argument to the potentially
higher-order result. Such contracts come with two distinct seman-
tics in the literature. The first is the so-calledlax semantics of Find-
ler and Felleisen, which uses the argument in the assertion without
monitoring the argument contract. In contrast, the second,pickyse-
mantics of Blume and McAllester (2006) monitors the argument
contract during the evaluation of the componentand during the
evaluation of the assertion.

;; for some natural number n and real δ
(->d ([f (-> real? real?)][ε real?])

(fp (-> real? real?))
#:post-cond
(for/and ([i (in-range 0 n)])

(define x (random-number))
(define slope

(/ (- (f (- x ε)) (f (+ x ε)))
(∗ 2 ε)))

(<= (abs (- slope (fp x))) δ)))

Figure 1. A higher-order, dependent contract

To make this discussion concrete, consider the dependent func-
tion contract in figure 1. This Racket fragment (formerly known as
PLT Scheme) (Flatt and PLT 2010) specifies a function that maps a
real-valued functionf (and a real numberε) to a real-valued func-
tion fp. The post-condition adds that for some numbern of num-
bersx, the slope off at x is within δ of the value offp at x. A
picky interpretation enforces thatf andfp are applied to real num-
bers and produce such numbers during the evaluation of the post-
condition; alax interpretation does not check these specifications.

Greenberg et al. (2010) compare these two forms of depen-
dent contracts (and relate contracts to Flanagan (2006)’s hybrid
types). They come to the conclusion thatpicky contracts signal
the same violations aslax contracts and possibly more. For exam-
ple,random-number may actually produce a complex number and

1 We use Beugnard et al. (1999)’s terminology.

Types τ ::= o | τ → τ
o ::= num | bool

Terms e ::= v | x | e e | µx:τ.e | e+e
| e−e | e∧e | e∨e | zero?(e)
| if e e e

Values v ::= 0 | 1 | −1 | . . . | λx:τ.e
| tt | ff

E.Contexts E ::= [] | E e | v E | E +e | v+E
| E−e | v−E | E∧e | v∧E
| E∨e | v∨E | zero?(E)
| if E e e

Figure 2. PCF syntax

the contract may thus misapplyf; thepicky interpretation catches
this potential problem, while thelax one doesn’t. Our experience
shows, however, that Greenberg et al. (2010)’s result doesn’t truly
settle the issue. When apickycontract signals a contract violation,
it may blame the wrong party.

In this paper, we develop a third notion of contract monitor-
ing and demonstrate that it satisfies an intuitive correctness crite-
rion. We start from the observation that Greenberg et al. are correct
in that apicky interpretation is important for dependent contracts.
If the “dependency assertion” violates a contract, the computation
may go wrong in all kinds of ways. The question is which party
the monitoring system should blame for such a problem. Thepicky
interpretation blames either the server or the client. Our new inter-
pretation, dubbedindy, treats the contract as an independent party
and blames it for problems wherepickyblames the wrong party.

To compare the three possible interpretations, we develop a uni-
fied semantic framework, based on a reduction semantics (Felleisen
et al. 2009) for a PCF-like language with contracts. The three inter-
pretations are expressed as three different, one-rule extensions that
specify the semantics of dependent contracts. We then enrich the
framework with the necessary information to track code ownership
and contract obligations, two novel technical notions that might
prove useful in other contexts. This enriched framework is used
to formalize the following correctness criterion: a contract system
should only blame a party ifthe party controls the flow or return of
values into the particular contract check that failed.

We can prove that our newindy interpretation satisfies this cri-
terion whilepicky fails to live up to it. Inspired by our theoretical
result, we equip Racket with anindy dependent contract combina-
tor, ->i, in addition with the existinglax combinator,->d.

Finally, we explain how to use the framework to implement
a tool that explains the responsibilities that contracts imposes.
Specifically, the tool teases out contract obligations from com-
plicated contracts and highlights them with colors. We have im-
plemented the tool and include some screenshots to illustrate its
usefulness.

2. Contract PCF
PCF (Plotkin 1977) is the starting point for our model; figure 2
summarizes the well-known syntactic domains. In this setting, a
program is a closed term. Also, we equip the language with a stan-
dard type system and a call-by-value reduction semantics, though
for lack of space, we omit the details (Plotkin 1975; Felleisen et al.
2009). Similarly, we use type annotations only when needed.

2.1 Adding Higher-Order Contracts

Adding plain higher-order contracts (Findler and Felleisen 2002)
to PCF is straightforward: see figure 3. First, PCF is enriched with

contracts, a contract type, and new terms for attaching contracts to
terms and raising contract violations. Second, we extend our type
system with rules for the extra terms. The resulting language is
CPCF, PCF with contracts.

CPCF is equipped with two kinds of contracts: flat contracts,
flat(e), and higher-order contracts,κ1 7→ κ2. The former are
predicates on base values. The latter combine a contract,κ1, on
the arguments of a function with a contract,κ2, on the result of the
function.

Contracts κ ::= flat(e) | κ 7→ κ
Types τ ::= . . . | con(τ)
Terms e ::= . . . | mon

l ,l
l (κ,e) | errorl

Γ ⊢ e : o→ bool
Γ ⊢ flat(e) : con(o)

Γ ⊢ κ1 : con(τ1) Γ ⊢ κ2 : con(τ2)

Γ ⊢ κ1 7→ κ2 : con(τ1 → τ2)

Γ ⊢ κ : con(τ) Γ ⊢ e : τ

Γ ⊢ mon
k,l
j (κ,e) : τ Γ ⊢ error

l : τ

Figure 3. CPCF: syntax and types

The most important new construct is the monitoring construct
mon

k,l
j (κ,e), which places a contractκ between a terme(the server)

and its context (the client). It demands that any value that flows
betweene and its context is monitored for conformance with the
contract. For a flat contract, the predicate is applied to the value;
for a higher-order contract, the pieces of the contract are attached
to the argument and range position of a wrapper function and the
contract is monitored as the function flows through the program.

A monitor comes with three labels:2 a pair of distinct blame
labelsk andl for the two parties to the contract and a contract label
j, for the origin of the contract. In source code, the contract labelj
usually differs fromk andl but under some circumstances it may be
equal to either of the two. Labels are drawn from the enumerable set
L. The labello is used as the label of the whole program;l̄ denotes a
subset ofL. When a contract fails a contract error,error

l , is raised
wherel denotes the party responsible for the violation.

E.Contexts E ::= . . . | mon
l ,l
l (κ,E)

E[mon
k,l
j (κ1 7→ κ2,v)] 7−→ E[λx.monk,l

j (κ2,v mon
l ,k
j (κ1,x))]

E[mon
k,l
j (flat(e),v)] 7−→ E[if (e v) v error

k]

E[errorl] 7−→ error
l

Figure 4. CPCF: semantics

The introduction of contracts requires small changes to the
reduction semantics. Figure 4 spells out the details, starting with
the slight modification of the set of evaluation contexts. The bottom
half shows the reduction rules for contract checking and blame
assignment, adapted from Findler and Felleisen (2002)’s original
semantics. A higher-order monitor is split into two parts:

1. a monitor for the argument with reversed blame labels;

2. a monitor for the result with the original blame labels.

2 In an implementation, these labels are synthesized from the program text.

A first-order monitor is transformed to anif statement that checks
whether the guarded value satisfies the contract’s predicate. If the
predicate is satisfied, the value is returned; otherwise a contract
error is signaled using the first blame label to pinpoint the guilty
party. Finally, when a contract error is raised the evaluation is
aborted and the contract error is returned as the final result.

2.2 Adding Dependent Contracts

In contrast to conventional contracts for first-order functions, the
higher-order contracts of the preceding section cannot express de-
pendencies between arguments and results. Therefore Findler and
Felleisen (2002) equip CPCF with a functional contract form that
parameterizes the result contract over the argument:

Contracts κ ::= . . . | κ d7→(λx.κ)

Findler and Felleisen (2002)’s reduction rule for thesedependent
contractscaptures this intention:

E[mon
k,l
j (κ1

d7→(λx.κ2),v)] 7−→l (lax)

E[λx.monk,l
j (κ2,v mon

l ,k
j (κ1,x))]

A dependent monitor acts like a higher-order monitor. The subtle
difference is that the parameterx of the proxy function captures
the free occurrences ofx in the contract’s postconditionκ2. As a
result, any argument to the proxy function is substituted forx in κ2
and is then used in the argument position, suitably wrapped with an
argument monitor.

Blume and McAllester (2006) observe that the preconditionκ1
is not enforced during the evaluation of postconditionκ2. This gap
opens the door for potential abuses of the argument inκ2, i.e., uses
that don’t conform toκ1. They rightly consider this a problem and,
in turn, they propose the following change to the rule:3

E[mon
k,l
j (κ1

d7→(λx.κ2),v)] 7−→p (picky)

E[λx.monk,l
j ({mon

l ,k
j (κ1,x)/x}κ2,v mon

l ,k
j (κ1,x))]

Specifically, every free occurrence ofx in κ2 is replaced with
mon

l ,k
j (κ1,x). Thus, any argument to the function remains protected

by κ1 even insideκ2. Note how the injected monitor carries the
same blame labels as the monitor for the argument in the body of
the function.4

Greenberg et al. (2010) compare thelax andpickycontract sys-
tems and conclude that the former signals strictly fewer contract
errors than apicky contract system. More precisely, for any pro-
gram, the following statements hold:

• neither contract system signals a contract error;

• both raise an error and blame the same party; or

• thepickycontract system discovers a contract violation and the
lax system does not raise a contract error.

Their results characterizes two different philosophies of contract
code. On the one hand, alax contract system treats contracts as
trusted code. Both parties have agreed to the contract and have pre-
sumably ensured that its evaluation doesn’t violate any invariants.
On the other hand, apicky contract system considers contracts to
contain potentially faulty code. To enforce the contracts within this
code, apickysystem protects values that flow into the contracts.

The problem with thepicky system is that it may blame the
server or the client for violations of a contractκ when neither of

3 In principle, this reduction rule should use alet to preserve a strict call-
by-value regime. But, due to the restrictions on our grammar forcontracts,
a straight substitution is technically correct and superior.
4 An alternative definition for thepickyrule is tonotswitch the blame labels
on the internal monitor. Doing so does not affect our results.

them can control the flow of values into the responsible monitor.
To illustrate this point and to provide an alternative, we introduce
a third contract monitoring system that considers contracts as inde-
pendent entities. When a dependent contract abuses a value accord-
ing to κ1, this revised system blames the contract for the violation.

Here is the reduction rule:

E[mon
k,l
j (κ1

d7→(λx.κ2),v)] 7−→i (indy)

E[λx.monk,l
j ({mon

l , j
j (κ1,x)/x}κ2,v mon

l ,k
j (κ1,x))]

The rule makes the contract responsible if it supplies an inappro-
priate value to a function argument during the evaluation of the
“dependency.” It accomplishes this switch of responsibility with
the creation of a new monitoring expression for the argument with
the contract label as the negative blame label. This new argument
expression is substituted into the range part of the contract.5

For an example, consider this monitor expression:

Π0 = mon
k,l
j (κ,λx.(—0—)) λx.(—1—)

where

κ = κ1
d7→(λ f .flat(λx. f (λx.(—2—)) > 0))

κ1 = (P? 7→ P?) d7→(λg.flat(λx.g 3 > 0))

Here the server is the functionλx.(—0—), while the client is the
context[] λx.(—1—). The mediating contractκ is a higher-order,
dependent contract whereP? checks for positive numbers, i.e.,
P?= flat(λx.x > 0) and> has the standard recursive definition.

The argumentλx.(—1—) flows to the postcondition ofκ and
replaces f . To protect it from potentially misbehaving contract
code, it is wrapped with a monitor that enforcesκ1:

mon
l , j
j (κ1,λx.(—1—)) .

Sinceκ1 is a dependent contract, too, the story continues. When
the postcondition is eventually checked, this proxy function for
λx.(—1—) is applied toλx.(—2—). In that case, the latter flows
to the postcondition ofκ1 and replacesg with another monitored
domain contract.

Each of the three rules gives rise to a semantics for CPCF. In
principal, we extend7−→ with 7−→m where m ∈ {l , p, i} to get
the three complete reduction relations. Since there is no danger
of ambiguity, we overload the symbol7−→m and use it for the
complete semantics.

2.3 Two More Flavors

The treatment of contracts as independent parties is compatible
with some practical uses in our Racket implementation. First, con-
tracts for Racket’s unit system are given as part of the signature.
Strickland and Felleisen (2009) show that linking such units may
necessitate blaming the signature itself. Our framework finally pro-
vides a semantic explanation for this phenomenon.

Second, in Racket’s first-order module system, contracts are
specified viaprovide/contract, i.e., in the export interface of
modules. This form combines identifiers with contracts and at-
taches contracts to these values as they flow across the module
boundary. When things go wrong with the dependencies in such

5 Morally, the monitor should not apply when the client is already labeled
with the contract label. In that case, the value flow is entirely within the
contract party and should strictly speaking not be monitored. To model this
behavior, we would have to add the side conditionl 6= j and add a second
rule:

E[monk,l
j (κ1

d7→(λx.κ2),v)] 7−→i E[λx.monk,l
j (κ2,v mon

l ,k
j (κ1,x))]

if l = j

Both variants ofindy satisfy the main theorem, which is why this paper
focuses on the theoretically simpler approach.

contracts, the monitoring system considers the contract a part of
the server module and blames the server module. We can express
this idea—dubbed+indy—in our framework with the small change
of using the module name as the contract label.

Finally, Typed Racket (Tobin-Hochstadt and Felleisen 2010,
2008) protects the interaction of typed and untyped modules with
contracts derived from types. Since one of the basic assumptions
of Typed Racket is that untyped modules stay unchanged, it imple-
ments this protection mechanism withrequire/contract. This
contract form guarantees that values from an untyped module sat-
isfy the specified contract. Put differently, the form protects the im-
port boundary. If a programmer attached dependencies to these con-
tracts, the code would have to be considered as a part of the client
module. We can capture this semantics, dubbed−indy, by using the
importing module’s name as the contract label.

2.4 Comparing Contract Systems

Equipped with three additional contract monitoring systems, we
can now explore their relationship. Consider this example:

Π1 = mon
k,l
∗ (κ,λ f . f 42) λx.x

whereκ = (P? 7→ P?) d7→(λ f .flat(λx. f 0 > −1))

The example uses the placeholder∗ for the contract label so that we
can include+indyand−indy—the two additional flavors ofindy—
in our comparisons. As needed, we replace∗ with k for +indy,
with l for −indy, and a distinct labelj for indy. Recall that the
reduction rules for thelax andpicky contract monitoring systems
do not employ the contract label.

The evaluation ofΠ1 yields the following results for the five
different contract monitoring systems:

program * monitoring system result
Π1 — lax 42
Π1 — picky error

k

Π1 j indy error
j

Π1 k +indy error
k

Π1 l −indy error
l

The table demonstrates several points. First, when a program yields
a plain value according to thelax system, thepickysystem may still
find a fault during contract checking and signal a violation. Second,
the picky system here blames partyk, the server component, for
a contract violation. The specific violation is thatf is applied to
0 in the dependency assertion, even though the domain contract
promises that the function is only applied to positive numbers.
Third, the indy system blames the contract itself, rather than the
server. Fourth, the system based on the+indy rule agrees with the
pickysystem, because it considers all code in a contract as part of
the server. Finally, the−indy system blames partyl ; after all, the
misapplication off is internal to the client, which chooses to defy
the restrictions on the domain off .

Another example shows thatpicky can also blame the client
when things go wrong with the contract:

Π2 = mon
k,l
∗ (κ,λ f . f λx.x) λg.g 42

whereκ = ((P? 7→ P?) d7→(λ f .flat(λx. f 0 > −1))) 7→ P?

Specifically, evaluatingΠ2 yields the following results:

program * monitoring system result
Π2 — lax 42
Π2 — picky error

l

Π2 j indy error
j

Π2 k +indy error
k

Π2 l −indy error
l

Again thelax system does not signal contract violations, while the
other four report one. Here theindy system blames the contract
itself rather than the client, which is blamed by thepickyand−indy
systems. The+indysystem blames the server.

Together the two examples demonstrate that none of our new
monitoring rules are logically related topicky if we take blame
into account. In short, the introduction of contracts as independent
parties calls for a comparison that takes into account why a contract
violation is detected and why the accused party is blamed.

Note, however, that theindy contract system signals an error
when thepickysystem signals an error and vice versa, though the
errors aren’t necessarily labeled with the same party.

PROPOSITION1. e ∗7−→i error
k iff e ∗7−→p error

k′

PROOF IDEA. By a straightforward bi-simulation argument. The
bi-simulation used for the proof relates two expressions that are
structurally identical except that their labels can differ.

3. Tracking Ownership and Obligations
While the preceding section illuminates the problems of thepicky
contract system and the difficulty of comparing contract systems
in general, it also implies a new way of thinking about contract
violations. The first major insight is that thepicky system may
blame either the server module or the client module when, in fact,
the contract itself is flawed. From here, it is obvious to inspect what
a contract monitoring system would do if contracts were a part of
the server, a part of the client, or a third party. Doing so produces
the second major insight, namely, that none of these alternatives
agrees with thepickysemantics.

Putting the two insights together implies that we need a seman-
tics that (1) for each party, keeps track of its contract obligations
and (2) for each value, accounts for its origin. Once a semantics
provides this additional information, we can check whether a con-
tract system ever blames a party for violating an obligation if the
party has no control over the value’s flow into the contract. In this
section, we equip CPCF’s semantics with ownership and obligation
information, which is maintained across reductions. In the next sec-
tion, we use this information to state a contract correctness property
and to measure how the various monitoring systems fare with re-
spect to this property.

3.1 Ownership . . .

To model an ownership relationship between parties and code, we
extend CPCF with a new construct that relates terms and values to
parties:6

Terms e ::= . . . | ‖e‖l

Values v ::= . . . | ‖v‖l

During reductions, terms and values come with a stack of own-
ers, reflecting transfers from one party to another. The notations

‖e‖
→
ln and ‖e‖

←
ln are short-hands for such stacks, abbreviating

‖ . . .‖e‖l1 . . .‖ln and‖ . . .‖e‖ln . . .‖l1, respectively. Ownershipl for
an expression means its result is attributed tol . In turn, a value
with an ownershipl originates from componentl or is affected by
a traversal through componentl .

3.2 . . . and Obligations

CPCF contracts consist of trees with flat contracts at the leafs.
Exploiting the analogy with function types, Findler and Felleisen
(2002) implicitly decompose these trees into obligations for servers

6 The inspiration ofownershipcomes from the work of Zdancewic et al.
(1999) onprincipals. For a comparison, see section 6.

(positive positions) and clients (negative positions). Their seman-
tics tracks this connection via labels; errors use them to pinpoint
contract violators.

Dimoulas and Felleisen use this idea for a static decomposition
of contracts into server and client obligations. They define two
functions from contracts to contracts that tease out the respective
obligations. The one for teasing out server obligations replaces flat
contracts in negative positions with⊤ = flat(λx.tt) and then
reconstructs the overall contract; analogously, the decomposition
map for teasing out client obligations replaces flat contracts in
positive positions with⊤. For instance the contract of theΠ2

example in section 2 yields these decompositions:

((P? 7→ P?) d7→(λ f .flat(λx. f 0 > −1))) 7→ P?

server ((⊤ 7→ P?) d7→(λ f .⊤)) 7→ P?
client ((P? 7→ ⊤) d7→(λ f .flat(λx. f 0 > −1))) 7→ ⊤

Decomposition implies that each flat contract imposes obliga-
tions on a specific component, i.e., party to a contract. Since one
and the same server may connect with many different clients and
sinceindy systems may use the contract itself as a component, it is
not just one party that is associated with a flat contract but many.
Hence we modify the syntax of contracts to statically associate flat
contracts and owners:

Contracts κ ::= ⌊flat(‖e‖l)⌋l̄ | κ 7→ κ | κ d7→(λx.κ)

In contrast with ownership, obligations come as sets of labelsl̄ ,
not vectors. After all, there is no need to order obligations or to
change them during an evaluation. Of course, a static attribute about
a dynamic obligation calls for a way to determine whether such
annotations are well-formed.

3.3 Well-formed Ownership and Obligations

Only some annotations make sense for a source program. Both
ownership and contract monitors specify boundaries and, at the
source level, these boundaries should coincide. We therefore intro-
duce a well-formedness judgment to enforce these conditions for
source programs. Before doing so, we present the simple typing
rules for the two new constructs:

Γ ⊢ e : o→ bool

Γ ⊢ ⌊flat(e)⌋l̄ : con(o)

Γ ⊢ e : τ
Γ ⊢ ‖e‖l : τ

Concerning ownership annotations, a CPCF source program
may contain those at only two places: in contract monitors and
in flat contracts. Since contract monitors establish a boundary be-
tween the client component and the server component, we demand
an ownership annotation on the server component and that a match
of these annotation with the positive label of the monitor. Con-
versely, the context of such an expression must belong to the client.
Finally, flat contracts must come with ownership labels consistent
with the surrounding monitors because they are turned into plain
code during the evaluation, and the semantics must track where
they originated from.

We express this constraint with the well-formedness relation
l ⊢ e, which says thatl “owns” e and checks thate is well-formed.
Equivalently,l is the owner for the context ofe. A closed expression
e is a well-formed program iflo ⊢ e wherelo is the label reserved
for the owner of the program.

Figure 5 defines most of this well-formedness judgment. For
terms that do not involve monitors and contracts the definition
is a structural judgment, and base values and variables are well-
formed under any owner. The actual key is the one for contract
monitor, which we present separately. According to our informal
description, a well-formed contract monitor is a boundary between

l ⊢ e

l ⊢ e1 l ⊢ e2

l ⊢ e1 e2

l ⊢ e
l ⊢ λx.e

l ⊢ e
l ⊢ µx.e

l ⊢ e1 l ⊢ e2 l ⊢ e3

l ⊢ if e1 e2 e3

l ⊢ e1

l ⊢ zero?(e1)

l ⊢ e1 l ⊢ e2

l ⊢ e1+e2

l ⊢ e1 l ⊢ e2

l ⊢ e1−e2

l ⊢ e1 l ⊢ e2

l ⊢ e1∧e2

l ⊢ e1 l ⊢ e2

l ⊢ e1∨e2

l ⊢ n l ⊢ tt l ⊢ ff l ⊢ x

Figure 5. Ownership coincides with contract monitors

a client and a server, implying this shape for the judgment:

l ⊢ mon
k,l
j (κ,‖e‖k)

It says that ifl owns the context andk is the blame label for the
server, then the blame label for the client should bel and the
wrapped expressione should come with an ownership annotation
that connects it tok. Next, e must be well-formed with respect to
its ownerk, because it may contain additional contract monitors.
But even with this antecedent, the well-formedness judgment is
incomplete. After all, the contractκ that governs the flow of values
between the server and the client contains code and this code must
be inspected. Furthermore, we must ensure that all flat contracts
within κ are obligations of the appropriate parties including the
contract monitor itself, which is represented by the contract labelj.

Putting everything together, we get this well-formedness rule
for contract monitors in source programs:

k ⊢ e {k};{l}; j ⊲ κ

l ⊢ mon
k,l
j (κ,‖e‖k)

It relies on a secondary well-formedness judgment for contracts, to
which we turn next.

l̄ ; k̄; j ⊲ κ1 k̄; l̄ ; j ⊲ κ2

k̄; l̄ ; j ⊲ κ1 7→ κ2

l̄ ; k̄∪{ j}; j ⊲ κ1 k̄; l̄ ; j ⊲ κ2

k̄; l̄ ; j ⊲ κ1
d7→(λx.κ2)

j ⊢ e

k̄; l̄ ; j ⊲ ⌊flat(‖e‖ j)⌋k̄

Figure 6. Obligations coincide with labels on monitors

Roughly speaking,̄k; l̄ ; j ⊲ κ says that contractκ is well-formed
for sets of positive and negative obligation labelsk̄ and l̄ , respec-
tively, and the ownerj of the contract monitor that attaches the
contract to a boundary. As the definition in figure 6 shows, the two
sets are swapped for the antecedents of higher-order (dependent)
contracts. For the negative positions in the precondition of depen-
dent contract labelj is added to indicate that these are also obli-
gations of the owner of the contract monitor. For flat contracts the

positive obligation labels must coincide with the obligation labels
of the contract.

Note that the well-formedness of flat contracts also enforces
an ownership annotation. Specifically, the owner of the context—
which, by assumption, is a contract monitoring construct labeled
with j—is also the owner of the predicate in the flat contract.
The antecedent of the rule recursively uses the well-formedness
judgments for ownership to ensure thate itself is well-formed.

3.4 Ownership and Obligations Semantics

The final change to the CPCF model concerns the reduction seman-
tics. Specifically, we change the reduction relations so that each re-
duction step keeps track of ownership rights and obligations. While
ownership and obligations do not affect the semantics per se, the
information is critical for characterizing the behavior of contract
monitoring systems, as we show in the next section.

Our first step is to equip the grammar of evaluation contexts
with a parameter that accounts for the owner of the hole. In the
parameterized grammar,El , of figure 7 the parameterl points to
the ownership or contract annotations that is closest to the hole of
the context.

E.Contexts El ::= Gl

Gl ::= Gl e | v Gl | Gl +e | v+Gl

| Gl −e | v−Gl | Gl ∧e | v∧Gl

| Gl ∨e | v∨Gl | zero?(Gl)

| if Gl e e | mon
l ,k
j (κ,F)

| mon
l ′,k
j (κ,Gl) | ‖F‖l | ‖Gl‖l ′

F ::= [] | F e | v F | F +e | v+F
| F −e | v−F | F ∧e | v∧F
| F ∨e | v∨F | zero?(F)
| if F e e

Figure 7. Parameterized evaluation contexts

Evaluation contexts are labeled with the labello—the label re-
served for the whole program—if they do not contain an owner-
ship or contract constructs on the path from the hole to the root:
Elo ::= F .

From now on, all reduction relations assume labeled evalua-
tion contexts. This implies that newly created values are always
assigned an owner. For the reduction relations concerning primi-
tive operators and conditionals, the changes are straightforward and
summarized in the top part of figure 8. For the rules concerning
monitors with flat and plain higher-order contracts and their blame
assignments, specified in the lower part of the same figure, we also
know that they do not need to manipulate any ownership annota-
tions. These reduction rules remain unchanged, modulo the labeled
evaluation contexts. The obligation annotation on flat contracts is
ignored. For details, see the bottom part of figure 8. We add one
last simple rule separately:

El [errork] 7−→m error
k

Since the act of signaling errors erases the surrounding evaluation
context, the format of this rule doesn’t fit the table. Note that the
context on the right is[]lo andl may not equallo.

The reduction ofβv redexes typically demands several re-
alignments with respect to ownership. To start with, the function
and the argument may belong to different parties. Furthermore,
the context brings together the operand and operator, and the se-
mantics should keep track of this responsibility. Together, the two
observations suggest the following relation:

El [‖λx.e‖
→
ln v] 7−→m El [‖{‖v‖l

←
ln/x}e‖

→
ln]

El [· · ·] 7−→m El [· · ·]

‖n1‖
→
k +‖n2‖

→
l · n wheren1 +n2 = n

‖n1‖
→
k −‖n2‖

→
l · n wheren1−n2 = n

zero?(‖0‖
→
l) · tt

zero?(‖n‖
→
k) · ff if n 6= 0

‖v1‖
→
k ∧‖v2‖

→
l · v wherev1∧v2 = v

‖v1‖
→
k ∨‖v2‖

→
l · v wherev1∨v2 = v

if ‖tt‖
→
l e1e2 · e1

if ‖ff‖
→
l e1e2 · e2

mon
k,l
j (κ1 7→ κ2,v) · λx.monk,l

j (κ2,v mon
l ,k
j (κ1,x))

mon
k,l
j (⌊flat(e)⌋l̄ ′ ,v) . if (e v) v error

k

Figure 8. Ownership and obligation propagation

The relation says that after tagging the value with the ownership
labell of the context, the value moves under the ownership annota-
tions of the function. The result is a value whose innermost owner
is l and whose outermost owner isl1 of

→

ln:

‖v‖l
←
ln

The properly annotated value is then substituted into the bodye of
the function for its parameterx. The result itself is owned by the
same owner as the function.

Put differently, it is best to view function application as a form
of communication between two components: the function and its
context. The context picks the argument, declares itself its owner,
and then passes it to the function. The function accepts the argu-
ment, adjusts its ownership, and integrates the result into its body.

Recursion is treated as a special form of function application:

El [µx.e] 7−→m El [{‖µx.e‖l /x}e]

The owner of the contextl and user of the recursive function
declares itself owner ofµx.e before substituting it in the body of
the recursive function.

All the complexity of tracking ownership is due to dependent
function contracts. Consider the simplest variant,lax:

E[mon
k,l
j (κ1

d7→(λx.κ2),v)] 7−→l (lax)

E[λy.monk,l
j ({y/x}κ2,v mon

l ,k
j (κ1,y))]

For emphasis, this version of the reduction rule usesy as the
parameter of the proxy function on the right hand side. The use
of y as parameter demands that we also replace all occurrences of
x in κ2 with y so that when the proxy function is applied, the actual
argument is substituted into the dependent range contract; without
the substitution, the reduction would create free variables.7

Rewriting the lax rule in this way reveals that it encodes a
masked function application. The problem is that, as discussed
above, a function application must add the label of the responsi-
ble owner at the bottom of the stack, and this label is not available
here. Instead, it is found at the flat leafs of the contract, which—
according to the static semantics of the preceding subsection—
must come with an ownership annotation. The solution is to intro-
duce the substitution function{e/cx}κ, which copies the ownership
label from flat contracts to the substituted term.

7 The valuev is unaffected by this change of parameters, because we assume
the usual hygiene condition (Barendregt 1984) for metavariables.

With this substitution function in place, it is easy to specify the
three variants for the reduction of dependent functional contracts:

El [· · ·] . . . El [· · ·]

mon
k,l
j (κ1

d7→(λx.κ2),v) 7−→l

λx.monk,l
j ({x/cx}κ2,v mon

l ,k
j (κ1,x)) (lax)

mon
k,l
j (κ1

d7→(λx.κ2),v) 7−→p

λx.monk,l
j ({mon

l ,k
j (κ1,x)/cx}κ2,v mon

l ,k
j (κ1,x)) (picky)

mon
k,l
j (κ1

d7→(λx.κ2),v) 7−→c

λx.monk,l
j ({mon

l , j
j (κ1,x)/cx}κ2,v mon

l ,k
j (κ1,x)) (indy)

We conclude this section with the definition of the auxiliary
substitution function:

{e/cx}⌊flat(‖e′‖l ′)⌋l̄ = ⌊flat({‖e‖l ′/x}‖e′‖l ′)⌋l̄

{e/cx}κ1 7→ κ2 = {e/cx}κ1 7→ {e/cx}κ2

{e/cx}κ1
d7→(λx.κ2) = {e/cx}κ1

d7→(λx.κ2)

{e/cx}κ1
d7→(λy.κ2) = {e/cx}κ1

d7→(λy.{e/cx}κ2)
wherex 6= y

The definition is total. The redefinition of the contract syntax en-
forces that flat contracts always have the annotations expected by
the domain of the substitution function. This also guarantees that
the reduction relations7−→m are well-defined.

4. Correct Blame
Using ownership and obligation annotations, we can formulate
what it means for a contract system to correctly blame a violator.
After all, the tracking of ownership and obligations is entirely
independent of the contract checking, and it is thus appropriate to
use tracking as an independent specification of contract monitoring.

Values should be originating from one of the parties of the
contract are checked only against flat pieces of the contract for
which the party is responsible. Now we can phrase this property
in terms of ownership and obligations: when the evaluation reaches
a redex that checks a flat contract on a value, then the owner of
the value must be the same as the positive party of the monitor and
in addition the positive party is included in the obligations of the
contract.

DEFINITION 2 (Blame Correctness).A contract system m isblame
correctif for all terms e0 such that lo ⊢ e0, and

e0
∗7−→m E†[mon

k,†
† (⌊flat(e1)⌋

l̄ ,v)]

v = ‖v1‖
k and k∈ l̄. The identity of the† labels is irrelevant.

The definition says that when the reduction of a well-formed
program reaches a state in which it checks a flat contract, then the
server (positive) label of the monitor and the ownership label on the
value must coincide and, furthermore, the set of obligations for the
flat contract must contain this label. Conversely, if these obligations
are not met, the monitor may blamek for a contract failure even
though the party had no control over the flow ofv into this monitor.

We can prove that theindycontract system and even thelax sys-
tem are blame correct, whilepicky isn’t. The proof of the positive
theorem directly follows from a subject reduction theorem for own-
ership annotations. This latter theorem requires a complex proof,
which is the subject of the second subsection. The third subsection
explains how to prove the two main theorems. To start with, how-
ever, we clarify that ownership annotations and obligations do are
orthogonal to semantics.

4.1 It is all about Information Propagation

The addition of ownership and obligation annotations does not
affect the behavior of any programs. Our revised semantics simply

propagates this information so that it can be used to characterize
execution states. In order to formulate this statement, we use the
symbol ∗7−→m

cpc f for the transitive-reflexive reduction relations of
section 2 and ∗7−→m

anno for the relations of section 3.

PROPOSITION3. The following statements hold for m∈ {l , p,c}.

1. Let e be a well-formed CPCF program: lo ⊢ e. Let ē be the
plain CPCF expression that is like e without annotations. If
e ∗7−→m

anno e′, thenē ∗7−→m
cpc f ē′.

2. Let ē be a plain CPCF program. There exists some labeled
CPCF program e such that lo ⊢ e. Furthermore, if̄e ∗7−→m

cpc f ē′,
then e ∗7−→m

anno e′.

PROOF IDEA. By a straightforward bi-simulation argument.
One consequence of this proposition is thatpickyandindysignal

still the same number of contract violations (proposition 1).

4.2 Subject Reduction

While l ⊢ e specifies when source programs are well-formed, the
reduction semantics creates many expressions that do not satisfy
these narrow constraints. For example, a well-formed program con-
tains only monitor terms of the formmonk,l

j (κ,‖e0‖
k). A reduction

sequence may contain programs with differently shaped monitors,
however. In particular due to the reductions of higher-order de-
pendent contracts, the monitored expressions may be applications,
mon

k,l
j (κ,‖e0‖

k er), or variables,monk,l
j (κ,x). Fortunately, such de-

viations are only temporary. In the case of the application the ar-
gumenter is always well-formed underl and, when it is absorbed
by ‖e0‖

k, the monitor expression is once again well-formed. In the
case of the free variable we can show thatx is always replaced with
a value of the form‖v0‖

k, which conforms to the standard form.
To formulate a subject reduction theorem, we must generalize

both the judgment for well-formed programs,l ⊢ e, and the one for
well-formed contracts,̄k; l̄ ; j ⊲ κ. First, we equip the two relations
with an environment that records the label of bound variables:

l ;Γ⊎{x : l} ⊢ e

l ;Γ ⊢ λx.e

l ;Γ\{x} ⊢ e

l ;Γ ⊢ µx.e

With environments, it becomes possible to check variable occur-
rences in monitor terms.

Second, we add a rule for checking expressions that already
have an owner:

k;Γ ⊢ e

l ;Γ ⊢ ‖e‖k

While these terms show up only within monitors in source pro-
grams, they flow into many positions during evaluations. Using this
new rule, we can check these cases, too.

All other rules—except those concerning monitors—propagate
the environment and otherwise check expressions in the same way
as the corresponding rules of the preceding section. The rule for
variables ignores the environment. Variables not in monitor terms
can be replaced with well-formed terms of any owner. For details,
see figure 9.

The purpose of the environment is to check expressions without
ownership annotations in monitor terms. Here is the key rule:

k;Γ ° e {k};{l}; j;Γ ⊲ κ

l ;Γ ⊢ mon
k,l
j (κ,e)

To check whether the wrapped expression is well-formed, it dele-
gates to the auxiliary relationk;Γ ° e. The contract is checked as
before, though, with an environment.

With k;Γ ° e, we can check the ordinary ownership terms but
also applications and variables as introduced during reductions. For

j;Γ ⊢ e

j;Γ ⊢ e1 j;Γ ⊢ e2

j;Γ ⊢ e1 e2

j;Γ ⊢ e1

j;Γ ⊢ zero?(e1)

j;Γ ⊢ error
k

j;Γ ⊢ e1 j;Γ ⊢ e2 j;Γ ⊢ e3

j;Γ ⊢ if e1 e2 e3

j;Γ ⊢ e1 j;Γ ⊢ e2

j;Γ ⊢ e1+e2

j;Γ ⊢ e1 j;Γ ⊢ e2

j;Γ ⊢ e1−e2

j;Γ ⊢ e1 j;Γ ⊢ e2

j;Γ ⊢ e1∧e2

j;Γ ⊢ e1 j;Γ ⊢ e2

j;Γ ⊢ e1∨e2

j;Γ ⊢ n j;Γ ⊢ tt j;Γ ⊢ ff j;Γ ⊢ x

k̄; l̄ ; j;Γ ⊲ κ

l̄ ; k̄; j;Γ ⊲ κ1 k̄; l̄ ; j;Γ ⊲ κ2

k̄; l̄ ; j;Γ ⊲ κ1 7→ κ2

l̄ ; k̄∪{ j}; j;Γ ⊲ κ1 k̄; l̄ ; j;Γ ⊲ κ2

k̄; l̄ ; j;Γ ⊲ κ1
d7→(λx.κ2)

j;Γ ⊢ e k̄⊆ k̄′

k̄; l̄ ; j;Γ ⊲ ⌊flat(‖e‖ j)⌋k̄′

Figure 9. Obligations coincide with labels on monitors (2)

function applications, the label serves as ownership label for the
operator and the operand, similar to the standard application rule:

k;Γ ⊢ e1 k;Γ ⊢ e2

k;Γ ° ‖e1‖
k e2

For free variables, the environment serves as the source of the
ownership label:

Γ(x) = k

k;Γ ° x

After all, the variable in this position is going to be replaced by a
value via a function application, and the substitution is going to use
a value with the specified label. Finally, for a guarded term with an
ownership annotation, it suffices to check if it is well-formed with
respect to the specified owner:

k;Γ ⊢ e

k;Γ ° ‖e‖k

A well-formed program in the sense of the preceding section is
a well-formed program in the sense of revised judgment, too.

PROPOSITION4. For all e and l, l⊢ e implies l;∅ ⊢ e.

PROOF IDEA. By straightforward induction on the height of the
derivationl ⊢ e.

A program that is well-formed according tol ;Γ ⊢ e reduces to
well-formed programs. This statement holds for a contract system
using thelax reduction rule as well as for or those usingindy.

THEOREM 5. Let e be a program such that lo;∅ ⊢ e. Then:

1. if e 7−→l e0, then lo;∅ ⊢ e0;
2. if e 7−→i e0, then lo;∅ ⊢ e0.

PROOF. (1) We proceed by case analysis on the reduction ofe:

• El [‖n1‖
→
k +‖n2‖

→
l] 7−→l El [n]. By assumptionlo;∅ ⊢ e, for

which lemma 6 implies thatl ;∅ ⊢ ‖n1‖
→
k +‖n2‖

→
l . We can use

the same label to checkn via the inference rules, i.e.,l ;∅ ⊢ n.
Hence,lo;∅ ⊢ El [n].

• The cases for other primitive operations are similar to the first.

• El [µx.e] 7−→l El [{‖µx.e‖l /x}e]: By assumption and lemma 6,
l ;∅ ⊢ µx.e. From lemma 7 we get thatl ;∅ ⊢ {‖µx.e‖l /x}eand,
in turn, lo;∅ ⊢ El [{‖µx.e‖l /x}e].

• El [‖λx.e0‖
→
k v] 7−→l El [‖{‖v‖l

←
k /x}e0‖

→
k]: Again by assump-

tion and lemma 6, we conclude thatl ;∅ ⊢ ‖λx.e0‖
→
k v and,

therefore,l ;∅ ⊢ ‖λx.e0‖
→
k andl ;∅ ⊢ v.

Next we distinguish two cases, depending on the length of
→

k.
First assume the vector is empty. In that case, the inference rules
imply l ;{x : l} ⊢ e0. Combining this judgment withl ;∅ ⊢ v,
we may conclude thatl ;∅ ⊢ {‖v‖l /x}e0 via lemma 8. Finally
from here it is easy to getlo;∅ ⊢ El [{‖v‖l /x}e0], the desired
conclusion.

Second, letk1 be the first element of
→

k. In that case, the infer-
ence rules implyk1;{x : k1} ⊢ e0. Sincel ;∅ ⊢ v still holds, we

conclude again via lemma 8 thatk1;∅ ⊢ {‖v‖l
←
k /x}e0. Sincek1

is the outermost element of
→

k, we finally get the desired conclu-

sion,lo;∅ ⊢ El [‖{‖v‖l
←
k /x}e0‖

→
k].

• El [mon
k,l
j (⌊flat(ec)⌋

l̄ ′ ,v)] 7−→l El [if (ec v) v error
k]: The

assumptions implyl ;∅ ⊢ mon
k,l
j (⌊flat(ec)⌋

l̄ ′ ,v) via lemma 6

and hence,ec = ‖e′c‖
j with j;∅ ⊢ e′c. Furthermore, the same

reasoning yieldsv = ‖v0‖
k andk;∅ ⊢ v0. Since the rules for

well-formed expressions implyl ;∅ ⊢ if (ec v) v error
k is

well-formed, the desired conclusion follows immediately.

• El [mon
k,l
j (κ1 7→ κ2,v)] 7−→l El [λx.monk,l

j (κ2,v mon
l ,k
j (κ1,x))]:

With the usual reasoning, we getl ;∅ ⊢ mon
k,l
j (κ1 7→ κ2,v),

v = ‖v0‖
k, andk;∅ ⊢ v0. The contract check yields two pieces

of knowledge:
{l};{k}; j;∅ ⊲ κ1

and
{k};{l}; j;∅ ⊲ κ2

From an additional application of the inference rules for well-
formedness we getk;{x : l}° v monl ,k

j (κ1,x) and, with the help

of lemma 9,l ;{x : l} ⊢ mon
k,l
j (κ2,v mon

l ,k
j (κ1,x)). Finally from

a last application of the inference rules for well-formedness we
get l ;∅ ⊢ λx.monk,l

j (κ2,v mon
l ,k
j (κ1,x)).

• Finally, lete= El [mon
k,l
j (κ1

d7→(λx.κ2),v)] and observe that

e 7−→l El [λx.monk,l
j ({x/cx}κ2,v mon

l ,k
j (κ1,x))].

Via lemma 6 we derivel ;∅ ⊢ mon
k,l
j (κ1

d7→(λx.κ2),v) . Thus,

v = ‖v‖k with k;∅ ⊢ v, but also

{l};{k, j}; j;∅ ⊲ κ1

and
{k};{l}; j;∅ ⊲ κ2 .

The rest of this argument uses the same strategy as the preced-
ing case, except that we use lemmas 10 and 14 to derive the key
result,l ;{x : l} ⊢ mon

k,l
j ({x/cx}κ2,v mon

l ,k
j (κ1,x)).

(2) The proof of part (2) differs from the proof of part (1)
only in the case for monitors with dependent contracts. Therefore,
let e = El [mon

k,l
j (κ1

d7→(λx.κ2),v)] and recall that the contraction
proceeds as follows:

e 7−→i El [λx.monk,l
j ({mon

l , j
j (κ1,x)/

cx}κ2,v mon
l ,k
j (κ1,x))].

Once again, we derivel ;∅ ⊢ mon
k,l
j (κ1

d7→(λx.κ2),v) via lemmas 6.

Hence,v = ‖v‖k with k;∅ ⊢ v, but also

{l};{k, j}; j;∅ ⊲ κ1
and

{k};{l}; j;∅ ⊲ κ2 .

By the well-formedness,k;{x : l} ° v monl ,k
j (κ1,x). Now, with the

help of lemmas 12 and 14, we can derive

l ;{x : l} ⊢ mon
k,l
j ({mon

l , j
j (κ1,x)/

cx}κ2,v mon
l ,k
j (κ1,x)) .

Thus we conclude the proof with another application of the infer-
ence rules for well-formedness.

The proofs of the central lemmas depend on a series of auxiliary
lemmas about the properties of well-formed terms and contracts,
substitution, and contract substitution.

LEMMA 6. If l ;∅ ⊢ Ek[e] then k;∅ ⊢ e.

PROOF IDEA. By induction on the size ofEk.

LEMMA 7. If l ;Γ⊢ e, k;Γ⊢ e0, and x6∈ dom(Γ), l;Γ⊢ {‖e0‖
k/x}e.

PROOF IDEA. By induction on the height ofl ;Γ ⊢ e.

LEMMA 8. If l ;Γ⊎{x : k} ⊢ e, v= ‖v0‖
k and k;Γ ⊢ v0 then

l ;Γ ⊢ {v/x}e.

PROOF IDEA. By induction on the height ofl ;Γ⊎{x : k} ⊢ e.

LEMMA 9. If l ;Γ ⊢ e and x/∈ dom(Γ), then l;Γ⊎{x : k} ⊢ e.

PROOF IDEA. By induction on the height ofl ;Γ ⊢ e.

LEMMA 10. If k̄; l̄ ; j;Γ ⊲ κ and x/∈ dom(Γ), then

k̄; l̄ ; j;Γ⊎{x : l ′} ⊲ {x/cx}κ .

PROOF IDEA. By induction on the height of̄k; l̄ ; l ;Γ ⊲ κ. For the
flat contracts case we employ lemma 11.

LEMMA 11. If l ;Γ ⊢ e and x/∈ dom(Γ), l;Γ⊎{x : k} ⊢ {‖x‖l /x}e.

PROOFIDEA. First, we generalize the lemma’s statement: Ifl ;Γ⊢ e
andx /∈ dom(Γ), l ;Γ⊎{x : k} ⊢ {‖x‖ j/x}e. Then we proceed by
induction on the height ofl ;Γ ⊢ e.

LEMMA 12. If k̄; l̄ ; j;Γ ⊲ κ and k;Γ⊎{x : l} ⊢ mon
k,l
j (κ′,x), with

x /∈ dom(Γ) thenk̄; l̄ ; j;Γ⊎{x : k} ⊲ {mon
k,l
j (κ′,x)/cx}κ

PROOF IDEA. By induction on the height of̄k; l̄ ; j;Γ ⊲ κ. For the
flat contracts case we employ lemma 13.

LEMMA 13. If l ;Γ ⊢ e, l;Γ⊎{x : k} ⊢ mon
k,l
j (κ′,x), & x /∈ dom(Γ),

then l;Γ⊎{x : k} ⊢ {‖mon
k,l
j (κ′,x)‖l /x}e

PROOF IDEA. First, we generalize the lemma’s statement as fol-
lows: If l ′;Γ ⊢ e, l ;Γ⊎{x : k} ⊢ mon

k,l
j (κ′,x), & x /∈ dom(Γ), then

l ′;Γ⊎{x : k} ⊢ {‖mon
k,l
j (κ′,x)‖l /x}e We proceed by induction on

the height ofl ′;Γ ⊢ e.

LEMMA 14. If k̄; l̄ ; j;Γ ⊲ κ, k̄′ ⊆ k̄ andl̄ ′ ⊆ l̄ thenk̄′; l̄ ′; j;Γ ⊲ κ.

PROOF IDEA. By induction on the height of̄k; l̄ ; j;Γ ⊲ κ.

4.3 Main Theorems

When a program is well-formed, its monitors obviously satisfy the
blame correctness criterion.

THEOREM 15. 7−→l and 7−→i are blame correct.

PROOF. This theorem is a straightforward consequence of theo-
rem 5. To wit, the subject reduction theorem says that a program
satisfies the subject including when its redex is a monitor term con-
taining a flat contract. From the proof of the subject reduction the-
orem, we know that the subject implies

l ;∅ ⊢ mon
k,l
j (⌊flat(ec)⌋

l̄ ′ ,‖v‖k)

The label on the context is the same as the client label by lemma 6
but we also need to know that the server labell is a member of
the contract’s obligations̄l ′. This has to be the case given that the
monitor term is well-formed. Note how the proof is independent of
the reduction semantics as long as it satisfies the subject reduction
property.

Thepickycontract system fails to satisfy an analogous theorem.

THEOREM 16. There exists a program e such that lo ⊢ e and

e ∗7−→p El [mon
k,l2
j (⌊flat(e)⌋l̄ ,‖v‖l1)]

but k 6= l1.

PROOF. Here is one such program wherek 6= lo:

Π3
l = mon

k,lo
l (κl ,‖λh1.h1 λx.5 (λg.g 1)‖k) (λ f .λh2.h2 λx.6)

The restriction on the labels intuitively corresponds to the compo-
sition of the two different modulesk andlo through the contractκl .
Note thatΠ3

l is a family of programs, one per labell . This label
is the label of the contract monitor and, consequently, must be the
owner of all embedded flat contracts. In principle,l could be the
label of the client, the server, or any other non-top-level (lo) label
but in the end, our choice must obey subject reduction.

While Π3
l performs no interesting computation, its contractκl

plays a critical role. To explain the contract though, it is best to start
with the type ofh1:

[(num→ num) →{([num→ num] → num) → num}] → num

The type tells us thath1 consumes a complex higher-order function
and produces a number. Instead of plain numbers, however, we
wish to deal with positive numbers only. We thus know thatκl must
have at least something like the following shape:

[(P?l 7→ P?l) 7→ {([P?l 7→ P?l] 7→ P?l) 7→ P?l}] 7→ P?l

Next we add two dependencies:

[(P?l 7→ P?l)
d7→(λ f .{([P?l 7→ P?l]

d7→(λg.P?l)) 7→ P?l})] 7→ P?l

The two key points to notice are: (1) in this contract,g is in
the scope off and (2) while f originates in the server (wrapped
expression),g originates in the client (context) and both flow into
the contract.

Equipped with this informal and approximate understanding,
we can now turn to the actual contract:

κl = ((⌊P?l ⌋
lo 7→ ⌊P?l ⌋

k) d7→(λ f .κ1
l)) 7→ ⌊P?l ⌋

k

κ1
l = ((⌊P?l ⌋

k 7→ ⌊P?l ⌋
lo) d7→(λg.κ2

l)) 7→ ⌊P?l ⌋
k

κ2
l = ⌊flat(‖λx.zero?(f 1−g 0)‖l)⌋k

P?l = flat(‖λx.x > 0‖l)

Note howκ2
l invokes f on a positive number andg on 0.

Now we show thatl must be set tolo in order to satisfy blame
correctness. First, note that for for alll ∈ L, lo ⊢ Π3

l if k 6= lo.

Second, the reduction ofΠ3
l eventually checks that 1 is greater than

0, i.e., that the post-condition contractκ2
l is satisfied:

Π3
l

∗7−→p Ek
0[mon

lo,k
l (⌊P?l ⌋

lo,‖‖1‖l‖l)]

In order for thepickysystem to satisfy the blame correctness con-
dition, l must be equal tolo, which means the term looks like this:

Ek
0[mon

lo,k
lo

(⌊P?lo⌋
lo,‖‖1‖lo‖lo)]

Unfortunately, the next few steps of the reduction process pro-
duces a state that is inconsistent with blame correctness. Specifi-
cally, κ2

l also checks thatg’s pre-condition holds for 0:

Ek
0[mon

lo,k
lo

(⌊P?lo⌋
lo,‖‖1‖lo‖lo)] ∗7−→p

Elo
1 [mon

k,lo
lo

(⌊P?lo⌋
lo,‖‖0‖lo‖lo)]

This last state, however, is inconsistent with the subject because
k cannot equallo. Indeed, the next few reduction steps result in a
failed check. The contract monitor blamesk, which isn’t the owner
lo of the value. Thepickysystem fails to assign blame properly.

In essence the proof of the theorem shows that there is no correct
strategy for associating (pieces of) contracts with components in
a picky semantics. No matter which labeling strategy we use, a
contract violation may blame a component that has no control over
the faulty value.

5. Consigliere
Our model introduces two concepts that are potentially useful for
practical programmers: obligations and ownership. According to
our judgments for well-formed contracts and expressions, acon-
tractual obligationis a static property of contract text. When con-
fronted with complex contracts, a programmer may benefit from
displaying such information in the IDE. In contrast,ownership in-
formationis a dynamically evolving property, and it is particularly
useful in a debugger for determining the creator and current owner
of values as they flow from one component to another.

To test the practicality of displaying obligation information, we
have implemented a tool that analyzes modules and contracts and
annotates them with obligation information. The tool is a plug-in
for DrRacket (Findler et al. 2002), our IDE for the Racket program-
ming language. In this section, we refer to the tool asconsigliere,
though in DrRacket, it is simply a part of theCheckSyntaxtool.

Theconsiglieretool operates on Racket modules in two differ-
ent modes. Inservermode,consigliereanalyzes the module from
the perspective of the supplier of services. It retrieves all the con-
tracts that are attached to exported identifiers and uses

• red to tag the server’s obligations;

• greento highlight the server’s assumptions, i.e., the parts of the
contract that the other party is responsible for; and

• yellowto signal that a part of the contract is both an assumption
and an obligation.

In client mode,consigliereanalyzes the module from the per-
spective of a consumer of services. Once it has the results, it pro-
ceeds as in server mode except that it uses red for the client’s obli-
gations and green for the client’s assumptions.

For a simple example, consider the module in figure 10. The
moduleprovide/contract specification lists one exported func-
tion, pick-one. According to its contract, the function consumes a
non-empty list of numbers and returns an number. A code inspec-
tion shows that the function actually returns a random element of
the given list.

The top of figure 10 shows the result of using the tool in
client mode. As expected, the non-empty list part of the contract

Figure 10. Obligations and assumptions forone-of

is colored in red, because any user ofpick-one is required to
use a non-empty list of numbers as an argument. Also, because
the client may assume thatpick-one is a function and not some
arbitrary value,consiglierecolors the-> contract constructor with
green. The reverse reasoning explains the coloring of the lower part
of figure 10, which shows the result of usingconsiglierein server
mode.

For a second example, consider aderiv function with the con-
tract from section 1. Its contract is significantly more complex than
pick-one, because it comes with two higher-order components and
a post-condition. Note that this contract uses the->i contract com-
binator, turning the contract provider into a party with obligations
and assumptions. Here the contract provider is the server module,
meaning->i is interpreted using the +indy semantics. Practically
speaking, the obligations and assumptions of the server also include
the obligations and assumptions of the contract provider.

The top screenshot of figure 11 shows the result of using the
tool in client mode. The color assignment roughly follows the
same contravariant traversal of pattern as the contract in figure 10.
When it comes to the#:post−cond code, however, the color of
the keyword indicates that the post-condition is an assumption for
the client just like the other post-condition of the contract.

The lower screenshot depicts the server’s obligations and as-
sumptions, which are more interesting than the client’s. The dif-
ference is due to the server’s dual role as both a service provider
and as the owner of the contract. Recall that the contract provider
is responsible for meeting the pre-conditions off and fp in the
post-condition, while the server may assume thatf andfp meet
their post-conditions. As a result, the colors used forf from the
server’s perspective coincide with those used in the client mode.
For fp, however, both parts are colored yellow because the obli-
gation of the server is the contract provider’s assumption and vice
versa. Since the server is both the server and the contract provider
party in this case, the user must be ready to treat the pre-condition
and post-condition offp either as an assumption or as an obligation
depending on the use.

Figure 11. Obligations and assumptions forderiv

6. Related Work
Provenance is the book-keeping of origin, context and history infor-
mation of data. It plays an important role for the correct and secure
behavior of large software and hardware systems (Simmhan et al.
2005; Bose and Frew 2005). The study of provenance from a for-
mal linguistic perspective is still at an initial stage (Cheney et al.
2009). Our notion of ownership is a means of keeping around some
origin and context information about program values. So it can be
viewed as a form of provenance. Also ownership can be used as
a basis for studying formal properties of this kind of provenance.
However our technique and its use to prove properties of contract
systems is not related to any provenance tracking technology.

Tracking information flow in a computer system is a specialized
kind of provenance. Secure information flow as pioneered by Den-
ning (1976) is the restriction of flow of data in a computer system
only between agents that have the appropriate level of clearance.
There are both software and hardware techniques for imposing se-
cure information flow. Our instrumentation of the dynamic seman-
tics resembles techniques used for proving sound type systems that
enforce secure information flow.

Zdancewic et al. (1999) introduce (program) principals as a
means to prove type abstraction properties related to information
fow with a syntactic proof technique. In a principal semantics, dif-
ferent principals “own” different components and exported values
carry the principal of their component of origin. Since the prin-
cipals semantics prevents reductions that involve values with dif-
ferent principals, a client component is obliged to use a server’s
functions on the server’s values. In short, the semantics dynami-
cally enforces a form of information hiding. It is now easy to see
how a principals semantics supports a syntactic soundness proof for
abstract types. If the interface between the server component and

the client employs abstract types and if the type system soundly
enforces type abstraction, stuck states become unreachable during
computation.

Although both principals and ownership annotations point to the
source of values and functions, the principal semantics differs sub-
stantially from our ownership semantics. Most importantly, prin-
cipals may change the evaluation of a program; ownership does
not. When a function from one server is applied to a value from a
client or a different server, the principal semantics is stuck. In con-
trast, ownership annotations are simply propagated in our reduction
rules; they do not affect computation. Ownership information is in-
stead used to formulate a criteria for determining the correctness of
blame assignment. We can imagine using an ownership semantics
to formulate syntactic soundness proofs for type abstraction, while
we do not see any advantages over the principals semantics for this
application.

As explained in the introduction, Greenberg et al. (2010) study
the full relationship between lax and picky contract systems on one
hand and manifest contract systems on the other. For the latter,
the type system propagates some of the contract constraints. While
Gronski and Flanagan (2007) established a tight relationship for a
world without dependent contracts, Greenberg et al. (2010) demon-
strate that the full picture is rather complex. In particular, they show
that as far as contract violations are concerned, manifest contracts
sit strictly between lax contracts and picky contracts.

In general, this work extends our decade-old linguistic investi-
gation of behavioral software contracts. Meyer (1988, 1991, 1992)
introduced software contracts via the design of the Eiffel program-
ming language and the creation of a contract-oriented software en-
gineering curriculum. Since then contracts have been used both
for extended static checking (Detlefs et al. 1998; Barnett et al.
2004) and runtime monitoring of higher-order programs (Findler
and Felleisen 2002). Blume and McAllester (2006) introducepicky
contract monitoring and explore a quotient model for higher-order
contracts and use it to prove properties of Findler and Felleisen’s
higher-order contracts. Findler et al. (2004; 2006) propose an al-
ternative view, namely, “contracts as projections,” which relates
contracts to Scott (1976)’s denotation model of types. Gronski and
Flanagan (2007) relate Findler and Felleisen’s higher-order con-
tract to type casts. Their result motivates a type-oriented form of
extended static checking (Knowles et al. 2006), which Greenberg
et al. consider a manifest form of contract. Xu et al. (2009) use
Blume and McAllester’s ideas to develop static contract checking
for Haskell using symbolic evaluation. Hinze et al. (2006) and Chi-
til et al. (2003) both introduce contracts to Haskell but end up with
two different contract systems. The first performs eager contract
checking while the second is lazy. Degen et al. (2010) compare ea-
ger and lazy contract checking for lazy languages through a series
of formal properties but do not reach a definite conclusion.

Finally, in the context of JML (Leavens et al. 1999), Rudich
et al. (2008) develop a method for proving the well-formedness of
pure-method specifications and they discuss how their technique
can benefit from automated theorem proving. The goal of this line
of research is significantly different than ours. It concerns extrac-
tion of proof obligations for the verification of JML contracts in-
ternal consistency. Unfortunately, JML contracts capture only first-
order properties, and it is unclear if their technique is applicable
in a higher-order world. Furthermore, their static semantics lacks a
formalization of the contract parties which plays an important role
in our work.

7. Conclusion

This paper introduces a new semantics for dependent contracts in
response to Greenberg et al. (2010)’ s comparison of two alter-
natives. Our work acknowledges the motivation behind thepicky

contract system and turns thelax system into a choice for the pro-
grammer. Like thepicky system, the newindy system protects ar-
guments and results inside dependency assertions. In contrast to the
pickysystem, each contract is treated as an independent party with
its own obligations to meet.

Most importantly, we introduce a semantics that tracks value
ownership and contract obligations, and we formulate the first ever
correctness criterion for blame assignment. Our major theorems
show that theindy system guarantees that contract monitors blame
only components that are in control while thepickysystem fails to
satisfy this intuitive correctness property for blame assignment.

Our results suggest several changes to the implementation of
contracts in Racket. First, even though thelax semantics is blame
correct, we now support theindysemantics for dependent contracts
to ensure that only guilty parties are blamed. Second, by instantiat-
ing the contract party, we obtain flavors of anindy semantics that
support the entire variety of Racket contracts in use: server-side
contracts, client-side contracts, and contracts for ML-like modules
where signatures have an independent existence.Third, the notion
of well-formed contractual obligations is the basis of a DrRacket
tool that can remind module programmers of their obligations and
assumptions in complex, higher-order contracts.

Acknowledgments

Thanks to Matthew Flatt for suggesting how to exploit Racket’s
macro system to implementconsigliere. We appreciate fruitful
discussions with Riccardo Pucella, Sam Tobin-Hochstadt, Stevie
Strickland and Carl Eastlund. We are grateful to the anonymous
reviewers of POPL 2011 for their useful feedback.

References
H. P. Barendregt.The Lambda Calculus – Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: an overview. InConstruction and Analysis of Safe, Secure and
Interoperable Smart Devices, pages 49–69, 2004.

A. Beugnard, J.-M. J́eźequel, N. Plouzeau, and D. Watkins. Making com-
ponents contract aware.IEEE Computer, 32(7):38–45, July 1999.

M. Blume and D. McAllester. Sound and complete models of contracts.
Journal of Functional Programming, 16(4-5):375–414, 2006.

R. Bose and J. Frew. Lineage retrieval for scientific data processing: a
survey.ACM Computing Survey (CSUR), 37(1):1–28, 2005.

J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren.Prove-
nance: a future history. InProceeding of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications: Onward! Session (OOPSLA Onward!), pages
957–964, 2009.

O. Chitil, D. McNeill, and C. Runciman. Lazy assertions. InRevised Papers
of the 15th International Workshop on Implementation of Functional
Languages (IFL), pages 1–19, 2003.

M. Degen, P. Thiemann, and S. Wehr. Eager and delayed contractmonitor-
ing for call-by-value and call-by-name evaluation.Journal of Logic and
Algebraic Programming, page to appear, 2010.

D. E. Denning. A lattice model of secure information flow.Communications
of the ACM, 19(5):236–243, 1976.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Technical Report 158, Compaq SRC Research Report,1998.

C. Dimoulas and M. Felleisen. On contract satisfaction in a higher-order
world. ACM Transactions on Programming Languages and Systems.
accepted (with revisions) for publication.

M. Felleisen, R. B. Findler, and M. Flatt.Semantics Engineering with PLT
Redex. MIT Press, 2009.

R. B. Findler and M. Blume. Contracts as pairs of projections.In Pro-
ceedings of the 8th International Symposium on Functional and Logic
Programming (FLOPS), pages 226–241, 2006.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
Proceedings of the 7th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 48–59, 2002.

R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environment
for Scheme.J. Funct. Program., 12(2):159–182, Mar. 2002.

R. B. Findler, M. Felleisen, and M. Blume. An investigation ofcontracts
as projections. Technical Report TR-2004-02, University of Chicago,
Computer Science Department, 2004.

C. Flanagan. Hybrid type checking. InProceedings of the 33th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 245–256, 2006.

M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1,
PLT Inc., 2010.http://racket-lang.org/tr1/.

M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Programming Languages (POPL), pages 353–364, 2010.

J. Gronski and C. Flanagan. Unifying hybrid types and contracts. InPro-
ceedings of the 8th Symposium on Trends in Functional Programming
(TFP), pages 54–69, 2007.

R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional program-
ming. In In Proceedings of the 8th International Symposium on Func-
tional and Logic Programming (FLOPS), pages 208–235, 2006.

K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and C. Flanagan.Sage:
Unified hybrid checking for first-class types, general refinement types,
and dynamic, 2006. URLhttp://sage.soe.ucsc.edu/.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed
design. In H. Kilov, B. Rumpe, and I. Simmonids, editors,Behavioral
Specifications of Businesses and Systems, pages 175–188. Kluwer Aca-
demic Publishers, 1999.

B. Meyer. Design by contract. InAdvances in Object-Oriented Software
Engineering, pages 1–50. Prentice Hall, 1991.

B. Meyer.Eiffel: The Language. Prentice Hall, 1992.

B. Meyer.Object-oriented Software Construction. Prentice Hall, 1988.

G. D. Plotkin. Call-by-name, call-by-value, and theλ-calculus.Theoretical
Computer Science, 1(2):125–159, 1975.

G. D. Plotkin. LCF considered as a programming language.Theoretical
Computer Science, 5(3):223–255, 1977.

A. Rudich, A. Darvas, and P. M̈uller. Checking well-formedness of pure-
method specifications. InProceedings of the 15th International Sympo-
sium on Formal Methods (FM), pages 68–83, 2008.

D. S. Scott. Data types as lattices.SIAM Journal of Computing, 5(3):522–
587, 1976.

Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in
e-science.ACM SIGMOD Record, 34(3):31–36, 2005.

T. S. Strickland and M. Felleisen. Contracts for first-classmodules. In
Proceedings of the 5th Symposium on Dynamic Languages (DLS), pages
27–38. ACM, 2009.

S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages.
In Proceedings of the 15th ACM SIGPLAN Internation Conferenceon
Functional Programming (ICFP), pages 117–128, 2010.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of
Typed Scheme. InProceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on the Pronciples of Programming Languages
(POPL), pages 395–407, 2008.

D. Xu, S. Peyton Jones, and K. Claessen. Static contract checking for
Haskell. InProceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Programming Languages (POPL), pages 41–52, 2009.

S. Zdancewic, D. Grossman, and G. Morrisett. Principals in programming
languages: A syntactic proof technique. InProceedings of the 4th
ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 197–207, 1999.

