
Complete Monitors for Behavioral Contracts�

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen

Northeastern University, Boston, Massachusetts, USA
{chrdimo,samth,matthias}@ccs.neu.edu

Abstract. A behavioral contract in a higher-order language may invoke meth-
ods of unknown objects. Although this expressive power allows programmers to
formulate sophisticated contracts, it also poses a problem for language designers.
Indeed, two distinct semantics have emerged for such method calls, dubbed lax
and picky. While lax fails to protect components in certain scenarios, picky may
blame an uninvolved party for a contract violation.

In this paper, we present complete monitoring as the fundamental correctness
criterion for contract systems. It demands correct blame assignment as well as
complete monitoring of all channels of communication between components.
According to this criterion, lax and picky are indeed incorrect ways to monitor
contracts. A third semantics, dubbed indy, emerges as the only correct variant.

Keywords: higher-order programming, behavioral contracts, contract checking.

1 Blame Correctness Is Not Enough

Programmers embrace Eiffel-style contracts [7] because they can write them in the
language itself and they understand them as executable boolean expressions. Conven-
tionally, programmers use contracts to supplement method signatures with relatively
simple conditions: a non-empty list expected here; a positive number promised there; a
field whose value is always a string of a specific length. They also understand that the
contract system checks these conditions when a method is called and/or when a call
returns. If the condition evaluates to false, it is either the method’s or the caller’s fault.

In a higher-order contract system [4], such as the one for Racket [5], programmers
can also specify conditions on functions and objects. Here is an example:

;; contract for the derivative function
;; for some natural number n and reals δ, ε:
(->d ([f (0<real<1? . -> . 0<real<1?)])

(fp (0<real<1? . -> . real?))
#:post-cond
(for/and ([i (in-range 0 n)])
(define x (random-number))
(define slope (/ (- (f (- x ε)) (f (+ x ε))) (∗ 2 ε)))
(<= (abs (- slope (fp x))) δ)))

� Supported in part by AFOSR grant FA9550-09-1-0110 and the DARPA CRASH program.

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 211–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

212 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

It specifies a computational differentiation operator d/dx for functions on the unit in-
terval. The specification promises to map a function f to a function fp that computes a
number close to the slope of f at x.

Due to Rice’s theorem, it is impossible to check such contracts directly. Instead con-
tracted functions are wrapped in a monitor that checks the promised property every time
it is used during the remainder of the computation. Since such a use may take place after
the function returns in a third-party component, the naive understanding of first-order
contracts and blame assignment does not apply here.

Thus higher-order values inject several new elements into the realm of contracts.
First, it is now important to explicitly think of components as contract parties. These
parties agree on monitoring properties for values that flow back and forth across com-
ponent boundaries. Second, blame assignment requires tracking of contracts and parties
because the producer is not necessarily the last function called. In the above example,
d/dx returns a higher-order value with the requirement to call it on reals between 0 and
1, but a call involving some negative real may take place much later. Third, contracts
are no longer predicates on flat values but may involve calls to unknown functions. For
instance, the post-condition for d/dx tests whether the result fp satisfies the desired
“slope property” for f on some randomly chosen numbers.

Calls to unknown functions pose a challenge for contract designers. To this day it
is unclear how a correct contract system should deal with such calls. Take a second
look at the above example. Its contract uses random-number, which, as it turns out,
may produce complex numbers in Racket. Depending on the semantics of contracts,
the example behaves in one of three ways:

1. Findler and Felleisen [4] consider contracts a part of the specification and thus
“correct by definition.” According to their lax semantics, the post condition passes
the random number to f and fp. If these functions handle complex numbers, fine;
otherwise, execution fails in an unpredictable manner.

2. Blume and McAllester [1] propose an alternative picky semantics. According to
their proposal, the contracts for f and fp prohibits their application to complex
numbers, and their reuse catches contract-internal problems [6].

3. In prior work [3], we show, however, that picky may blame the wrong party for a
contract violations and may thus point programmers in the wrong direction in their
search for bugs. A variant of picky, dubbed indy, is shown to be blame correct.

Sadly, blame correctness cannot differentiate between lax and indy. Since lax may trig-
ger crashes in the presence of precise specifications, it is clearly not correct. Worse,
blame correctness admits contract systems that ignore contracts completely.

We conjecture that a programmer would like the guarantee that the values produced
by their components are never used in violation to the interface specifications and, con-
versely, that their components are not handed values that do not live up to the promises
of the specifications. In response, we present a generalization of blame correctness,
called complete monitoring. We take the ownership-and-obligation framework of blame
correctness and extend it so that a component may not manipulate values that it does
not create or that have not been transferred from other components via a—possibly
vacuous—contract. In short, a complete contract system monitors all value flows across
component boundaries.

Complete Monitors for Contracts 213

The next section introduces our technical framework, which we exploit to to present
informally complete monitors in section 3 and subsequently define them formally in
section 4. This latter section also presents our main result, the complete monitoring
theorem. Sections 5 and 6 illustrate the additional benefits of complete monitors with
two examples. Finally, the last section discusses related work.

2 Beyond Blame Correctness

CPCF [2,3] extends a conventional, typed and higher-order functional language, with
contracts for base values and first-class functions:

Types τ = o | τ→τ | con(τ)
o = I | B

Contracts κ = flat(e) | κ �→ κ | κ d�→(λx.κ)
Terms e = v | x | e e | µx:τ.e | e+e | e−e | e∧e | e∨e

| zero?(e) | if e e e | monl,l
l (κ,e)

Values v = c | λx:τ.e
Base Values c = 0 | 1 | − 1 | . . . | tt | ff

Contracts for flat values, flat(e), employ predicates that may use the full expressive
power of CPCF. Contracts for functions, κ1 �→ κ2, consist of a pre-condition contract κ1

for the argument to the function and a post-condition contract κ2 for its result. Depen-
dent function contracts, κ1

d�→(λx.κ2), bind the argument to the function to x and make
it visible in κ2. They thus express how the result may depend on the argument.

A contract κ can be attached to a term e using the monitor construct monk,l
j (κ,e).

Monitors carry three labels: k, l and j.1 Labels are identifiers for the high-level com-
ponents that make up a program. A monitor splits a program into three components,
dubbed the contract parties: a server named k, a client named l, and a contract named j,
which may coincide with k or l in a programming language. Intuitively a monitor makes
sure that any interaction between the server module and the client module is in accor-
dance with the contract. In CPCF, e plays the role of the server module and the context
of monk,l

j (κ,e) the role of the client. The contract κ is what they agree on concerning
the exchange of values.

Component labels play an important role in case a contract failure is detected dur-
ing contract checking. They are used to pinpoint the contract violator. CPCF syntax is
extended with intermediate terms for contract checking:

e = ... | errorl
l | checkl

l(e,v)

Findler and Felleisen [4] show that the above constructs are sufficient to build a seman-
tics for checking higher-order contracts. However, since the goal of our investigation is
to verify that the contract system obliges values to meet their specifications as they flow
from one component into another, we add the idea of ownership for terms and values
to the semantics. We use it to keep track of value migration. Ownership of a term e

1 The labels correspond to source locations or component names in an implementation.

214 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

by a component l is expressed with the ownership annotation |e|l . Ownership captures
formally that a component owns a value (term) if it can affect or manipulate its flow. In
a reduction semantics, the flow of values is modeled via substitution (βv). Hence, our
semantics must attach a new ownership annotation to every value that is substituted for
a variable. In CPCF, this means we must treat every function application as a potential
boundary crossing. Thus when an annotated value occurs in a function body, its occur-
rence signals the presence of a foreign value and marks a boundary. In sum, the initial
owner of a value is its creator but as the value flows through function application, it
accumulates more owners, one for each boundary it crosses with the top-most to be the
most recent owner.

In addition to ownership, we ensure correct blame assignment by keeping track not
only of the owner of each value but also the responsible party for the specifications that
are checked against a value upon a component boundary crossing. The obligations of
a contract party l are the set of ground-type sub-contracts of a contract κ for which l
is responsible. Intuitively, the contract system should not blame a party if the party’s
obligations are satisfied. For a function contract we know that the client is responsi-
ble for the pre-condition and the server responsible for the post-condition. For any flat
contract, the server is responsible. Generalizing this approach gives us a way to deter-
mine the responsible parties for each flat sub-contract of a given contract using type
theory terminology: the server is responsible for all flat contracts in positive positions
and the client is responsible for all flat contracts in negative positions. CPCF turns obli-
gations into explicit annotations on flat contracts. Thus �flat(e)	l̄ denotes that the set
of parties l̄ is responsible for the given flat contract.

Here is CPCF with the annotations for ownership and obligations:

Contracts κ = �flat(e)	l̄ | κ �→ κ | κ d�→(λx.κ)
Terms e = ... | |e|l
Values v = ... | |v|l

With obligations and ownership we reify dynamic boundary crossings via syntactic an-
notations and the specifications that need to be checked. If this independent instrumen-
tation coincides in the source code with the monitors and blame labels that the contract
system utilizes and the reductions preserve this property, we know that the contract
system monitors all communication between components.

Synchronization of ownership and monitors means that the owner of the context of
a monitor is the same as the label at the client position of the monitor and the owner of
the guarded term is the same as the label in the server position of the monitor. Due to
the presence of run-time terms, there is one more case where the labels of the contract
system have to agree with ownership. CPCF uses checkk

j(e,v) to check flat contracts.
This implies that the checking code e is owned by the contract party j. We consider this
construct as another point where values change components and the owner of e must be
the contract party.

Synchronization of obligations and blame labels means that the label at the server
position of a monitor is a member of the obligations annotations on positive ground-
type subcontracts of the monitor’s contract and similarly for the client label and negative
ground-type subcontracts.

Complete Monitors for Contracts 215

In principle, ownership and obligations could be just observers of the reduction se-
quence that do not affect evaluation. However, to prove that the contract system allows
values to migrate from one component to another only when they are under its control,
we use ownership to impose restrictions on value flows between components. We en-
force a single owner policy that disallows mixing terms with different owners. Instead
our reduction relation ensures that foreign values within a component are wrapped in
contract checks or that the contract system has completely verified all (flat) specifica-
tions during the absorption of a foreign value into a component.

Reduction Rules El [· · ·] m→ El [· · ·]
||n1||l + ||n2||l . n where n1 +n2 = n
||n1||l −||n2||l . n where n1 −n2 = n
zero?(||0||l) . tt

zero?(||n||l) . ff if n
= 0
||v1||l ∧||v2||l . v where v1 ∧ v2 = v
||v1||l ∨||v2||l . v where v1 ∨ v2 = v
if ||tt||l e1 e2 . e1
if ||ff||l e1 e2 . e2

||λx.e||l ||v||l . |{|v|l/x}e|l
µx.e . {|µx.e|l/x}e

mon
k,l
j (κ1 �→ κ2,v) . λx.monk,l

j (κ2,v mon
l,k
j (κ1,x))

mon
k,l
j (�flat(e)	l̄′ , ||c||l′) . checkk

j(e c,c)

checkk
j(||tt|| j,v) . v

checkk
j(||ff|| j,v) . errork

j

El [errork
j]

m→ errork
j

Eval. Contexts El = El e | v El | El +e | v+El | El −e | v−El | El ∧e
| v∧El | El ∨e | v∨El | zero?(El) | if El e e

| mon
l,k
j (κ,Elo) | monl′,k

j (κ,El) | |Elo |l | |El |l′
| checkk

l (E
lo ,v) | checkk

l′(E
l ,v)

Elo = [] | Elo e | v Elo | Elo +e | v+Elo | Elo −e
| v−Elo | Elo ∧e | v∧Elo | Elo ∨e | v∨Elo

| zero?(Elo) | if Elo e e

Fig. 1. CPCF semantics enforces the single-owner policy

To implement this policy, we require all terms in a redex to have a single owner. Put
differently, our semantics does not perform operations on values that have ownership
annotations with different owners. We use ||e||l to denote that e may have no ownership
annotations but if it has one then the owner label is l for all such annotations:

||e||l = |...|e|l ...|l where for all labels k and terms e′, e
= |e′|k.

216 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

The single owner policy becomes critical for defining the reduction semantics for CPCF.
A component should be able to perform an operation if and only if it is the owner of all
the arguments of the redex. This implies that either the arguments inherit their implicit
ownership annotation from the context or that they come with an explicit ownership
annotation that matches with the owner of the context. We model implicit ownership
with labeled evaluation contexts; see figure 1.

The reduction relation of figure 1 implements the single owner policy by reducing
redexes only if the label of the hole matches the owner of the pieces of the redex. For
instance the rule for function application is more restrictive than the original rule for
CPCF [3]. The latter allows the function and the argument to have different and multiple
owners. In contrast, the new rule fires only if l, the owner of the component, is also the
only owner of the function and the argument. The argument is substituted in the body of
the function, annotated with the common owner so that it keeps its ownership annotation
no matter where it lands in the function body. The context absorbs the body of the
function, which thus obtains the context’s ownership annotation. Since the function and
the context have the same owner, however, the body of the function retains its original
owner. This rationale explains all the rules, including the rules for monitors where the
client label must be the same as the label of the context. When the reduction rules
create new values, as in the case of primitives operators, the context becomes directly
responsible for the new value and thus no additional ownership annotation is necessary.
Finally, the checkk

j(e,v) rules enable executing checking code e that originates from
j inside l, the owner of the hole. Doing so ensures that the check term is treated as
a component boundary and the result of e must be owned by j in order for check to
reduce. If the check fails, and an error is raised and blames the initial owner k of v.

Values retain their owner as long as they move inside the same component. They
change owner only when flat contract checking succeeds. When the check succeeds,
the contract system gives permission to the surrounding component l to absorb c, and
c changes hands between k and l.

The reduction rules concerning monitors for dependent function contracts come in
three flavors: l(ax), p(icky) and i(indy). Here are their formal definitions:

El [monk,l
j (κ1

d�→(λx.κ2),v)]
l→El [λx.monk,l

j ({x/cx}κ2,v mon
l,k
j (κ1,x))]

El [monk,l
j (κ1

d�→(λx.κ2),v)]
p→El [λx.monk,l

j ({monl,k
j (κ1,x)/cx}κ2,v mon

l,k
j (κ1,x))]

El [monk,l
j (κ1

d�→(λx.κ2),v)]
i→El [λx.monk,l

j ({monl, j
j (κ1,x)/cx}κ2,v mon

l,k
j (κ1,x))]

The intuition behind these rules is explained at the end of the section.
The reductions employ a special function {e/cx}κ2 for substituting a term e for x in

a post-condition κ2 of a dependent contract:

{e/cx}�flat(|e′|l′)	l̄ = �flat({|e|l′/x}|e′|l′)	l̄

{e/cx}(κ1 �→ κ2) = {e/cx}κ1 �→ {e/cx}κ2

{e/cx}(κ1
d�→(λx.κ2)) = {e/cx}κ1

d�→(λx.κ2)

{e/cx}(κ1
d�→ (λy.κ2)) = {e/cx}κ1

d�→(λy.{e/cx}κ2) where x
= y

Complete Monitors for Contracts 217

The substitution in the post-condition implements a hidden application of λx.κ2 to v.
The special substitution function makes sure that the argument is wrapped with an own-
ership annotation for the owner of λx.κ2, which is also the owner of the contract [3].

Γ; l � e

Γ; l � c

Γ; l � e1 Γ; l � e2

Γ; l � e1 e2

Γ; l � e1 Γ; l � e2 Γ; l � e3

Γ; l � if e1 e2 e3

Γ; l � e1

Γ; l � zero?(e1)

Γ; l � e1 Γ; l � e2

Γ; l � e1+e2

Γ; l � e1 Γ; l � e2

Γ; l � e1−e2

Γ; l � e1 Γ; l � e2

Γ; l � e1∧e2

Γ; l � e1 Γ; l � e2

Γ; l � e1∨e2

Γ�{x : l}; l � e

Γ; l � λx.e

Γ�{x : l}; l � e

Γ; l � µx.e
Γ; l � e

Γ; l � |e|l
Γ(x) = l

Γ; l � x

Γ;k � e k
= l
Γ;{k};{l}; j � κ

Γ; l � mon
k,l
j (κ, |e|k)

Fig. 2. Well-formed source programs

As mentioned, ownership annotations and obligations may not appear at arbitrary
places in a program. To ensure the correctness of these annotations, we use a static
well-formedness judgment, Γ; l � e, for source programs e. The interesting cases in
source syntax are the ones concerning variables, variable bindings, ownership annota-
tions and contract monitors, and they appear at the bottom of figure 2. The occurrence
of a free variable in a term is one of the ways foreign values can flow into a component.
The environment Γ keeps track of the origin of values bound to variables. It records the
owner of the spot where a binder for a variable is introduced. To ensure that components
are free of foreign terms we force the single owner policy, i.e., ownership annotations
inside a component must carry the same owner label as the component. We can em-
bed foreign code in a component under the protection of the contract system, that is, a
component can contain foreign terms as long as they are wrapped in a monitor anno-
tation and they are explicitly marked as foreign terms with an appropriate ownership
annotation. In such cases the client label on the monitor must match the owner of the
surrounding component and the server label must coincide with the explicit ownership
annotation on the guarded term. Note that this also allows the embedding of free vari-
ables as long as they are monitored. Furthermore, the rule forces the client and blame
labels on monitors in the source code to be different to emphasize that monitors are
used on the boundaries between different components in the source code.

The rule for well-formed monitors requires that the contract is well-formed, i.e.,
that obligations inside of a contract are properly attributed. Figure 3 shows the rules
for well-formed contracts. The judgment Γ; k̄; l̄; j � κ has three label-related parts. The
first, k̄, includes the set of parties responsible for the flat contracts on positive positions
in κ. The second, l̄, corresponds to the parties responsible for the negative positions.
Finally, j is the owner of the contract code. The initial values of these labels are drawn

218 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

Γ; k̄; l̄; j � κ

Γ; j � e

Γ; k̄; l̄; j � �flat(|e| j)	k̄

Γ; l̄; k̄; j � κ1
Γ; k̄; l̄; j � κ2

Γ; k̄; l̄; j � κ1 �→ κ2

Γ; l̄; k̄∪{ j}; j � κ1
Γ�{x : j}; k̄; l̄; j � κ2

Γ; k̄; l̄; j � κ1
d�→(λx.κ2)

Fig. 3. Well-formed contracts

from the monitor expression, and they are propagated by a structural traversal of κ
to its pieces. The server label is initially the only member of the labels responsible
for the positive pieces of the contracts while the client label is the only member of
the parties responsible for the negative pieces. Also the contract label of the monitor
is appointed as owner party of the contract’s code. In the case of function contracts,
the set of responsible parties are reversed in the pre-condition [4] and for dependent
function contracts the contract party j is added to the set of labels responsible for the
pre-condition. In the latter case, we record in the environment the variable x that binds
the argument in the post-condition with the contract party as its owner. After all, x is a
binder that belongs to the contract’s code. Finally, for flat contracts the rules require that
the obligation annotations on the contract coincide with the set of parties responsible
for the positive pieces of the contract and that the party j is explicitly marked as the
owner of the contract code.

Note: This semantics of CPCF differs from the semantics of our previous work. The
main deviation is the introduction of the single owner policy. It helps us prove complete
monitoring, a deep notion of correctness for a contract system that subsumes blame
correctness.

In our previous result, ownership and obligations are used to verify that whenever a
contract error is raised, its witness value is owned by the party that is blamed and that
the party failed to satisfy one of its obligations. The picky semantics fails to live up to
this standard [3]. The problem with picky is due to the way the semantics decorates the
monitor that protects the argument in the post-condition of a dependent contract on a
function f . More specifically, the monitor holds the server of f responsible for invalid
uses of the argument inside the contract despite the fact that the server does not have
control over the flow of values in the contract.

The indy semantics eliminates this shortcoming of picky. It treats the contract as a
separate party that is responsible for the use of values that flow in the contract. Thus
the semantics injects monitors that protect the argument and hold the contract itself
responsible for any use of the argument in the post-condition of a dependent contract.
The obligations of the contract party are the flat contracts in negative position of the pre-
conditions of dependent contracts, which also explains why we use sets of labels for the
obligation annotations. A flat contract can be part of the obligations of the contract party
and, also, of the client or the server.

Our blame correctness criterion, though, is not strong enough to decide whether lax
is preferable to indy, or vice versa, as both of them are blame correct. In fact it ad-
mits contract systems that permit uncontrolled flow of values between components. The

Complete Monitors for Contracts 219

problem lies with the way the original semantics of CPCF treats ownership. It allows
for components to mix freely and for values to acquire multiple owners as they cross
boundaries. For instance a term |e|l can show up without any restrictions as a sub-term
of a term |e′|k. Similarly a value |...|v|l1 ...|ln comes with multiple owners as the annota-
tions keep track of the whole history of migrations from one module to another. These
annotations do not affect evaluation, however, because it ignores them and proceeds as
if they are not there.

Our new semantics turn ownership into a computational device that is exploited to
enforce the single owner policy. This change enables us to state when a contract system
is a complete monitor for all specified properties. End note

Contracts without post-condition:

������

�

��������	
 ��
 ��������	

�

������

��

��������	
��
����	

����	

��

Lax contracts for post-conditions:

������

�

��������	
 ��
 ��������	

�

������

��

��������	
��
����	

����	

��

����
���	�

�

��

Picky contracts for post-conditions:

������

�

��������	
 ��
 ��������	

�

������

��

��������	
��
����	

����	

��

����
���	�

�

��

Fig. 4. Monitoring in pictures

220 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

3 Complete Monitors with Pictures

While we can use the CPCF model to articulate a formal criterion of monitoring com-
pleteness, it can also provide an intuitive understanding of the idea. In this section, we
present three pictures of contract monitoring that employ some of the elements of the
CPCF model and introduce complete monitors on this basis.

The first picture in figure 4 illustrates how the contract system monitors the contract
of d/dx without its #:post-cond clause. The client owns f and applies d/dx to it.
Pictorially, it ships f to the server over the d/dx channel. The contract system monitors
the channel and attaches the appropriate pieces of the contract to f. Thus the server
component receives a wrapped version of f. The wrapper checks that the argument and
the result of any application to f are real numbers between 0 and 1. The result of the
application, fp, returns to the client component via a similar channel.

Our pictures use shapes to express ownership of values. Thus f comes in an ellipsis
to match the shape of the client and fp is in a rectangle, like the server component that
creates the function. If the client were to pass fp back to the server to create the second
derivative of f, the value would come in an ellipsis around the rectangle and the contract
wrapper. In other words, wrapping shapes within shapes illustrates how the semantics
uses ownership to keep track of a value’s provenance.

Similarly, shapes on the input-output arrows mark obligations. In particular, the flat
contracts that guard channels have the same shape as the component responsible for sat-
isfying them. The characterization holds for both components and higher-order values
that flow back and forth and receive wrappers.

In a graphical form, our picture suggests that if the initial program is well-formed,
meaning it separates the client and the server component with a properly formed con-
tract boundary, a complete contract system preserves a two-part invariant. The first part
dictates that each value has the same shape as its origin and, if the origin differs from the
current host component, then the contract system guards the value with contracts. The
second part adds that the host component is responsible for meeting the pre-condition
for the uses of the foreign value and the origin component is responsible for the post-
condition.

Even though the invariant seems easy to maintain, adding back the #:post-cond
clause shows that doing so poses subtle challenges. Concretely, a post condition clause
consists of a piece of code and thus introduces a new component. In a real-world lan-
guage such as Racket, this new component could exist within the server module, the
client module, or as a third-party component all by itself [3, §2.3]. No matter where it
exists, it hosts both f and fp, and this co-habitation is the source of all subtleties.

The new component connects to the d/dx channels with its own branch channels and
can thus absorb the values from these channels. As the second picture of figure 4 shows,
the lax semantics allows f and fp to enter the new component before they flow through
the monitors—meaning no guards are attached to these new channels. Since f and fp
have different owners, at least one of the values must be considered a foreign value and,
as such, inhabits the component without the necessary guard.

In contrast to lax, picky protects these additional channels of communication, too.
Figure 4 explains this idea with forks in the channels behind the monitors that protect
the channels. Unfortunately, the obligations for the flat contracts in the #:post-cond

Complete Monitors for Contracts 221

component do not agree with the second part of the completeness invariant. That is,
at least one of the two values inhabits the new component as a foreign value but is
protected by misshaped contracts.

As the next section shows, the third contract monitoring system, dubbed indy, ad-
dresses both parts of the invariant across the entire computation. Technically, our frame-
work serves as an independent specification of the contract system and excludes scenar-
ios such as the two above by halting computation when the single-owner policy breaks.

4 Complete Monitors Formally

The CPCF semantics enforces the single owner policy. If a redex does not respect it, the
evaluation gets stuck. Since embeddings of foreign terms in a component are wrapped
with contract monitors, such stuck states are evidence that a value has leaked from one
component to another without the contract system’s approval. If a contract system can
eliminate all such stuck states and force programs to reduce to a value or to diverge or to
raise a contract error, then the contract system insulates the components of the program
and regulates exchanges of values between them. We call such a contract system a
complete monitor.

Definition 1 (Complete Monitors for CPCF). A contract semantics m specifies a
complete monitor if for all well typed terms e0 such that ∅; lo � e0,

– e0
m→∗ v or,

– for all e1 such that e0
m→∗ e1 there exists e2 such that e1

m→ e2 or,
– e0

m→∗ e1
m→∗ errork

j and there is at least an e1 of the form El [monk,l
j (�flat(e)	l̄ ,v)]

and for all such terms e1, v = |v1|k and k ∈ l̄ .

Complete monitoring takes advantage of the ownership and obligation annotations to
verify that well-formed programs do not get stuck. In addition if a contract error is
raised indicating contract j failed, then for all checks of flat contracts from j, the owner
k of the guarded value is identical to the server label on the contract monitor and the flat
contract is part of the obligations of k. Clearly, this gives more guarantees than blame
correctness.

At first glance complete monitoring appears too weak to establish the correctness
of a contract system; it simply guarantees that when a value crosses a boundary, the
contract system attaches some contract to it and that if a contract violation is detected,
blame is assigned to the party that contributed the witness value. What complete mon-
itoring does not require is that the contract system (1) attaches the proper contracts to
migrating values and (2) checks flat contracts. Point 1 concerns the decomposition of
compound contracts, i.e., a contract system must check the pieces of a compound value
(for example, functions) with the proper pieces of their contracts (for example, domain
and range). In CPCF, this property comes for free with type soundness which forces the
proper distribution of compound contracts over their pieces to retain type safety. As for
point 2, it is necessary to ensure that a contract system actually executes the applica-
tion of the predicate to the witness value. Again, this is obvious in the case of CPCF
and it is easy to check in general. In short, complete monitoring is the main ingredient

222 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

language designers must check if they wish to implement a correct contract system; the
remaining properties can be validated by inspection.

We show now that indy is a complete monitor while lax is not. The proof of com-
plete monitoring follows a subject reduction technique similar to those of type sound-
ness [10]. The first subsection presents the construction of the subject, progress and
preservation, and how these results imply completeness for indy. The second subsec-
tion presents how we construct a counter-example showing the incompleteness of lax
and picky.

4.1 Indy Is a Complete Monitor

The judgments for well-formed terms and well-formed contracts imply both the single
owner policy for components and the agreement between monitor labels, ownership and
obligation annotations for monitors. They are too weak, however, for the proof because
they do not cover all intermediate terms. The semantics of CPCF uses a superset of the
source language of CPCF to deal with errors and contract checks. Moreover, evaluation
constructs monitor terms that are not well-formed according to our rules. Fortunately
this is only temporary; after some reduction steps, the terms become well-formed again.

In order to account for the extra intermediate terms, we generalize well-formedness
for terms and contracts. The generalized judgment for well-formed terms in most cases
is almost the same as the corresponding source code judgment. Figure 5 shows only the
extra/modified rules.

Γ; l � e

Γ; l � errork
j

Γ; j � e Γ; l � v

Γ; l � checkk
j(e,v)

Γ;k � e Γ;{k};{l}; j � κ

Γ; l � mon
k,l
j (κ,e)

Fig. 5. Well-formed intermediate terms

According to section 2 a monitor in the source code is well-formed if its negative
label matches the owner of the monitor, its contract is well-formed and the guarded
term is explicitly annotated as property of the server. For intermediate terms this last
condition is too strict. The reduction rules for monitors of function contracts and de-
pendent function contracts result in monitors where the protected term is a variable or
an application. Because this happens in a restricted way a fixed number of steps yield
monitors where the guarded term comes with the correct ownership annotation.

We capture these cases with the judgment of loosely well-formed terms Γ; l � e;
see figure 6 for the definition. A term with an ownership annotation with label l is
both well-formed and loosely well-formed if the owner of the term is l. A variable is
loosely well-formed if the environment verifies that the variable shows up in the same
component l as its owner. After all, the variable is going to be substituted with a value
of shape |v|l . An application is loosely well formed if the operator has form |e1|l , the
operand is well-formed under l, and l is also the owner of the application. After the
application is performed the resulting term is owned by l.

Complete Monitors for Contracts 223

As for Γ; l � checkk
j(e,v), well-formedness requires that e is loosely well-formed

under j and v well-formed under l, the owner of the check. The second part is necessary
because v is going to be embedded in the component l as is if the check succeeds. The
first is required because the contract check e establishes a component boundary sepa-
rating l from j. Our approach demands that all such boundaries are indicated explicitly
with ownership annotations. However, when the check is first created, e is an applica-
tion with shape |e1| j v. Again, after, the application the ownership annotations appear
at the right place and until then loose well-formedness suffices to admit the term.

Γ; l � e

Γ; l � e

Γ; l � |e|l
Γ(x) = l

Γ; l � x
Γ; l � e1 Γ; l � e2

Γ; l � |e1|l e2

Fig. 6. Loosely well-formed terms

The judgment for well-formed contracts requires a minor change:

Γ; j � e k̄ ⊆ k̄′

Γ; k̄; l̄; j � �flat(|e| j)	k̄′

The rule for flat contracts is weakened so that it requires the parties responsible for the
positive pieces of the contract to be a subset of the obligations of the flat contract rather
than the same set.

Now we are ready to prove indy correct.

Theorem 1. i→ is a complete monitor.

The proof is direct consequence of two major lemmas: progress and preservation. A
well-formed typed, term reduces to another term unless is a value or a contract error.

Lemma 1. (Progress) For all e such that ∅; l � e, e = v or e = errork
j or e i→ e0.

If a well-formed term reduces according to indy, it reduces to a well-formed term.

Lemma 2. (Preservation) For all e and e0 such that ∅; lo � e and e i→ e0, ∅; lo � e0.

4.2 Neither Lax Nor Picky Is a Complete Monitor

In contrast to indy, lax is not a complete monitor.
As an example where lax does not manage to live up to complete monitoring, con-

sider the following program.

Π0
l = mon

k,lo
l (κl , |λh1.h1 λx.5 (λg.g 1)|k) (λ f .λh2.h2 λx.6)

224 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

where
κl = ((�P?l	lo �→ �P?l	k) d�→(λ f .κ1

l)) �→ �P?l	k

κ1
l = ((�P?l	k �→ �P?l	lo) d�→(λg.κ2

l)) �→ �P?l	k

κ2
l = �flat(|λx.zero?(f 1−g 0)|l)	k

P?l = flat(|λx.x > 0|l).
For all l ∈ L if k
= lo, then ∅; lo � Π0

l . The constraint on k and lo comes from the rules
for well-formed source terms and captures the intuition that contracts are used as the
interface between different components.

Π0
l is a not a unique program but rather a schema of programs. Label l can be any

label including k and lo. Also Π0
l is not interesting in terms of computation. What makes

it an example worth considering is its contract κl and more specifically its flat sub-
contract κ2

l . Note that κ2
l invokes f on a positive number and g on 0. In addition the

value bound to f , fv = λx.5, comes from the client lo while the value bound to g,
gv = λx.6, originates from the server k. We start by showing that l must equal lo in
order to satisfy complete monitoring. The reduction of Π0

l eventually applies fv to 1.
After the substitution of fv for f in κ2

l we get

κ†
l = �flat(|λx.zero?(|| fv|lo |l 1−g 0)|l)	k.

In order for the lax system to satisfy the complete monitoring condition, κ†
l must remain

well formed:
{ f : l,g : l};{k};{}; l � κ†

l .

This judgment, however, demands that { f : l,g : l}; l � || fv|lo |l , which in turn requires
that l must be equal to lo. If so, the contract looks like this:

κ†
lo
= �flat(|λx.zero?(|| fv|lo |lo 1−g 0)|lo)	k.

The next few steps of the reduction process produce a state that is inconsistent with
complete monitoring. Specifically, κ2

l also applies gv to 0:

κ††
lo
= �flat(|λx.zero?(|| fv|lo |lo 1−||gv|k|lo 0)|lo)	k.

And this last contract disagrees with the subject because k cannot equal lo. More specif-
ically

{ f : lo,g : lo};{k};{}; lo
� κ††
lo

since { f : lo,g : lo}; lo
� ||gv|k|lo .
Our example shows that independently of the choice of l, Π0

l does not respect preser-
vation under the lax semantics. As a consequence lax can violate the single owner pol-
icy. Indeed Π0

lo
l→∗ Elo [||gv|k|lo 0]. This last state is a stuck state as it involves the ap-

plication of a function that has multiple owner tags, i.e., it has crossed contract-free
boundaries between distinct components.

Theorem 2. l→ is not a complete monitor.

The same example shows that picky CPCF is not a complete monitor.

Theorem 3.
p→ is not a complete monitor.

Complete Monitors for Contracts 225

5 Mutation Needs Complete Monitors

The principle of complete monitoring provides guidance for the addition of linguistic
features to CPCF. Concretely, consider the addition of reference cells, i.e., sharable,
mutable data. Doing so requires both a notation for contracts on cells and also a mech-
anism that monitors all channels of communication between components that exchange
cells.

We investigate this setting via CPCF!, an imperative variant of CPCF. The source
syntax of CPCF!, figure 7, extends the source syntax of CPCF with the standard oper-
ators of a language with mutable cells. CPCF! also comes with contracts for mutable
cells, ref/c(κ). Intuitively the contract specifies that the protected cell should conform
at any point with κ. CPCF!, just like CPCF, is typed. The type system and its soundness
impose no challenges, and are omitted.

Types τ = . . . | ref(τ)
Contracts κ = . . . | ref/c(κ)
Terms e = . . . | ref(e) | get(e) | set(e,e)

Values v = . . . | loc | γ
Guards γ = G{v (κ l l l)}

Fig. 7. CPCF! syntax (left) and intermediate syntax (right)

The additions to the source syntax demand additions to the definitions of well-formed
terms and contracts. The first are straightforward requiring that the arguments of the
operators related to store are well-formed under the same owner as the operator:

Γ; l � e
Γ; l � ref(e)

Γ; l � e
Γ; l � get(e)

Γ; l � e1 Γ; l � e2

Γ; l � set(e1,e2)

The second addition poses a small challenge. The same component can read from, and
write to, a mutable cell. Thus the distinction between clients and servers of the contents
of the cells collapses. To reflect this insight, the rule for well-formed contracts on cells
merges the parties responsible for the negative and positive pieces of the contract when
assigning obligations for the contract that protects the contents of a cell. All parties l̄
and k̄ have the obligation to treat the contents according to the contract both as clients
and servers:

Γ; l̄ k̄; l̄ k̄; j � κ
Γ; k̄; l̄; j � ref/c(κ)

Mutable cells are represented at run-time as memory locations loc. To enforce contract
checks on the contents of memory locations we have to delay checking until a compo-
nent tries to read the location. For that reason we introduce guards G{v (κ k l j)} as
intermediate terms. They are contract monitors similar to mon

k,l
j (κ,e). The difference is

that in contrast with monitors, guards are values, and thus they attach themselves per-
manently around locations when the locations cross component boundaries. Figure 7
shows the intermediate syntax for CPCF! that extends the intermediate syntax of CPCF.

226 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

The definition of the reduction relation for CPCF! demands some preparation. Loca-
tions require the presence of the addition of a store, which changes the shape of states.
They now have two parts: e and σ. The reduction relation describes now transitions
between such states: El [e],σ m→ El [e′],σ′. Moreover we derive additional evaluation
contexts from the new operators just like for the primitive operators in CPCF.

Now we are ready for the reduction relation of CPCF!. The reduction rules for CPCF
become also reduction rules for CPCF! after adding the same store on both sides of each
rule. The additional operations on mutable data, figure 8, are straightforward when they
are performed directly on store locations. They only fire when the context owns the
location in order to guarantee that a component can read or write to properly acquired
cells. Things become interesting when a component other than the creator and owner of
the location tries to access or modify the location’s contents. Doing so requires a guard
G{v (κ k l j)}. Guards are the result of a monitor of a contract ref/c(κ) on a value v.
They contain the guarded value, the contract κ and the labels that decorate the monitor.
A get(||γ||l) opens the guard γ and delegates the get operation to the value that resides
in γ. Moreover it wraps the result with a monitor built out of the contract and the labels
from γ. This ensures that the contract is checked when the host component tries to use
the value obtained from the location.

Writing a value v′ to a mutable cell via a guard γ is also delegated to the value that
resides in γ; v′ is wrapped with the appropriate contract monitor. However, in this case
the semantics must take into account two other factors. First, a set operation creates
a flow of values in the opposite direction than a get operation. Thus the server for the
new content of the location should be the client for the old one and vice versa. Second,
the result of set should be the same guard γ as the one applied on the operation. This
ensures that the location remains protected. To achieve this, the reduction rule reverses
the labels on the monitor of the term that is written in the location and wraps the whole
operation with a monitor that is going to reproduce γ. Finally the rule expands the
operation into a function application so that v′ becomes explicitly decorated with the
label of the host component before written to the location.

El [ref(v)],σ m→ El [loc],σ′
where loc /∈ dom(σ) and σ′ = σ�{loc �→ v}

El [get(||loc||l)],σ m→ El [|v|l],σ
where σ = σ′ �{loc �→ v}

El [set(||loc||l,v′)],σ m→ El [|loc|l],σ′
where σ = σ′′ �{loc �→ v} and σ′ = σ′′ �{loc �→ v′}

El [monk,l
j (ref/c(κ),v)],σ m→ El [G{v (κ k l j)}],σ

El [get(||γ||l)],σ m→ El [|monk,l
j (κ,get(v))|l],σ

where γ = G{v (κ k l j)}
El [set(||γ||l, ||v′||l)],σ m→ El [|(λx.monk,l

j (ref/c(κ),set(v,monl,k
j (κ,x)))) v′′|l],σ

where γ = G{v (κ k l j)} and v′′ = |v′|l

Fig. 8. Operations on mutable data

Complete Monitors for Contracts 227

Proving that CPCF! is a complete monitor follows the same pattern as for CPCF. We
first adapt the definition of complete monitoring to a store semantics.

Definition 2 (Complete Monitors for CPCF!). A contract semantics m specifies a
complete monitor if for all well typed terms e0 such that ∅; lo � e0,

– e0,∅
m→∗ v,σ1 or,

– for all terms e1 and stores σ1 such that e0,∅
m→∗ e1,σ1 there exists term e2 and

store σ2 such that e1,σ1
m→ e2,σ2 or,

– e0,∅
m→∗ e1,σ1

m→∗ errork
j,σ2 and there is at least an e1 such that e1 is of the form

El [monk,l
j (�flat(e)	l̄ ,v)] and for all such terms e1, v = |v1|k and k ∈ l̄.

Then we generalize well-formedness for source code and contracts to intermediate
terms and prove preservation and progress main lemmas. The subject consists of two
new judgments, Σ;Γ; l � e and Σ;Γ; k̄; l̄; j � κ.

The most important modification to the corresponding subject in CPCF is the intro-
duction of store ownership, which establishes that the store is well-formed. The store
ownership relates locations and owners. A store is well-formed if its contents are well-
formed under the owner store ownership points to.

for all loc ∈ dom(σ), Σ;∅;Σ(loc) � σ(loc)
Σ ∼ σ

This is necessary for the same reason that store typing is necessary to prove type sound-
ness for languages with mutable data: it admits circularity in the store.

The generalized judgment for well-formed terms and contracts is almost the same
as the corresponding well-formed judgments in CPCF. The differences are the addi-
tional rules for store operations and that together with the environment, it propagates
the ownership typing. There are also rules for guards and locations:

Σ(loc) = l

Σ;Γ; l � loc

Σ;Γ;k � v Σ;Γ;{k, l};{k, l}; j � κ
Σ;Γ; l � G{|v|k (κ k l j)}

A location is well-formed only under the owner that is associated with in the store
ownership. Well-formed guards are only those where the guarded value is explicitly
annotated as owned by the component with the positive label (k) in the guard. Further-
more, the contract κ must be also well-formed. The last label (j) serves as the owner of
the contract’s code. Since guards are used to protect locations and locations can be used
by components both for writing and reading both the negative label l and positive label
k must be responsible for the positive and negative pieces of κ.

Furthermore we need to extend the CPCF rules for loosely well-formed terms with
store ownership. We also add two rules due to store related operations:

Σ;Γ; l � e

Σ;Γ; l � get(|e|l)
Σ;Γ; l � e1 Σ;Γ; l � e2

Σ;Γ; l � set(|e1|l ,e2)

The get and set operators are loosely well-formed if the term in the position of the mu-
table cell is tagged with the owner of the operation. The reduction semantics guarantees
that reducing the operation produces a term explicitly owned by l.

We can now show that the indy semantics is a complete monitor for CPCF!.

Theorem 4. i→ is a complete monitor.

228 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

6 Complete Monitors Enable Typed-Untyped Interaction

Typed Racket [8] enables mixing typed modules with untyped Racket modules. Type-
like contracts prevent untyped code from violating the type discipline when interacting
with typed code. Tobin-Hochstadt and Felleisen [8] define and prove the soundness of
this approach in a multi-lingual setting via a so-called Blame Theorem, a name due
to Wadler and Findler [9], which establishes that a program execution can only raise
contract violations due to the untyped part.

To prove type soundness for an imperative version of this system we create an un-
typed sister language of CPCF!, UCPCF!, with a shared term syntax, and prove the
corresponding blame theorem exploiting complete monitoring for CPCF!. As CPCF!
has only base types, function types, and reference types, it suffices to consider only the
corresponding contracts:

κ = �I	l̄ | �B	l̄ | κ �→ κ | ref/c(κ)

This restriction enables a series of additional simplifications in our framework. First,
flat contracts contain only built-in predicates and not arbitrary code. Thus their code
is not the property of any specific party. This decision is reflected in simpler rules for
well-formed flat contracts:

Γ; k̄; l̄; j � �I	k̄ Γ; k̄; l̄; j � �B	k̄

Second, the omission of dependent function contracts makes the distinction between
lax, picky and indy irrelevant. We use → without any subscript to denote the reduction
relation for UCPCF!.

Third, checking of flat contracts does not require the special check construct:

El [monk,l
j (�I	l̄′ , ||n||l′)],σ → El [n],σ

El [monk,l
j (�I	l̄′ , ||c||l′)],σ → El [errork

j],σ if c
= n

El [monk,l
j (�B	l̄′ , ||c||l′)],σ → El [c],σ if c ∈ {tt,ff}

El [monk,l
j (�B	l̄′ , ||c||l′)],σ → El [errork

j],σ if c /∈ {tt,ff}

The untyped nature of UCPCF! obliges us to extend the reduction relation of the lan-
guage. Type soundness for CPCF! allowed us to ignore redexes like ||v1||l ||v2||l where
v1 is not a function. In UCPCF! such states can occur. We deal with them by introducing
dynamic type errors errorl

T where l is the owner of the hole in which the ill-formed
redex occurs.

This change must be propagated to our definition of complete monitoring. The defi-
nition of the property includes an extra case for run-time type errors.

Definition 3 (Complete Monitors for UCPCF!). A contract semantics m specifies a
complete monitor if for all terms e0 such that ∅; lo � e0,

– e0,∅
m→∗ v,σ or,

– e0,∅
m→∗ errorl

T ,σ or

Complete Monitors for Contracts 229

– for all terms e1 and stores σ1 such that e0,∅
m→∗ e1,σ1 there exists term e2 and

store σ2 such that e1,σ1
m→ e2,σ2 or,

– e0,∅
m→∗ e1,σ1

m→∗ errork
j,σ2 where j
= T , and there is at least an e1 such that

e1 is of the form El [monk,l
j (�I	l̄′ ,v)] or e1 is of the form El [monk,l

j (�B	l̄′ ,v)] and for

all such e1, v = |v1|k and k ∈ l̄ .

The addition of run-time type errors does not eliminate all stuck states. The single owner
policy still must hold for a redex to reduce. We can show, though, that these stuck states
are not reachable and establish that → is a complete monitor for UCPCF!.

Since CPCF! and UCPCF! share the same source code syntax, there is a subset of
UCPCF! programs that are well-typed under CPCF!’s sound type system. We use S ,G �
e : τ to express that a term e has type τ given type environment G and store typing S .
For simplicity we assume that there are only two component labels, u for untyped code
and t for typed code. We can extend CPCF!’s type system to allow for embedding of
untyped UCPCF! code:

S ,G � e

S ,G � mon
u,t
j (κ,e) : T [[κ]]

S ,G � v

S ,G � G{v (κ u t j)} : T [[κ]]

The meta-function T maps a contract to the corresponding type. For flat contracts,
T [[�I	k̄]] = I and T [[�B	k̄]] = B.

The judgment S ,G � e denotes that any typed code embedded in untyped code is
well-typed. The judgment structurally decomposes e. Things become more interesting
when a sub-term is typed:

S ,G � e : T [[κ]]
S ,G � mon

t,u
j (κ,e)

S ,G � v : T [[ref/c(κ)]]
S ,G � G{v (κ t u j)}

Free variables and locations in typed code can only originate from typed code. This
goes hand in hand with the idea that a well-formed term can only refer to variables and
locations of the same owner as the term and writing and reading foreign mutable cells
can be done only through guards.

We can now state and prove the Blame Theorem.

Theorem 5. (Blame Theorem) For all UCPCF! terms e0 such that ∅,∅� e0 and ∅;u�
e0, e0
→∗ errort

j .

In our setting the proof of the theorem benefits greatly from complete monitoring as
it allows us to reduce the space of the proof cases. For instance when typed code re-
trieves values from the store, complete monitoring guarantees that those are either the
property of typed code and thus, from type soundness for CPCF!, they are well-typed,
or they come from the untyped code and thus they are wrapped in a contract monitor.
This observation reduces the proof cases essentially to only those that create new con-
tract monitors. There we utilize the subject introduced in this section to make sure that
the new monitors that contain terms from the typed party are protecting the code with
contracts that correspond to their type.

In essence the proof of the Blame Theorem says that typed terms e can only show up
inside monitors of the form mon

t,u
j (κ,e) and that for some S and G , S ,G � e : T [[κ]].

230 C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen

Since type safety guarantees that type errors errort
T do not emerge in any case, we

must only rule out contract errors blaming the typed code. From complete monitoring,
this requires a failure of a contract check of the form mon

t,u
j (κ, ||c||t) where κ is a flat

contract. However, this is impossible since ∅,∅ � c : T [[κ]] and by the semantics for
flat contract monitors and the translation of contracts to types no such check can fail.
Thus no error blaming the typed code ever occurs.

7 Related Work

Our results are based on decades-long research in behavioral contract systems and track-
ing of provenance. A review of and comparison with results in these fields can be found
in the related work section of Dimoulas et al. [3].

Here we focus on the critically important work of Zdancewic et al. [11]. They use
the idea of principals for proving type abstraction. In their semantics, each component
is a different principal that allows other principals to access its data only through ab-
stract operators. If a principal tries to manipulate directly data that it does not own, the
evaluation gets stuck. In the type system foreign data is given an abstract type. Thus if
the type system is sound all stuck states are unreachable.

While Zdancewic et al. directly inspire our single owner policy, our semantics is
unrelated to theirs and we apply the idea to define and prove a novel property of contract
systems instead of type systems.

References

1. Blume, M., McAllester, D.: Sound and complete models of contracts. Journal of Functional
Programming 16(4-5), 375–414 (2006)

2. Dimoulas, C., Felleisen, M.: On contract satisfaction in a higher-order world. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 33(5), 16:1 – 16:29 (2011)

3. Dimoulas, C., Findler, R.B., Flanagan, C., Felleisen, M.: Correct blame for contracts: No
more scapegoating. In: POPL, pp. 215 – 226 (2011)

4. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP, pp. 48–59 (2002)
5. Flatt, M.: PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010),

http://racket-lang.org/tr1/
6. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: POPL, pp. 353–364

(2010)
7. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
8. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to programs. In:

DLS, pp. 964–974 (2006)
9. Wadler, P., Findler, R.B.: Well-Typed Programs Can’t Be Blamed. In: Castagna, G. (ed.)

ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)
10. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-

putation 115(1), 38–94 (1994)
11. Zdancewic, S., Grossman, D., Morrisett, G.: Principals in programming languages: A

syntactic proof technique. In: ICFP, pp. 197–207 (1999)

http://racket-lang.org/tr1/

	Complete Monitors for Behavioral Contracts
	Blame Correctness Is Not Enough
	Beyond Blame Correctness
	Complete Monitors with Pictures
	Complete Monitors Formally
	Indy Is a Complete Monitor
	Neither Lax Nor Picky Is a Complete Monitor

	Mutation Needs Complete Monitors
	Complete Monitors Enable Typed-Untyped Interaction
	Related Work

