
Identifying Traffic Differentiation in Mobile Networks

Arash Molavi Kakhki‡, Abbas Razaghpanah?, Anke Li?, Hyungjoon Koo?, Rajesh Golani?
David Choffnes‡ , Phillipa Gill?, Alan Mislove‡

‡Northeastern University, ?Stony Brook University

Abstract
Traffic differentiation–giving better (or worse) performance
to certain classes of Internet traffic–is a well-known but
poorly understood traffic management policy. There is ac-
tive discussion on whether and how ISPs should be allowed
to differentiate Internet traffic [8, 21], but little data about
current practices to inform this discussion. Previous work
attempted to address this problem for fixed line networks,
but there is currently no solution that works in the more
challenging mobile environment (where such differentiation
is explicitly allowed).

In this paper, we present the design, implementation and
evaluation of the first system and mobile app for identify-
ing traffic differentiation for arbitrary applications in the
mobile environment (i.e., wireless networks such as cellular
and WiFi, used by smartphones and tablets). The key idea
is to use a VPN proxy to record and replay the network traf-
fic generated by arbitrary applications, and compare it with
the network behavior when replaying this traffic outside of
an encrypted tunnel. We perform the first known testbed
experiments with actual commercial shaping devices to vali-
date our system design and demonstrate how it outperforms
previous work for detecting differentiation. We released our
app and collected differentiation results from 12 ISPs in 5
countries. We find that differentiation tends to affect TCP
traffic (reducing rates by up to 60%) and that interference
from middleboxes (including video-transcoding devices) is
pervasive. By exposing such behavior, we hope to improve
transparency for users and help inform future policies.

1. INTRODUCTION
The rise in popularity of bandwidth-hungry applications

(e.g., Netflix) coupled with resource-constrained networks
(e.g., mobile providers) has reignited discussions about
how the different applications’ network traffic is treated
(or mistreated) by ISPs. One commonly discussed ap-
proach to managing scarce network resources is traffic
differentiation—giving better (or worse) performance to cer-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IMC’15, October 28–30, 2015, Tokyo, Japan.
c© 2015 ACM. ISBN 978-1-4503-3848-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2815675.2815691.

tain classes of network traffic—using devices that selectively
act on network traffic (e.g., Sandvine traffic shapers [25]).
Differentiation can be used to enforce policies ranging from
protecting the network from bandwidth-hungry applica-
tions, to opaquely limiting services that compete with those
offered by the network provider (e.g., providers that sell
voice/video services in addition to IP connectivity).

Recent events have raised the profile of traffic differen-
tiation and network neutrality issues in the wired setting,
with Comcast and Netflix engaged in public disputes over
congestion on network interconnects [11, 16, 19]. The sit-
uation is more extreme in the mobile setting, where until
recent FCC rules that will go into effect in June, 2015 [9],
regulatory agencies impose few restrictions on how a mo-
bile provider manages its network [8], with subscribers and
regulators generally having a limited (or no) ability to un-
derstand and hold providers accountable for management
polices.

Despite the importance of this issue, the impacts of traffic
differentiation on specific applications—and the Internet as
a whole—are poorly understood. Previous efforts attempt to
detect traffic differentiation (e.g., [6,30,36,37]), but are lim-
ited to specific types of application traffic (e.g., peer-to-peer
traffic [6]), or focus on shaping behaviors on general classes
of traffic as opposed to specific applications [14,30,37]. Ad-
dressing these limitations is challenging, due to the wide
variety of applications (often closed-source) that users may
wish to test for differentiation, coupled with the closed na-
ture of traffic shapers. Indeed, their closed nature means
that external observers struggle to detect if such shapers ex-
ist in networks, what exactly these devices do, and what is
their impact on traffic. What little we do know is concern-
ing. Glasnost [6] and others [26,30,36] found ISPs throttling
specific types of Internet traffic, Cogent admitted to differ-
entiating Netflix traffic [23], and recent work by Google and
T-Mobile [13] indicated that unintentional interactions be-
tween traffic shaping devices has been known to degrade
performance.

This paper tackles three key challenges that have held
back prior work on measuring traffic differentiation: (1)
the inability to test arbitrary classes of applications, (2) a
lack of understanding of how traffic shaping devices work in
practice, and (3) the limited ability to measure mobile net-
works (e.g., cellular and WiFi) from end-user devices such as
smartphones and tablets. Designing methods that can mea-
sure traffic differentiation in mobile networks (in addition to
well-studied wired networks) presents unique challenges, as
the approaches must work with highly variable underlying

network performance and within the constraints of mobile
operating systems. By addressing these challenges, we can
provide tools that empower average users to identify differ-
entiation in mobile networks, and use data gathered from
these tools to understand differentiation in practice.

This paper makes the following key contributions:

• The design and implementation of a system for
detecting traffic differentiation in mobile net-
works (Sec. 3). We design an application-layer trace
record-and-replay system that enables testing of arbi-
trary network applications, and works even if these appli-
cations are closed source. Our solution does not require
special privileges on client devices, making it readily de-
ployable on a global scale. The key idea is to use a VPN
proxy to record arbitrary application traffic, and later
replay that traffic both with and without the VPN to
identify differentiation. We implement this both as an
Android application and a desktop application.

• Validation of our approach using commercial
shaping devices (Sec. 4). To the best of our knowl-
edge, we are the first study to validate that our detection
system correctly triggers differentiation on commercial
shaping devices. Using a testbed consisting of two such
devices, we establish a ground truth to evaluate the ac-
curacy of our approach and identify several pitfalls of
previous approaches.

• Evaluating statistical techniques for identifying
differentiation (Sec. 5). Previous work uses a variety
of statistical techniques to determine when differentia-
tion occurs. We use our testbed with commercial shaping
products (with configurable shaping rates), a controlled
network with no differentiation, and controlled loss with
Linux Traffic Control (tc) to systematically evaluate the
accuracy of different statistical techniques for identifying
differentiation.

• An Android app that conducts our differentiation
tests and a measurement study of differentiation
in mobile networks (Sec. 6). We develop an Android
app that conducts our differentiation tests on unmodi-
fied Android OSes, as part of an IRB-approved study of
differentiation in mobile networks worldwide. We deploy
our software in the US and four other countries, and find
several instances of TCP shaping, in addition to perva-
sive interference from middleboxes.

In addition to being the first approach to reliably de-
tect differentiation from mobile devices without special
privileges, our study also identifies several instances of
middleboxes violating end-to-end principles for a variety
of popular apps. In particular, we find evidence of video
transcoding, HTTP header manipulation in requests and
responses, and proxies that modify TCP behavior. While
previous work identified such behavior for Web traffic, we
are the first to do so for arbitrary app traffic.

The following section discusses related work and defines
differentiation that we detect. After detailing our key con-
tributions listed above, we discuss issues with differentiation
and its detection that are beyond the scope of this work
(Sec. 7), and we conclude in Sec. 8.

2. BACKGROUND
There is an ongoing debate about whether the network

should be neutral with respect to the packets it carries [4];

i.e., not discriminate against or otherwise alter traffic except
for lawful purposes (e.g., blocking illegal content). Propo-
nents such as President Obama argue for an open Inter-
net [21] as essential to its continued success, while some
ISPs argue for shaping to manage network resources [6, 26].

For fixed-line networks, the FCC rules at the time of sub-
mission [8] prohibit fixed-line ISPs from commercially un-
reasonable policies for differentiating Internet traffic and re-
quire public disclosure of network management practices.
However, in mobile networks, regulatory agencies impose
few restrictions on how providers manage their network, and
the new FCC rules that change this policy do not take effect
until June, 2015 [9]. In this environment, it is important
to monitor traffic differentiation in practice, both to inform
regulators and enforce policies.

In the remainder of this section, we overview related work
on measuring traffic differentiation and network neutrality
and then define the types of traffic differentiation our system
aims to detect.

2.1 Related Work
Comcast’s blocking of BitTorrent [28] in the mid 2000s

spurred research efforts to study traffic differentiation. This
led to several studies that focus on applications or flows
known to be subject to classification, and design tests to
detect differentiation on those flows. For example, Glasnost
focuses on BitTorrent [6] and NetPolice [36] tests five ap-
plications (HTTP, BitTorrent, SMTP, PPLive and VoIP).
Bonafide [3] takes a similar approach to Glasnost in the
mobile environment, including tests for HTTP, FlashVideo
(YouTube), SIP, RTSP, BitTorrent, and VoIP H323. These
approaches focus on protocols rather than specific applica-
tion implementations. A key limitation is that the shap-
ing devices we observed support application/provider gran-
ularity, e.g., shape RTSP traffic for one content provider,
but not other RTSP applications (see Sec. 4). Such appli-
cation based differentiation may not be detected by these
systems. They also require manual fabrication of protocols
which make them not extensible, a property which we be-
lieve is essential for such systems (Sec. 4). We address these
limitations in this work.

Furthermore, these projects treat traffic differentiation as
a “black box” which they aim to detect by sending traffic
and observing network performance metrics. Notably, these
prior studies lack ground-truth information about how dif-
ferentiation is implemented, and whether or not their de-
tection mechanisms would trigger traffic shaping in practice
(an issue we address in this work).

Another approach avoids testing specific applications and
focuses on detecting differentiation for arbitrary traffic.
NANO [30] uses Bayesian analysis to detect differentiation,
while Zhang et al. [37] focus on identifying when it is feasible
to detect and isolate differentiation. Other related projects
focus on performance issues in ISPs [2,7,17,19] and shaping
of all of a subscriber’s traffic [14], but do not detect differ-
entiation itself.

Other related studies detect proxies on network paths, and
conduct tests to identify a wide range of application-specific
proxy behaviors [12, 15, 29, 32, 33]. A recent technical re-
port from the Netalyzr Mobile project specifically focuses
on proxies and other middleboxes in mobile networks, and
discusses how these devices vary according to mobile vir-
tual network operator (MVNO) [31]. Zarinni et al. use

Bonafide [3] to test for differentiation of BitTorrent, VoIP-
H323 and RTSP [35] in MVNOs. The authors did not ob-
serve differentiation of this limited set of applications; in
contrast, our approach identified differentiation in three of
the networks they tested.

2.2 Differentiation considered in our work
In this work, we consider the problem of detecting dif-

ferentiation caused by traffic-shaping middleboxes (rather
than interconnection provisioning [11, 16, 19]). We focus on
the mobile environment, in large part due to the lack of
regulation and scarce network resources in mobile data net-
works. However, our techniques also work in the fixed-line
environment.

We focus on differentiation affecting network performance
as perceived by applications. In our experiments, we observe
that even high-bandwidth mobile applications such as video
streaming do not necessarily exhaust the bandwidth avail-
able, possibly to avoid wasting data transfer in case of viewer
abandonment. This is in contrast to protocols that previ-
ous approaches focused on (e.g., BitTorrent), which aim to
saturate the link bandwidth. For applications which do not
exhaust the available resources, we do not consider traffic
shaping where the shaping rate is higher than the bandwidth
demands to be differentiation. For example, if a shaper lim-
ited a given application to 200 KB/s, but the application
never sent more than 150 KB/s, we would not consider this
differentiation (as the application would never be affected
by it). This more conservative approach gives us a clearer
picture of shaping that actually impinges on the network
resource demands of applications.

While we do not know precisely what triggers differentia-
tion (and policies likely differ across networks), we make the
assumption that traffic differentiation is likely triggered by
at least one of the following factors: IP addresses, port num-
bers, payload signatures, number of connections, total band-
width, and time-of-day. We confirmed these assumptions
are consistent with features listed in online manuals of deep
packet inspection (DPI) devices and traffic shapers. We also
run experiments with two commercial packet shapers and
show that our assumptions hold for these devices (Sec. 4.2).

Nongoals. In this work, there are certain types of traf-
fic management policies that we are not able to detect.
First, we do not focus on detecting congestion at peering
points, a tactic used by certain ISPs to extract payment
from large bandwidth consumers [11]. Second, we do not
focus on blocking (e.g., censorship) or content modification
(e.g., transcoding) by middleboxes. While our methodol-
ogy is able detect these occurrences (and we found cases of
both), they are orthogonal to the issue of shaping. Third,
we currently do not support detecting differentiation based
on the destination IP address contacted by clients. Our
analysis of commercially deployed traffic shapers indicates
that IP addresses are not commonly used to identify appli-
cations, since none of our observed configurations use them
for shaping. We speculate this is due to the fact that many
applications contact servers with IPs shared by many ser-
vices (e.g., EC2, or Google frontends that serve both search
and YouTube traffic), and the IPs used by any service may
change over time. Thus, IP addresses are a poor classifier
for shaping a specific application. Regardless, we are inves-
tigating how to use limited forms of IP spoofing to address
this limitation.

(a) Record

(b) Parse

(c) Replay

(d) Analyze

Figure 1: System overview: (a) Client connects to VPN, that
records traffic between the client and app server(s). (b) Parser
produces transcripts for replaying. (c) Client and replay server
use transcripts to replay the trace, once in plaintext and once
through a VPN tunnel. Replay server records packet traces for
each replay. (d) Analyzer uses the traces to detect differentiation.

3. METHODOLOGY
Our trace record-replay methodology for traffic differen-

tiation is the first to reliably detect differentiation for arbi-
trary applications in the mobile environment. We provide an
overview in Figure 1. We record a packet trace from a tar-
get application (Fig. 1(a)), extract bidirectional application-
layer payloads, and use this to generate a transcript of mes-
sages for the client and server to replay (Fig. 1(b)). To
test for differentiation, the client and server coordinate to
replay these transcripts, both in plaintext and through an
encrypted channel (using a VPN tunnel) where payloads are
hidden from any shapers on the path (Fig. 1(c)). Finally,
we use validated statistical tests to identify whether the ap-
plication traffic being tested was subject to differentiation
(Fig. 1(d)). We discuss each of these steps below.

3.1 Recording the trace
Our method requires a packet trace to replay. While it

is straightforward on desktop operating systems, recording
packet traces on today’s mobile operating systems requires
“rooting” and/or “jailbreaking” the phone (potentially void-
ing the phone’s warranty). This is not a problem for small-
scale testbed experiments, but traffic differentiation—and
the applications it affects—is a moving target that requires
running experiments for a variety of applications on a large
set of devices in different networks worldwide. Thus, we
need a way to enable end users to capture traces of mobile
application traffic without requiring modifications to the OS.

To address this challenge, we leverage the fact that all
major mobile operating systems natively support VPN con-

nections, and use the Meddle VPN [22] to facilitate trace
recording. Figure 1(a) illustrates how a client connects to
the Meddle VPN, which relays traffic between the client and
destination server(s). In addition, the Meddle VPN collects
packet traces that we use to generate replay transcripts.
When possible, we record traffic using the same network be-
ing tested for differentiation because applications may be-
have differently based on the network type (e.g., WiFi or
LTE), e.g., a streaming video app may select a higher bi-
trate on WiFi.

Our methodology is extensible to arbitrary applications—
even closed source and proprietary ones—to ensure it works
even as the landscape of popular applications, the network
protocols they use, and their impact on mobile network re-
sources changes over time. Prior work focused on specific
applications (e.g., BitTorrent [6]) and manually emulated
application flows. This approach, however, does not scale
to large numbers of applications and may even be infeasible
when the target application uses proprietary, or otherwise
closed, protocols.1

3.2 Creating the replay script
After recording a packet trace, our system processes it at

the application level2 to create a replay transcript that cap-
tures the behavior of the application’s traffic, including port
numbers, dependencies between application-layer messages
(if they exist) and any timing properties of the application
(e.g., fixed-rate multimedia).3 Figure 1(b) shows how we
create two objects with the necessary information for the
client and server to replay the traffic from the recorded trace.
Logical dependencies. For TCP traffic, we preserve
application-layer dependencies using the implicit happens-
before relationship exposed by application-layer communica-
tion in TCP. More specifically, we extract two unidirectional
byte streams sab and sba for each pair of communicating
hosts A and B in the recorded trace. For each sequence of
bytes in sab, we identify the bytes in sba that preceded them
in the trace. When replaying, host A sends bytes in sab to
host B only after it has received the preceding bytes in sba
from host B. We enforce analogous constraints from B to
A. For UDP traffic, we do not enforce logical dependencies
because the transport layer does not impose them.
Timing dependencies. A second challenge is ensuring the
replayed traffic maintains the inter-message timing features
of the initial trace. For example, streaming video apps
commonly download and buffer video content in chunks in-
stead of buffering the entire video, typically to reduce data-
consumption for viewer abandonment and to save energy
by allowing the radio to sleep between bursts. Further-
more, certain applications and their corresponding servers
may pace their packets rather than blasting traffic into the
network. Our system preserves the timings between pack-
ets for both TCP and UDP traffic to capture such behavior

1The Glasnost paper describes an (unevaluated) tool to sup-
port replaying of arbitrary applications but we were unsuc-
cessful in using it, even with the help of a Glasnost coauthor.
2We then use client’s full TCP/UDP stack for replaying the
traffic.
3This approach is similar to Cui et al.’s [5]; however, our
approach perfectly preserves application payloads (to ensure
traffic is classified by shapers) and timing (to prevent false
positives when detecting shaping).

when replaying (we can also disable this feature when timing
is not intrinsic to the application).

Specifically, for each stream of bytes (UDP or TCP) sent
by a host, s, we annotate each byte with time offset from
the first byte in the stream in the recorded trace. If the ith
byte of s was sent at t ms from the start of the trace, we
ensure that byte i is not sent before t ms have elapsed in the
replay. For TCP, this constraint is enforced after enforcing
the happens-before relationship.

In the case of UDP, we do not retransmit lost packets.
This closely matches the behavior of real-time applications
such as VoIP and live-streaming video (which often toler-
ate packet losses), but does not work well for more compli-
cated protocols such as BitTorrent’s uTP [20] or Google’s
QUIC [1]. We will investigate how to incorporate this be-
havior in future work.

Preserving timing is a key feature of our approach, that
can have a significant impact on detecting differentiation, as
discussed in Section 2.2. In short, it prevents us from de-
tecting shaping that does not impact application-perceived
performance.

3.3 Replaying the trace
After steps 1 and 2, we replay the recorded traffic on a

target network to test our null hypothesis that there is no
differentiation in the network. This test requires two sam-
ples of network performance: one that exposes the replay to
differentiation (if any), and a control that is not exposed to
differentiation.

A key challenge is how to conduct the control trial. Ini-
tially, we followed prior work [6] and randomized the port
numbers and payload, while maintaining all other features
of the replayed traffic. However, using our testbed contain-
ing commercial traffic shapers (Section 4.2), we found that
some shapers will by default label “random”traffic with high
port numbers as peer-to-peer traffic, and will differentiate it
as well. Thus, this approach is unreliable to generate control
trials.

Instead, we re-use the Meddle VPN tunnel to conduct
control trials. By sending all recorded traffic over an en-
crypted IPSec tunnel, we preserve all application behavior
while simultaneously preventing any DPI-based shaper from
differentiating based on payload. Thus, each replay test con-
sists of replaying the trace twice, once in plaintext (exposed
trial), and once over the VPN (control trial), depicted in
Figure 1(c). To detect differentiation in noisy environments,
we run multiple tests (both control and exposed). We ex-
plore potential issues of using a VPN as a control trial in
Sections 4.3 and 7.

3.4 Detecting differentiation
After running the exposed and control trials, we compare

performance metrics (throughput, loss, and delay) to de-
tect differentiation (Fig. 1(d)). We focus on these metrics
because traffic shaping policies typically involve bandwidth
rate-limiting (reflected in throughput differences), and may
have impacts on delay and loss depending on the queu-
ing/shaping discipline. We base our analysis on server-side
packet captures to compute throughput and RTT values
for TCP, because we cannot rely on collecting network-level
traces on mobile clients. For UDP applications, we use jitter
as a delay metric and measure it at the client at the appli-
cation layer (observing inter-packet timings). Note that we

 0
 5

 10
 15
 20
 25
 30
 35

 0 1 2 3 4 5 6

C
u

m
u

la
ti

v
e

 t
ra

n
s

fe
r

(M
b

it
s

)â
��

Time (s)

Original
Replay with timing

Replay no timing

(a) YouTube

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 10 20 30 40 50 60

C
u

m
u

la
ti

v
e

 t
ra

n
s

fe
r

(M
b

it
s

)â
��

Time (s)

Original
Replay with timing

Replay no timing

(b) Skype

Figure 2: Plots showing bytes transferred over time, with and
without preserving packet timings for TCP (YouTube) and UDP
(Skype) applications. By preserving inter-packet timings, our re-
play closely resembles the original traffic generated by each app.

compare exposed and control trials with each other and not
the original recorded trace.

A key challenge is how to automatically detect when dif-
ferences between two traces are caused by differentiation,
instead of signal strength, congestion, or other confounding
factors. In Section 5, we find that previous techniques to
identify differentiation are inaccurate when tested against
commercial packet shaping devices with varying packet loss
in our testbed. We describe a novel area test approach to
compare traces that has perfect accuracy with no loss, and
greater than 70% accuracy under high loss (Fig. 9).

4. VALIDATION
We validate our methodology using our replay system

and a testbed comprised of two commercial shaping devices.
First, we verify that our mechanism captures salient features
of the recorded traffic. Next, we validate that our replays
trigger differentiation and identify the relevant features used
for classification. To the best of our knowledge, this is first
study to use commercial shapers to validate differentiation
detection. Finally, we discuss potential overheads of using
the VPN connection as a control and how we mitigate them.

4.1 Record/Replay similarity
Our replay script replicates the original trace, including

payloads, port numbers, and inter-packet timing. We now
show that the replay is essentially identical to the recorded
traffic. Figure 2 shows the results for a TCP application
(YouTube (a)) and a UDP application (Skype (b)). As dis-
cussed above, preserving inter-packet timings is important
to produce a replay that closely resembles the original trace
(otherwise, we may claim that differentiation exists when
the application would never experience it).

Figure 2(a) shows that our replay captures the behavior
of the application, presenting the cumulative transfer over
time for a YouTube trace collected and replayed over the
Verizon mobile network. The figure shows the behavior for

Figure 3: Our testbed for testing our differentiation detector.

the original trace and two replays, one which preserves the
inter-packet timing (overlaps with original) and one which
transfers as fast as possible while preserving application-
layer dependencies. Preserving inter-packet timings results
in a replay that closely follows the recorded application be-
havior. Figure 2(b) shows similar results for Skype traffic.

4.2 Traffic shapers detect replayed traffic
We now validate that our replay traffic is properly classi-

fied for differentiation using commercial shaping products.
We acquired traffic shaping products from two different
vendors and integrated them into a testbed for validating
whether replays trigger differentiation (Fig. 3). The testbed
consists of a client connected to a router that sits behind a
traffic shaper, which exchanges traffic with a gateway server
that we control. The gateway presents the illusion (to the
packet shaper) that it routes traffic to and from the public
Internet. We configure the replay server to listen on arbi-
trary IP addresses on the gateway, giving us the ability to
preserve original server IP addresses in replays (by spoofing
them inside our testbed). We describe below some of our
key findings from this testbed.

Differentiation testing must be extensible. One device
lists more than 700 applications that it uniquely identifies,
the other lists approximately 2,000 application filters. Fur-
ther, both devices routinely update their classification rules,
on timescales of months (if not shorter). Thus, testing only
a small number of applications is insufficient. By allowing
users to create their own traces to conduct differentiation
tests, our approach is extensible to evolving differentiation
targets.

Our replays trigger traffic shaping. For replays to
be effective, they need to “look” like legitimate application
traffic from the perspective of the traffic shaper, i.e., re-
play traffic should be classified as the application that was
recorded. We validate this for a variety of popular mobile
applications: YouTube, Netflix, Skype, Spotify, and Google
Hangouts. Figure 4 shows the YouTube and P2P policies on
the shaper applied to our replay as we vary the application
payload.

Reverse-engineering classification. We use our testbed
to understand which features of the traffic were used to trig-
ger shaping, and should be preserved in replays. We replay a
recorded trace in our testbed multiple times, each time mod-
ifying a different feature of the traffic (destination IP, ports,
and packet payloads) and observe its effect on classification.

Table 1 summarizes the results for running tests using
YouTube. We find that regular expressions on packet pay-
load are the primary signature, with YouTube being cor-
rectly identified when payloads were unmodified, despite
changes to the server IP and ports (row 1). We modify three
different aspects of the packet payload: the first payload
byte, application-layer protocol details in the first packet,
and arbitrary bytes after the first packet. The second row
of the table shows that adding a one-byte packet caused the

Row Changes in traffic
Detection result using:

Original ports Different ports
1 No changes YouTube YouTube
2 Added a packet with 1 byte of data to the beginning of traffic HTTP P2P
3 Added one byte of random data to the beginning of first packet HTTP P2P
4 Replaced “GET”with a random string (same size) HTTP P2P
5 Replaced “youtube” string with a random one (first packet only) HTTP P2P
6 Replaced “youtube” string with a random one (first packet, HOST header only) YouTube YouTube
7 Added one byte of random data to the end of first packet YouTube YouTube
8 Added ”GET ” to beginning of first packet YouTube YouTube

Table 1: Effect of different parameters on YouTube traffic detection for a popular commercial shaping device. IP addresses do not affect
traffic classification, but ports and payloads have effects that vary.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 2 4 6 8 10 12 14 16 18

C
u

m
u

la
ti

v
e

 t
ra

n
s

fe
r

(M
b

it
s

)

Time (s)

Not shaped
Shaped at 512Kbps

Shaped at 1Mbps

Figure 4: The shaper has rules to rate limit YouTube and P2P
at 1Mbps and 512Kbps, respectively. Shaped at 1Mbps line is the
YouTube replay in plaintext where shaper correctly detects as
YouTube and shapes at 1Mbps. Shaped at 512Kbps is YouTube
replay with randomized payload and ports, where shaper detects
as P2P and limits at 512Kbps. The Not shaped line is YouTube
replay with string “youtube” being replaced by a random string,
where the shaper detects HTTP and does not limit since there is
no rules in place for HTTP.

shaper to classify the replay as HTTP (when using port 80)
or P2P (when using high, random ports). This behavior is
identical if replacing the first byte, the “GET” command, or
removing the string “youtube” from the payload of the first
packet (rows 3-8). However, if the GET command was un-
modified and at least one “youtube” string appeared in the
first packet, the flow was classified as YouTube. This indi-
cates that this shaping device is using regular expressions
and falling back to port-based classification when regular
expressions do not match. Interestingly, modifying any sub-
sequent packets or payload after the GET command has no
impact on classification.

We now summarize other key findings:

• Server IP addresses do not affect classification.
While our shapers support IP-based policies, we found
no evidence of IP-based classification rules.

• Non-standard ports may still be subject to dif-
ferentiation. An important outcome of our testing is
that traffic with random high port numbers may be clas-
sified as P2P. Glasnost’s [6] detection approach assumes
that traffic sent on random ports will not be subject to
differentiation, but traffic sent on standard ports will.
However, our shaping device classifies traffic on random
ports as P2P, which itself is often subject to differentia-
tion.

• Traffic shaping decisions are made early. For
HTTP requests, the first packet with payload, i.e., re-
quest packet from client, is enough for classification. For
UDP flows, e.g., Skype, the shaper requires more pack-
ets for classification (e.g., ∼10). This means that traf-

fic differentiation tests can trigger differentiation using a
small amount of data and only need to run long enough
to observe steady state performance. This observation is
particularly salient for mobile users who may be subject
to data caps.

• HTTPS flows are classified by the SNI. When the
SNI (Server Name Indication) is present it may be used
for classification. Modifying it results in detection as
HTTPS (instead of the specific application).

A key question is whether our replay approach is effective
for all shapers, not just those in our lab. While we can eval-
uate only the shapers we possessed, our replay approach suc-
cessfully detects differentiation in operational networks (Sec-
tion 6), indicating that our effectiveness is not limited only
to the lab environment. It remains an open question whether
there are other shaper models that are not accounted for in
our design.

4.3 VPN overhead
Our control trials use a VPN tunnel, due to potential is-

sues that arise when randomized ports and payloads are clas-
sified as P2P, or otherwise shaped. We now investigate the
overhead of this approach.

VPN overheads can stem from (1) IPSec encapsulation
and (2) latency added by going through the VPN (e.g., if
the VPN induces a circuitous route to the replay server).
The overhead for IPsec encapsulation varies depending on
the size of the payload, with smaller packets incurring higher
overheads. The impact on throughput is relatively small, as
shown in Table 2. For most applications, the difference in
throughput with the VPN is 2% or less. However, for Skype,
which has an average packet size of less than 300 bytes the
throughput overhead is higher (15%). Note that we both
record and replay traffic using an MTU that is small enough
to prevent fragmentation in the VPN tunnel.

To minimize the impact of latency, we run the replay
and VPN server on the same machine (currently running
on Amazon EC2), which adds less than 2ms of latency com-
pared to contact the replay server directly (without a VPN
tunnel). We argue these overheads are acceptably low, and
represent a reasonable lower bound on the amount of differ-
entiation we can detect.

5. DETECTING DIFFERENTIATION
In this section, we present the first study that uses ground-

truth information to compare the effectiveness of various
prior techniques for detecting differentiation, and propose a
new test to address limitations of prior work. We find that
previous approaches for detecting differentiation are inaccu-
rate when tested against ground-truth data, and character-

App Avg packet size (bytes) Avg throughput diff (%)
Youtube 705 1.13
Netflix 679 0.42

Hangout 435 2.06
Skype 234 15.64

Table 2: Minimal effect of VPN on our measurements. Skype
packets are small, leading to larger throughput overhead com-
pared to other apps.

ize under what circumstances these approaches yield correct
information about traffic shaping as perceived by applica-
tions.

Determining the accuracy of a differentiation detector is
more complicated than it may seem at first blush. To make
the explanation clearer, we separately consider three differ-
ent scenarios regarding the shaping rate and a given trace
(shown in Figure 5):

• Region 1. If the shaping rate is less than the average
throughput of the recorded traffic, a traffic differentiation
detector should always identify differentiation because
the shaper is guaranteed to affect the time it takes to
transfer data in the trace.

• Region 3. If the shaping rate is greater than the peak
throughput of the recorded trace, a differentiation de-
tector should never identify differentiation because the
shaper will not impact the application’s throughput (as
discussed in Section 2.2 we focus on shaping that will
actually impact the application).

• Region 2. Finally, if the shaping rate is between the
average and peak throughput of the recorded trace, the
application may achieve the same average throughput
but a lower peak throughput. In this case, it is possi-
ble to detect differentiation, but the impact of this dif-
ferentiation will depend on the application. For exam-
ple, a non-interactive download (e.g., file transfers for
app updates) may be sensitive only to changes in av-
erage throughput (but not peak transfer rates), while
a real-time app such as video-conferencing may experi-
ence lower QoE for lower peak rates. Given these cases,
there is not a single definition of accuracy that covers
all applications in region 2. Instead, we show that we
can configure detection techniques to consistently detect
differentiation or consistently not detect differentiation
in this region, depending on the application.

In the remainder of this section, we use this region-based
classification of shaping to evaluate three techniques for de-
tecting differentiation. We describe them in the next sec-
tion, describe how we calibrate their respective thresholds
and parameters, then discuss how resilient these approaches
are to noise (e.g., packet loss) and how efficient they are in
terms of data consumption.

5.1 Statistical tests
We explore approaches used in two prior works, Glas-

nost [6] and NetPolice [36], and propose a new technique
that has high accuracy in regions 1 and 3, and reliably does
not detect differentiation in region 2.

Glasnost: Maximum throughput test. Glasnost [6]
does not preserve the inter-packet timing when replay-
ing traffic, and identifies differentiation if the maximum
throughput for control and exposed flows differ by more than

Region 2
(between avg and max)

Region 3
(above max)

Region 1
(below avg)

Shaping rate
MaxAvg

Figure 5: Regions considered for determining detection accuracy.
If the shaping rate is less than the application’s average through-
put (left), we should always detect differentiation. Likewise, if the
shaping rate is greater than peak throughput (right), we should
never detect differentiation. In the middle region, it is possible
to detect differentiation, but the performance impact is unclear.

KS#Test##
sta)s)c#

Throughput#(KB/s)#

CD
F#

Throughput#(KB/s)#

CD
F#

Area#Test#=#w/a#
#

w#

a#

Figure 6: KS Test statistic (left) and Area Test statistic (right).
In the former case, the difference between the distributions is
small in terms of throughput, but the KS Test statistic is large. In
the Area Test statistic, we find the area between the distributions
and normalize it by the smaller of the peak throughputs for each
distribution.

a threshold. We expect this will always detect differentia-
tion in region 1, but might generate false positives in regions
2 and 3 (because Glasnost may send traffic at a higher rate
than the recorded trace).

NetPolice: Two-sample KS Test. As discussed in
NetPolice [36], looking at a single summary statistic (e.g.,
maximum) to detect differentiation can be misleading. The
issue is that two distributions of a metric (e.g., throughput)
may have the same mean, median, or maximum, but vastly
different distributions. A differentiation detection approach
should be robust to this.

To address this, NetPolice uses the two-sample
Kolmogorov–Smirnov (KS) test, which compares two em-
pirical distribution functions (i.e., empirical CDFs) based
on the maximum distance between two empirical CDF sam-
ple sets for a confidence interval α. To validate the KS Test
result, NetPolice uses a resampling method as follows: ran-
domly select half of the samples from each of the two original
input distributions and apply the KS Test on the two sample
subsets, and repeat this r times. If the results of more than
β% of the r tests agree with the original test, they conclude
that the original KS Test statistic is valid.

Our approach: Area Test . The KS Test only consid-
ers the difference between distributions along the y-axis (as
shown in Figure 6, left) even if the difference in the x-axis
(in this case, throughput) is small. In our experiments, we
found this makes the test very sensitive to small changes in
performance not due to differentiation, which can lead to
inaccurate results or labeling valid tests as invalid.

To address this, we propose an Area Test that accounts
for the degree of differentiation detected: we find the area, a,
between the two CDF curves (as shown in Fig. 6, right) and

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u

ra
c
y

re
g

io
n

s
 1

 &
 3

Area Test threshold

Figure 7: Calibrating Area Test for Youtube. We pick 0.2 as the
threshold.

normalize it by the minimum of peak throughputs for each
distribution, w. This test concludes there is differentiation if
the KS Test detects differentiation and the normalized area
between the curves is greater than a threshold t. We discuss
how we select thresholds in Sec. 5.4.

5.2 Testbed environment
Our testbed consists of a commercial traffic shaper, a re-

play client, and a replay server (Figure 3). We vary the
shaping rate using the commercial device to shape each ap-
plication to throughput values in regions 1-3. Depending
on the average and maximum throughputs for each trace,
we vary the shaping rate from 0.1 Mbps to 30 Mbps (9% to
300% of peak throughput).

We emulate noisy packet loss in our tests using the Linux
Traffic Control (tc) and Network Emulation (netem) tools
to add bursty packet loss according to Gilbert-Elliott (GE)
model [10]. We perform all our evaluations and calibrations
under three conditions: 1) low loss (no added loss), 2) mod-
erate loss (1.08%), and 3) high loss (1.45%). We found that
correlated losses higher than 1.5% had disastrous effects on
TCP performance and all detection techniques were inaccu-
rate.

Evaluation method. We explore the parameter space by
varying the application, loss rate, shaping rate, and number
of replay repetitions for each statistical test. We present re-
sults for a few popular TCP-based applications (YouTube
and Netflix) and UDP-based applications (Skype and Hang-
out); we also performed tests on a number of other appli-
cations (omitted for space). We repeat each test 10 times,
where a test is a replay performed with a given set of pa-
rameters, with and without shaping. We present results that
aggregate these tests to produce statistically significant re-
sults.

5.3 Evaluation criteria
We now describe the criteria under which we evaluate the

three differentiation tests.

Overall accuracy: Using the taxonomy in Figure 5, a
statistical test should always detect differentiation in region
1, and never detect differentiation in region 3. We define ac-
curacy as the fraction of samples for which the test correctly
identifies the presence or absence of differentiation in these
regions.

Resilience to noise: Differences between two empirical
CDFs could be explained by a variety of reasons, including
random noise [30]. We need a test that retains high accuracy
in the face of large latencies and packet loss that occur in
the mobile environment. When evaluating and calibrating
our statistical tests, we take this into account by simulating
packet loss.

App
KS Test Area Test Glasnost
R1 R3 R1 R3 R1 R3

Netflix 100 100 100 100 100 0
YouTube 100 100 100 100 100 0
Hangout 100 100 100 100 100 0
Skype 100 100 100 100 90 0

Table 3: Shaping detection accuracy for different apps, in regions
1 and 3 (denoted by R1 and R3). We find that the KS Test
(NetPolice) and Area Test have similarly high accuracy in both
regions (1 and 3), but Glasnost performs poorly in region 3.

Data consumption: To account for network variations
over time, we run multiple iterations of control and exposed
trials back to back. We merge all control trials into a single
distribution, and similarly merge all exposed trials. As we
show below, this can improve accuracy compared to running
a single trial, but at the cost of longer/more expensive tests.
When picking a statistical test, we want the one that yields
the highest accuracy with the smallest data consumption.

5.4 Calibration
We identify the most accurate settings of threshold values.

Glasnost: We used the threshold suggested by Glasnost,
δ = 0.2. This yields perfect accuracy in region 1, but gener-
ates 100% false positives in region 3 (as expected). Glasnost
always detects differentiation in region 2. For applications
that are sensitive to changes in peak throughput, this test
will yield the correct result.

KS Test: We use thresholds suggested by NetPolice, i.e.,
α = 0.95 and β = 0.95. This yields good accuracy in re-
gions 1 and 3, but inconsistent behavior in region 2. In
other words, this test will sometimes detect differentiation
in region 2, and sometimes not — making it difficult to use
for detection in this region. We also observed that even for
tests with no added loss in our testbed over well-provisioned
wired network, up to 8% of tests were considered invalid by
KS Test due to the issue shown in Fig. 6, while the Area Test
can correctly detect for differentiation (or no differentiation)
in those cases.

Area Test : We find that t = 0.1 or t = 0.2 yield the best
accuracy, depending on the application (Fig. 7). This yields
good accuracy in regions 1 and 3, and consistent decisions of
no differentiation for region 2. For apps that are insensitive
to changes only to peak throughput (average throughput
stays the same), this will yield the correct result.

5.5 Evaluation results
Summary results for low noise. We first consider the
accuracy of detecting differentiation under low loss scenar-
ios. Table 3 presents the accuracy results for four popular
apps in regions 1 and 3. We find that the KS Test and
Area Test have similarly high accuracy in both regions 1
and 3, but Glasnost performs poorly in region 3 because it
will detect differentiation, even if the shaping rate is above
the maximum. We explore region 2 behavior later in this
section; until then we focus on accuracy results for regions
1 and 3 and the two KS Tests (as they do not identify dif-
ferentiation in region 3)

Impact of noise. Properties of the network, which are
not related to shaping (e.g., congested-induced packet loss)
may impact performance and cause false positives for dif-
ferentiation detectors. In Fig. 8 we examine the impact of

App
Region 2

KS Test Area Test Glasnost
Netflix 65 28 100
YouTube 67 0 100
Hangout 40 0 100
Skype 55 10 92

Table 4: Percent of tests identified as differentiation in region 2
for the three detection methods. Glasnost consistently identifies
region 2 as differentiation, whereas the Area Test is more likely
to not detect differentiation.

 0

 0.2

 0.4

 0.6

 0.8

 1

Low loss Mod loss High loss

A
c

c
u

ra
c

y

Netflix - Area
Netflix - KS2

Skype - Area
Skype - KS2

Figure 8: Accuracy against loss.

loss on accuracy for one TCP application (Netflix) and one
UDP application (Skype). We find that both variants of the
KS Test have high accuracy in the face of congestion, but
the Area Test is more resilient to moderate and high loss for
Skype.

Impact of number of replays. One way to account for
noise is to use additional replays to average out any vari-
ations from transient noise in a single replay. To evaluate
the impact of additional replays, we varied the number of
replays combined to detect differentiation under high loss
and plotted the detection accuracy in Fig. 9.4 In the case
of moderate or high loss, increasing the number of replays
improves accuracy, particularly for a short YouTube trace.
In all cases, the Area Test is more accurate than (or equal
to) the KS Test. Importantly, the accuracy does not signif-
icantly improve past 2 or 3 replays. In our deployment, we
use 2 tests (to minimize data consumption).

Region 2 detection results. Recall that our goal is
to identify shaping that impinges on the network resources
required by an application. However, in region 2, shap-
ing may or may not impact the application’s performance,
which makes identifying shaping with actual application im-
pact challenging. We report detection results for the three
tests in region 2 in Table 4. We find that Glasnost consis-
tently identifies differentiation, the Area Test consistently
does not detect differentiation, and the KS Test is inconsis-
tent. When testing an application that is sensitive to shap-
ing of its peak throughput, the Glasnost method may be
preferable, whereas the Area Test is preferred when testing
applications that can tolerate shaping above their average
throughput.

When detecting differentiation, we conservatively avoid
the potential for false positives and thus do not report dif-
ferentiation for region 2. Thus, we use the Area Test in our
implementation because it will more reliably achieve this
result (Table 4).

6. MEASUREMENT STUDY
4Additional replays did not help when there is low loss.

0.6

0.7

0.8

0.9

1

1 2 3 4

A
c
c
u

ra
c
y

#replays combined

youtube-KS2
youtube-Area

hangout-KS2
hangout-Area

Figure 9: Effect of combining replays on accuracy in high loss.

We now use our calibrated detection approach to iden-
tify cases of differentiation using measurement study of pro-
duction networks. For each network, we focus on detection
for a set of popular apps that we expect might be subject
to differentiation: streaming audio and video (high band-
width) and voice/video calling (competes with carrier’s line
of business). The data from these experiments was collected
between January and May 2015.

6.1 System implementation
We now describe the implementation of our client and

server software. To promote transparency and guide pol-
icy for traffic differentiation, our source code and analysis
results will be made publicly available.

Client We implement our replay client in an Android app
that does not require any root privileges. The app con-
sists of 14,000 lines of source code (LOC), which includes
the Strongswan VPN implementation [27] (4,600 LOC). The
app conducts differentiation tests and reports results to our
replay servers as part of an IRB-approved study. Users un-
dergo informed consent when the app first runs, and cannot
run any tests unless they consent to participate in our study.

The app (Fig. 10) is pre-loaded with replay transcripts for
Viber, Netflix, Spotify, Skype, YouTube, and Google Hang-
outs, so that users can test for differentiation of these apps
without recording traffic.5 For each trace, the app follows
the replay procedure described in Section 3 and repeats the
replay tests twice6 back to back.

At the end of each replay, metadata such as carrier name,
OS information, network type, and signal strength, is col-
lected and sent to the server for analysis. To account for
the case where background traffic might affect our detec-
tion results, future version of the app will measure data
consumption during replays and discard results where we
detect interference from other traffic. Users can also access
their historical results through the app.

The app has been released to the Google Play store and
an iOS implementation is under development.

Server and analysis code The server coordinates with the
client to replay traces, and records packet traces for analy-
sis. This interaction is managed by side-channel connections
that identify which trace is being replayed and what ports
will be opened in the case of NAT traversal. For networks
that allow it (e.g., in our testbed), we support IP spoofing

5While we currently only support Android, the approach
should also work on any mobile OS that supports VPN con-
nectivity, including iOS. We are currently developing sup-
port for users to record their own traces from mobile devices.
6User can increase the number of back to back replays in
the app’s setting for more accuracy.

Figure 10: Screenshot of our Android Differentiation Detector
app.

so our replay server can send packets using the IP addresses
in arbitrary recorded traces. The server logic is 1,850 lines
of code (Python).

Our analysis code implements tests for throughput, RTT,
jitter, and loss differentiation. We implement KS Test and
Area Test , and use simple scalar metrics (average, max)
for loss. Our parsing script supports TCP and streaming
UDP applications. It uses tshark to extract conversations.
Together, these artifacts consist of 1,170 lines of code.

6.2 Challenges in operational networks
In this section we discuss several challenges that we en-

countered when attempting to identify differentiation in mo-
bile networks. To the best of our knowledge, we are the first
to identify these issues for detecting differentiation and dis-
cuss workarounds that address them.

Per-client management. To replay traffic for multiple
simultaneous users, our replay server needs to be able to map
each received packet to exactly one app replay. A simple
solution is to put this information in the first few bytes of
each flow between client and server. Unfortunately, as shown
in Section 4.2, this can disrupt classification and lead to false
negatives. Instead, we use side-channel connections out of
band from the replay to supply information regarding each
replay run.

NAT behavior. We also use the side-channel to identify
which clients will connect from which IPs and ports. For
networks without NAT devices, this works well. However,
many mobile networks use NAT, meaning we can’t use the
side-channel to identify the IP and port that a replay con-
nection will use (because they may be modified by the NAT).
For such networks, we can reliably support only one active
client per replay server and ISP and application. While this
has not been an issue in our initial app release, we are inves-
tigating other work-arounds. Moreover, to scale the system,
we can use multiple replay servers and a load balancer. The
load balancer can be configured to assign clients with the
same IP address to different servers.

“Translucent” HTTP proxies. It is well known that
ISPs use transparent proxies on Web traffic [34]. Our sys-

tem works as intended if a proxy simply relays exactly the
same traffic sent by a replay client. In practice, we found
examples of “translucent” proxies that issue the same HTTP
requests as the client but change connection keep-alive be-
havior; e.g., , the client uses a persistent connection in the
recorded trace and the proxy does not. To handle this be-
havior, our system must be able to map HTTP requests from
unexpected connections to the same replay.

Another challenge with HTTP proxies is that the proxy
may have a different public IP address from other non-
HTTP traffic (including the side-channel), which means the
server will not be able to map the HTTP connections to
the client based on IP address. In these cases the server
replies to the HTTP request with a special message. When
the client receives this message, it restarts the replay. This
time the client adds a custom header (X-) to HTTP requests
with client’s ID, so the server can match HTTP connections
with different IP addresses to the corresponding clients. The
server then ignores this extra header for the remainder of the
replay. We have also observed that some mobile providers
exhibit such behavior for other TCP and UDP ports. In
these cases we can identify users based on ISP’s IP subnet,
which means we can only support one active client per re-
play server and ISP, regardless of the application they are
replaying.

Content-modifying proxies and transcoders. Recent
reports and previous work highlight cases of devices in ISPs
that modify customer traffic for reasons such as tracking [18],
caching [34], security [24], and reducing bandwidth [32]. We
also saw several cases of content-modifying proxies. For
example, we saw Sprint modifying HTTP headers, Veri-
zon inserting global tracking cookies, and Boost transcoding
YouTube videos.

In our replay methodology, we assumed that packets ex-
changed between the client and server would not be not
modified in flight, and trivially detect modification because
packet payloads do not match recorded traces. In the case
of header manipulation, we use an edit-distance based ap-
proach to match modified content to the recorded content it
corresponds to. In the case of transcoding and modifications
that go beyond HTTP headers, while our system can toler-
ate moderate amounts of modification (e.g., HTTP header
manipulation/substitution), if the content is modified dras-
tically, e.g., transcoding an image to reduce its size, it is
difficult to detect shaping because the data from our control
and exposed trials do not match. In our current system,
we simply notify the user that there is content modification
but do not attempt to identify shaping. We leave a more
detailed analysis of this behavior to future work.

Caching. Our replay system assumes content is served
from the replay server and not an ISP’s cache. We detect
the latter case by identifying cases where the client receives
data that was not sent by the server. In the few cases where
we observed this behavior, the ISPs were caching small static
objects (e.g., thumbnail images) which were not the domi-
nant portion of the replay traffic (e.g., when streaming au-
dio) and had negligible effect on our statistical analysis.
Going forward, we expect this behavior to be less promi-
nent due to the increased use of encrypted protocols, e.g.,
HTTP/2 and QUIC. In such cases, an ISP may detect and
shape application traffic by using SNI for classification, but
they cannot modify or cache content.

ISP YT NF SF SK VB HO
Verizon m m m - - -
T-Mobile - - - - - -
AT&T f f f - - -
Sprint m/p m/p m/p - - -
Boost m m m - - -
BlackWireless 60% - - - - -
H2O 37%* 45%* 65%* - - -
SimpleMobile 36% - - - - -
NET10 p p p - - -

Table 5: Shaping detection results per ISP in our dataset, for six
popular apps: YouTube (YT), Netflix (NF), Spotify (SF), Skype
(SK), Viber (VB), and Google Hangout (HO). When shaping oc-
curs, the table shows the difference between average through-
put (%) we detected. A dash (-) indicates no differentiation, (f)
means IP addresses changed for each connection, (p) means a
“translucent” proxy changed connection behavior from the origi-
nal app behavior, (m) indicates that a middlebox modified con-
tent in flight between client and server. *For H2O network, re-
plays with random payload have better performance than VPN
and exposed replays, indicating a policy that favors non-video
HTTP over VPN and streaming video.

6.3 Differentiation results
In this section, we present results from running our Dif-

ferentiation Detector Android app on popular mobile net-
works. The app is available from our website, http://dd.
meddle.mobi, where we also present summary statistics for
user tests. This dataset consists of 4786 replay tests, cover-
ing traces from six popular apps. We collected test results
from most major cellular providers and MVNOs in the US;
further, we gathered measurements from four international
networks.

Our app supports both VPN traffic and random payloads
(but not random ports) as control traffic. We use the lat-
ter only if a device does not support VPN connectivity or
the cellular provider blocks or differentiates against VPN
traffic. After collecting data, we run our analysis to detect
differentiation; the results for US carriers are presented in
Table 5. In other networks such as Idea (India), JazzTel
(Spain), Three (UK), and T-Mobile (Netherlands), our re-
sults based on a subset of the traces (the traces that users
selected) indicated no differentiation.

Our key finding is that our approach successfully de-
tect differentiation in three mobile networks (BlackWireless,
H2O, and SimpleMobile), with the impact of shaping result-
ing in up to 65% performance difference in terms of average
throughput. These shaping policies all apply to YouTube
(not surprising given its impact on networks), but not al-
ways to Netflix and Spotify. We did not identify differen-
tiation for UDP traffic in any of the carriers. Interestingly,
H2O consistently gives better performance to port 80 traffic
with random payloads, indicating a policy that gives rela-
tively worse performance to VPN traffic and streaming au-
dio/video. We tested these networks again in August, 2015
and did not observe such differentiation. We speculate that
these networks ceased their shaping practices in part due to
new FCC rules barring this behavior, effective in June, 2015.

While attempting to detect differentiation, we identified
other interesting behavior that prevented us from identifying
shaping. For example, Boost transcodes YouTube video to
a fraction of the original quality, and then caches the result
for future requests. Other networks use proxies to change

TCP behavior. We found such devices to be pervasive in
mobile networks.

7. DISCUSSION
This paper focuses on detecting differentiation that im-

pacts application performance. While investigating shap-
ing, our technique revealed a number of other issues that
are beyond the scope of this paper.

Assigning blame. When differentiation is detected, we
generally assign blame to the network from where the test is
launched, i.e., the access network. While in theory it might
be caused by any network along the path between the ac-
cess network and our replay server, we expect that transit
networks will not have incentive to differentiate and we en-
sure that our replay hosting sites also do not differentiate
traffic. As part of future work, we will investigate how to
combine differentiation results from multiple vantage points
(e.g., using tomography) to identify cases when differenti-
ation is not caused by the access network, but rather an
intermediate network.

Differentiation against VPN traffic. A subtle chal-
lenge arises when recording traces of app-generated net-
work traffic over a production network: what happens when
recorded traffic is subject to differentiation (e.g., shaping)?
If the recorded and replayed traffic are both shaped, a näıve
detector will indicate that the network has no differentiation.
One simple solution is to allow users to run traces captured
from a network of the same type (e.g., WiFi, 3G, LTE)
where we know the recorded traces were not subject to dif-
ferentiation (our current version of the app ships with traces
from different applications recorded over a well-provisioned
network that does not shape traffic).

While this solves the problem, it does not tell us when
there is a problem in the first place. For this, we need to
detect that the VPN traffic itself is subject to differentia-
tion. If there exists at least one class of traffic that is not
shaped in our tests, then it will get higher performance out-
side the VPN tunnel compared to inside the tunnel. In this
case, there will be at least one case where tunneled perfor-
mance will be different from non-tunneled. As a result, we
can reliably conclude that there is some kind of differentia-
tion7; however, we cannot yet directly attribute it to shaping
against a VPN.

One potential way to address this is to exploit the obser-
vation that popular shaping devices use token-bucket queues
to enforce fixed-rate shaping. As shown in Fig. 11 (1 Mbps)
shaping devices exhibit a characteristic queueing delay evi-
dent when plotting bytes in flight vs. RTT. If a traffic class
is subject to differentiation, we will observe increased delays
compared to a case that is not managed via a queue.

If indeed the control traffic is shaped, it limits our ability
to test other types of traffic for differentiation—this is true of
any differentiation detection approach. However, detection
of this behavior itself is important information; for example,
in the US even this behavior will be in violation of FCC
rules effective June 12, 2015. [9]

Shaping configurations can have unintended conse-
quences for TCP. In one sample configuration already
used by an ISP (Fig. 11, 512 Kbps), we found that the shap-
ing rate was so low that it prevented TCP from ever exiting
7More generally, we can draw the same conclusion if at least
one class of traffic is shaped differently from VPN traffic.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 20 40 60 80 100 120 140

R
T

T

Bytes in flight (KB)

1Mbps 512Kbps

Figure 11: Effect of shaping on latency for a TCP stream. Shap-
ing at 1 Mbps exhibits expected queuing delays that identify the
size of the buffer (x=75 KB); however, shaping at a lower rate
(512 kbps) leads to bimodal RTTs largely due to TCP never ex-
iting slow start.

slow start. Importantly, TCP increased its congestion win-
dow exponentially in time while the shaper’s queue drained
linearly in time, leading to substantial queuing and packet
loss.

This is problematic for two reasons. First, this policy
leads to wasted bandwidth at the network edge, which will
cost the ISP running the shaper. Second, it is unclear how
the user is being charged for this lost traffic. If users are
billed based on bytes entering the network before hitting
the shaper, the ISP will over charge the user for packets that
were never delivered. Such policies, and their implications,
merit further investigation as part of a future study.

Evasion. One of our goals is to improve transparency
for network management practices in cellular data networks.
ISPs wishing to avoid characterization may attempt to do
so by blocking VPN traffic or selectively changing policies
for our replay traffic. If ISPs choose to block our traffic,
we can easily detect it and report this result to users and
policy makers. For cases where the traffic is selectively given
different treatment, we can attempt to disguise replay traffic,
using different servers, ports and control traffic techniques
(e.g., different payload/port randomization scheme).

Data caps. Some providers have “unlimited” data plans
with lower data rates after usage exceeds a certain cap. We
do not expect to detect this from a single user, but may be
able to identify it by combining results from multiple users
or by monitoring data usage via Android APIs.

8. CONCLUSION
We presented and evaluated a new tool for accurately de-

tecting differentiation using a VPN to record and replay
traffic generated by apps to improve transparency in mo-
bile networks. We found extensive use of middleboxes that
break end-to-end principles in mobile networks, and identi-
fied their impact on applications.

From a network neutrality perspective, our findings are
concerning in part due to observed shaping policies and
third-party modification of traffic, both of which are perva-
sive. There is little research into the impact of such devices,
and currently policymakers have essentially no guidance as
to how to regulate this behavior. As part of our ongoing
work, we are developing a Web site to make our results pub-
lic — both to improve transparency for users and to guide
future policies. In addition, we are investigating how to
fingerprint middleboxes in mobile networks and developing

techniques to understand their impacts on a wide range of
applications.

9. REFERENCES
[1] Experimenting with QUIC. http://blog.chromium.

org/2013/06/experimenting-with-quic.html.

[2] Mobilyzer. http://www.mobilyzer-project.mobi.

[3] V. Bashko, N. Melnikov, A. Sehgal, and
J. Schonwalder. Bonafide: A traffic shaping detection
tool for mobile networks. In IFIP/IEEE International
Symposium on Integrated Network Management
(IM2013), 2013.

[4] D. Clark. Network neutrality: Words of power and
800-pound gorillas. International Journal of
Communication, 2007.

[5] W. Cui, V. Paxson, N. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application
dialog. In Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS),
February 2006.

[6] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi,
R. Mahajan, and S. Saroiu. Glasnost: Enabling end
users to detect traffic differentiation. In Proc. of
USENIX NSDI, 2010.

[7] FCC announces ”Measuring Mobile America”
program. http://www.fcc.gov/document/fcc-
announces-measuring-mobile-america-program.

[8] FCC. Order 10-201: Preserving the open internet.
https://apps.fcc.gov/edocs_public/attachmatch/

FCC-10-201A1_Rcd.pdf, December 2010.

[9] FCC. Protecting and promoting the open internet.
https://www.federalregister.gov/articles/2015/

04/13/2015-07841/protecting-and-promoting-the-

open-internet, April 2015.

[10] G. Hasslinger and O. Hohlfeld. The gilbert-elliott
model for packet loss in real time services on the
internet, 2008.

[11] S. Higginbotham. The netflix-comcast agreement isn’t
a network neutrality violation, but it is a problem.
http://gigaom.com/2014/02/23/the-netflix-

comcast-agreement-isnt-a-network-neutrality-

violation-but-it-is-a-problem/, February 2014.

[12] http://www.neubot.org. Neubot – the network
neutrality bot.

[13] J. Hui, K. Lau, A. Jain, A. Terzis, and J. Smith. How
YouTube performance is improved in T-Mobile
network. http://velocityconf.com/velocity2014/
public/schedule/detail/35350.

[14] P. Kanuparthy and C. Dovrolis. ShaperProbe:
end-to-end detection of ISP traffic shaping using
active methods. In Proc. of IMC, 2011.

[15] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. In Proc. of
IMC, 2010.

[16] M. Luckie, A. Dhamdhere, D. Clark, B. Huffier, and
K. Claffy. Challenges in inferring Internet interdomain
congestion. In ACM Internet Measurement
Conference, 2014.

[17] R. Mahajan, M. Zhang, L. Poole, and V. Pai.
Uncovering performance differences among backbone
ISPs with Netdiff. In Proc. of USENIX NSDI, 2008.

[18] J. Mayer. How verizon’s advertising header works.
http://webpolicy.org/2014/10/24/how-verizons-

advertising-header-works/.

[19] Measurement Lab Consortium. Isp interconnection
and its impact on consumer internet performance.
http://www.measurementlab.net/blog/2014_

interconnection_report, October 2014.

[20] A. Norberg. utorrent transport protocol.
http://www.bittorrent.org/beps/bep_0029.html.

[21] B. Obama. Net neutrality: President Obama’s plan for
a free and open internet.
http://www.whitehouse.gov/net-neutrality#

section-read-the-presidents-statement.

[22] A. Rao, J. Sherry, A. Legout, W. Dabbout,
A. Krishnamurthy, and D. Choffnes. Meddle:
Middleboxes for increased transparency and control of
mobile traffic. In Proc. of CoNEXT 2012 Student
Workshop, 2012.

[23] D. Rayburn. Cogent now admits they slowed down
netflix’s traffic, creating a fast lane & slow lane.
http://blog.streamingmedia.com/2014/11/cogent-

now-admits-slowed-netflixs-traffic-creating-

fast-lane-slow-lane.html, November 2014.

[24] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting In-Flight Page Changes with Web
Tripwires. In Proc. of USENIX NSDI, 2008.

[25] Sandvine - intelligent broadband networks.
http://www.sandvine.com.

[26] F. Sarkar. Prevention of bandwidth abuse of a
communications system, Jan. 9 2014. US Patent App.
14/025,213.

[27] Strongswan. www.strongswan.org.

[28] P. Svensson. Comcast blocks some internet traffic.
http://www.washingtonpost.com/wp-dyn/content/

article/2007/10/19/AR2007101900842.html,
October 2007.

[29] Switzerland network testing tool.
https://www.eff.org/pages/switzerland-network-

testing-tool.

[30] M. B. Tariq, M. Motiwala, N. Feamster, and
M. Ammar. Detecting network neutrality violations
with causal inference. In CoNEXT, 2009.

[31] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,
N. Weaver, and V. Paxson. Beyond the radio:
Illuminating the higher layers of mobile networks.
Technical Report TR-14-003, ICSI, 2014.

[32] N. Weaver, C. Kreibich, M. Dam, and V. Paxson.
Here Be Web Proxies. In Proc. PAM, 2014.

[33] N. Weaver, R. Sommer, and V. Paxson. Detecting
forged TCP reset packets. In Proc. of NDSS, 2009.

[34] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett,
D. Choffnes, and R. Govindan. Investigating
transparent web proxies in cellular networks. In Proc.
PAM, 2015.

[35] F. Zarinni, A. Chakraborty, V. Sekar, S. Das, and
P. Gill. A first look at performance in mobile virtual
network operators. In ACM Internet Measurement
Conference (IMC), 2014.

[36] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting
Traffic Differentiation in Backbone ISPs with
NetPolice. In Proc. of IMC, 2009.

[37] Z. Zhang, O. Mara, and K. Argyraki. Network
neutrality inference. In Proc. of ACM SIGCOMM,
2014.

