

Accelerating YouTube & Google Search

Andreas Terzis

YouTube Statistics

- YouTube is a large fraction of Internet traffic globally¹
 - 17% NA, 25% Europe, 33% LATAM, 23% APAC of fixed-line traffic
- Mobile makes ~40% of YouTube's global watch time
- Over 6B hours of video watched each month on YouTube²
- 100 hours of video are uploaded to YouTube every minute
- ~8M users concurrently saw Felix Baumgartner jump from space

How YouTube works: Mapping

- ① Client issues HTTP(S) request for manifest from YT Front End: GET /watch?v=n_6p-1J551Y
- ② Mapping infrastructure determines cache that the user should contact
- ③ YTFE returns Manifest with videoplayback URLs for different encoding schemes/rates/video sizes
- 4 Client resolves xxx.googlevideo.com -> x.y.z.w (inside carrier's addr space)

How YouTube works today: Video Playback

- ⑤ Client issue HTTP(S) videoplayback requests from nearest Google Global Cache (GGC)
 - HTTP range requests for *video chunks* (100's KB MB)
 - ABR algorithm at the client determines requested format for the next video chunk
 - ABR selection depends on multiple factors: network rate, screen size, client resources, etc.

Delivering Video to Mobile Networks: TCP Proxies

Challenging the assumption

- Conventional wisdom suggests that TCP proxies improve performance in cellular networks
- What happens if we bypass the proxy?
 - Quality of User Experience
 - Network usage
- To answer this question we bypassed TCP proxies for YouTube traffic and measured difference

Percentage of Retransmitted Bytes

Direct connections have fewer retransmitted bytes

Throughput Distribution

Direct connections have higher throughput

Distribution connection bloat

Removing proxy did not significantly change overall network traffic

Slight increase in busy hour and daily volume No significant change in other metrics

Evaluation Metrics II: Quality of Experience

- 1. Join Latency: $T_I T_o$
- 2. Playback time: $T_P = (T_2 T_1) + (T_4 T_3) + (T_7 T_6) + (T_9 T_8)$
- 3. Total Rebuffer time: T_3 - T_2
- 4. Battery Lifetime (Power consumed during $[T_0, T_9]$)

Total Rebuffer Time (sec)

Direct connections rebuffer for less time

Join Latency (sec)

Direct connections have lower join latency

Decreasing web search latency on 2G networks

- Large portion of users in emerging markets access the Internet over 2G networks
- End-to-end Latency is 2 components
- Byte reduction can only improve Response Receipt / Render

 Request time is driven by RTT to closest Google front end (= 4* RTTs for HTTPS)

RTT as a function of network type

RTT between UEs and

closest Google server
Considerable variation
in RTT
Where is the variation
coming from?

