
Functional Adaptive Programming

Bryan Chadwick and Karl Lieberherr

College of Computer & Information Science
Northeastern University, 360 Huntington Avenue

Boston, Massachusetts 02115 USA.
{lieber,chadwick}@ccs.neu.edu

Abstract. We present a functional formulation of Adaptive Program-
ming (AP), that provides a safe, modular solution to the expression prob-
lem. Functional Adaptive Programming (AP-F) maintains the separation
of traversal and control of AP with computation encapsulated into func-
tion objects that fold over data structures with support for programmer
controlled traversal contexts. Data structures and functions are indepen-
dently extensible, while traversals become automatically parallelizable
and can be statically checked for correctness. We provide a detailed de-
scription of our AP-F implementation, called DemeterF, discussing its
key features, type checking, performance, and an extended expression
compiler example.
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1 Introduction

Developing large programs that are easy to evolve can be very difficult. The
expression problem [25] captures this idea, referring to the fundamental problem
of simultaneously extending both a given data hierarchy and operations over it.
Object Oriented Programming (OOP) provides inheritance based abstractions
allowing classes to share methods and data, providing specialized behavior when
needed. Because data and methods are combined, it is easy to add new data
variants, but adding new operations requires changes to many separate but re-
lated classes. In Functional Programming (FP) we structure programs around
functional abstractions, making the addition of new operations simple, but the
addition new data types requires modification of previous code.

The visitor pattern [8] has been introduced in order to implement operations
over a data hierarchy without the need to modify the underlying classes. The
idea has been abstracted further [14] to separate not only operations (what-to-

do) but also control (where-to-go) from traversal (how-to-get-there). This allows
programs to adapt to many structural changes, e.g., new data types, without
programmer involvement. The cost of the adaptive traversal, as with most vis-
itor implementations, is we are forced to compute via side-effects. This makes
parallelization difficult and can lead to subtle bugs and forced traversal orderings
that make verification difficult.



In this paper we present a functional formulation of Adaptive Programming
(AP) [14, 13], that provides a safe, modular solution to the expression problem.
Functional Adaptive Programming (AP-F) maintains the separation of traversal
and control of AP, encapsulating computation into function objects that fold over
the data structures with support for programmer controlled traversal contexts.
In addition to separate, mutation free traversals we get the following additional
benefits:

Independent extensibility: inheritance can be used to extend both data
structures and functions independently.
Automatic parallelization: separate functional operations makes parallel
traversals simple.
Verifiable operations: functional traversal makes the types of arguments
and return values explicit so we can varify traversals, even with separated
operations and control.

Our Java implementation of AP-F, called DemeterF, includes a library with
support for sequential and parallel reflective traversals, and a class generator
that gnerates data definitions, static traversal code, and data-generic operations
including parsing, printing, equals. The rest of this paper describes the details of
AP-F and the DemeterF system. In the next section we introduce a motivating
example that highlights the features of AP-F and DemeterF. Section 3 gives an
overview of DemeterF traversals including control, contexts, types and general
traversal performance. We discuss the DemeterF class generator (DemFGen) in
section Section 4. An extended DemeterF example of expression compilation is
presented in section Section 5, related work is discussed in section Section 6, and
we conclude in section Section 7.

2 Motivation

To motivate our traversal implementation and abstractions, we discuss the imple-
mentation of evaluation for data structures representing arithmetic expressions.
Figure 1 shows Java syntax that describes a version of the classes/structures
involved. For the sake of brevity we elide constructors and access modifiers (e.g.,
public). These structures represent a simple language with a chain of variable
definitions followed by an expression. With these classes as our abstract syntax,
we construct a simple term representing the definition:

x = 5; (- 4 x)

as the Java expression:

new Def(new ident("x"), new Num(5),
new Bin(new Sub(), new Num(4),

new Var(new ident("x"))))

To calculate the final value of a given Exp we recursively evaluate each Def,
appling the accumulated bindings in each body expression. This operation, eval,
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abstract class Exp{}
class Num extends Exp{

int val;
}
class Bin extends Exp{

Oper op;
Exp left , right;

}
abstract class Oper{}

class Var extends Exp{
ident id;

}
class Def extends Exp{

ident id;
Exp e, body;

}

class Sub extends Oper{}

Fig. 1. Simple Expression Structures

can be implemented in a number of ways; Figure 2 shows a straightforward OO-
style implementation, assuming a functional implementation of environments,
Env. Comments describe the class where each method belongs. For each abstract
class we introduce an abstract method; for each concrete class we implement the
specific version of eval(·), recursively calling where needed.

/* Exp */ abstract int eval(Env ev);
/* Oper*/ abstract int eval(int l, int r);

/* Num */ int eval(Env ev){ return val; }
/* Var */ int eval(Env ev){ return ev.apply(id); }
/* Sub */ int eval(int l, int r){ return l-r; }

/* Bin */ int eval(Env ev)
{ return op.eval(left.eval(ev), right.eval(ev)); }

/* Def */ int eval(Env ev)
{ return body.eval(ev.extend(id, e.eval(ev))); }

Fig. 2. OO Exp Internal Evaluation

Figures 1 and 2 demonstrate the difficulties of adding operations to a hi-
erarchy of classes, as the implementation of a single operation is distributed
throughout, interleaving both structural and behavioral concerns. There are also
operations such as parsing, printing, and equality, that can be written generi-
cally based on the structures themselves, rather than specific instances. To sup-
port concise structural specification, the DemeterF class generator (DemFGen)
merges separate descriptions of class definitions (structure, behavior, and data-
generic operations) into compilable code. An added benefit of our organization
is that we can provide different target language modules for DemFGen; in par-
ticular, we currently support both Java and C# code generation.

As for the implementation of the eval operation itself, a few key issues emerge
from this example:

1. Cooperating methods are scattered : the OO implementation of eval(·) is
spread throughout the classes.
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2. The method argument is passed everywhere, but not used often: here the en-
vironment is only needed for evaluation of Def and Var instances (definitions
and uses).

3. Recursive calls are explicit : the structure is encoded in both the class defini-
tions and the eval implementation. This code is brittle with respect to the
structural changes.

4. Traversal order and direction is hidden: the order of the recursive eval re-
sults is not obvious in the body of compound classes.

While inter-type declarations [10] can solve the first issue, visitor-based tech-
niques [13, 14, 20, 21] have been developed in order to address the others. In its
original incarnation, the Visitor Pattern [8] requires a simple accept(Visitor)

method to aid in the implementation of a double dispatch mechanism. Using
accept(·), different operations over the structures can be implemented by en-
coding traversal within the visitor. Figure 3 shows a visitor implementation of
eval.

class EvalVis extends Visitor{
Stack <Integer > stk = new Stack <Integer >();
Env ev = Env.empty ();

void visit(Num n){ stk.push(n.val); }
void visit(Sub s){ stk.push(stk.pop()-stk.pop ()); }
void visit(Bin b){

b.right.accept(this);
b.left.accept(this);
b.op.accept(this);

}

void visit(Var v){ stk.push(ev.apply(v.id)); }
void visit(Def d){

d.e.accept(this);
ev = ev.extend(d.id,stk.pop ());
d.body.accept(this);
ev = ev.unextend ();

}
}

Fig. 3. Visitor Exp Evaluation

Encoding the traversal in the visitor leaves the target hierarchy untouched,
but in order to maintain flexibility in the return types of accept methods the
programmer is forced to use mutation, which constrains the traversal order fur-
ther. In this case, values on the stack must be pushed/popped in the correct
order; traversing the right expression of a Bin first, so the left result is at the
top of the stack when needed. The use of side-effects does eliminate the passing
of the environment, but there is no warning when data structures change. If
we attempt add a new variant of Exp the visitor continues to compute a value,
though it will likely be incorrect. In contrast to the compositional nature of the
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hand-written eval, the visitor’s side-effects are very sensitive to traversal order
and difficult to separate into multiple threads.

To eliminate these problems associated with both visitors and hand-coded
traversals, DemeterF provides a generic (ataptive) traversal that is parametrized
by two objects: a function object that computes over the traversal, and a control

object that directs the traversal. The first is responsible for updating context
information (i.e., a traversal argument) and folding together of recursive results.
The second guides the traversal through the data structure by describing which
fields should be traversed.

Figure 4 shows a complete DemeterF implementation of Exp evaluation. The
Eval class extends ID, a base DemeterF class that implements the identity func-
tion for contexts and primitive types. To evaluate an expression, we create a
Traversal object that uses this instance to compute, bypassing the body field
of Def instances.

class Eval extends ID{
Traversal trav;
Eval (){ trav = new Traversal(this , Control.bypass("Def.body")); }

int eval(Exp e, Env ev){ return trav.<Integer >traverse(e, ev); }

int combine(Num n, int i){ return i; }
Sub combine(Sub s){ return s; }
int combine(Bin b, Sub s, int l, int r){ return l-r;}

int combine(Var v, ident i, Env ev){ return ev.apply(i); }
int combine(Def d, ident id, int e, Exp b, Env ev)
{ return eval(b, ev.extend(id, e)); }

}

Fig. 4. DemeterF Exp Evaluation

After recursively traversing the selected fields of each instance, our general
traversal passes the results along with the context (Env) to the most specific
combine method. The original object is included as the first parameter, allowing
methods to match the type of the parent instance. Operationally, we update
contexts while traversing down the object tree, computing results at leafs (e.g.,
int) and pushing the them up to containing objects through combine methods.
As a result, the computation mentions the context and restarts traversal only
when needed. The Eval class can be extended with new combine methods using
inheritance when new variants of Exp are defined, while the functional nature
of our computation allows the implicit traversal to execute in parallel. More
information is provided by the methods about expected traversal argument and
return types, which can be checked to ensure safety.
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3 DemeterF Traversals

To describe the details of DemeterF traversals we use typical OO binary search
tree (BST) structures with a functional interpretation. Figure 5 shows simple
Java classes implementing a BST class with two variants: Leaf and Node. Again,
we leave out constructors and access modifiers for space.

abstract class BST{}

class Leaf extends BST{}

class Node extends BST{
int data;
BST left , right;

}

Fig. 5. BST Structures

The main contribution of the DemeterF system is its traversal library. The
library includes classes that implement a generic, depth-first traversal over an
instance of a data structure. The traversal is parametrized by two objects: a
function object, which advises the traversal using specially named methods, and
a control object that guides the traversal through the structures. When creating a
Traversal, the programmer passes instances of ID (the identity function object)
and Control; for programmer convenience the default Control permits traversal
everywhere when none is given.

3.1 Function Objects

Function classes (subclasses of ID) implement combine methods that fold to-
gether recursive traversal results, and update methods that maintain a traversal
context. The ID implementation includes identity combine methods for primi-
tive types (i.e., int, boolean, etc.), and an identity update method for contexts.
The first parameter passed to a combine method is the original object being tra-
versed and the last is the traversal context, if used. Others are the result of
recursively traversing each of the object’s fields. Our default traversal imple-
mentation uses reflection, so results are passed to methods in the source order
of the corresponding fields.

class ToString extends ID{
String combine(Leaf l){ return "(leaf)"; }
String combine(Node n, int d, String l, String r)
{ return "(node "+d+" "+l+" "+r+")"; }

static String toString(BST t){
return new Traversal(new ToString ()).<String >traverse(t);

}
}

Fig. 6. BST toString
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Figure 6 shows a simple toString function over BSTs that returns a string
of nested named parenthesis representing the given tree. The static method
ToString.toString(·) creates a new Traversal, passing a ToString function
object. The default Control directs the traversal everywhere, which corresponds
to the static creator Control.everywhere(). The traverse method is called,
passing the object we wish to traverse; in this case no context is used.

For traversal contexts, update methods are called before traversing each field
of an object. The function object can modify the context (or traversal argument)
for separate fields of a specific type. Figure 7 shows a top-down calculation of BST
height. The update method increments the traversal context (dp, representing
the current depth) for any field of a Node.

class Height extends ID{
int combine(Leaf l, int dp){ return dp; }

int update(Node n, Fields.any f, int dp){ return dp+1; }
int combine(Node n, int d, int l, int r){ return Math.max(l,r); }

static int height(BST t){
return new Traversal(new Height ()).<Integer >traverse(t, 0);

}
}

Fig. 7. BST Top Down Height

The update method parameters include a tag that describes which fields it
corresponds to; here the traversal will call our method for any field of a Node.
When calling the traverse method we pass a second argument that represents
the root context. When calling a combine method, the traversal context is passed
as the last parameter, after any recursive results. The combine methods within
Height pass the maximum calculated depth back up the BST: at a Leaf the
context is the current depth; at a Node, we choose the maximum depth of the
left and right BSTs. Note that the context is not mentioned in the combine

method for Nodes; for programmer convenience unused parameters can be left
off the end of update and combine method signatures.

3.2 Control

DemeterF provides separate traversal control similar to that found in DemeterJ
and DJ[24, 20], but Control instances are created using static methods, rather
than a domain specific language1.

Figure 8 shows a function class that traverses a BST using the onestep traver-
sal. The static creator Traversal.onestep() returns a traversal that allows the

1 Support for DemeterJ style strategies is available in a separate (non-default) Deme-
terF build.
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class IsLeaf extends ID{
boolean combine(Leaf l){ return true; }
boolean combine(Node n){ return false; }

static boolean isLeaf(BST t){
return Traversal.onestep(new IsLeaf ()).<Boolean >traverse(t);

}
}

Fig. 8. BST IsLeaf

programmer to step into an object and retrieve the values of its fields as pa-
rameters for combine matching. The function only needs the first parameter to
determine the result, so the others are not included in the method signature for
Node. Using onestep, we can eliminate field accesses and instance checks, letting
the traversal matching to do all the hard work, similar to pattern matching in
functional programming languages.

class Insert extends ID{
BST combine(Leaf l, int nd){ return new Node(nd,l,l); }
BST combine(Node n, int d, BST l, BST r, int nd){

if(nd <= d)return new Node(d, insert(l,nd), r);
return new Node(d, l, insert(r,nd));

}

static Traversal trav = Traversal.onestep(new Insert ());
static BST insert(BST t, int d){ return trav.<BST >traverse(t, d); }

}

Fig. 9. BST Insert

Figure 9 shows a class that implements functional insert for BSTs using
the onestep traversal. In this case the traversal context is used to pass the
integer to be inserted. The traversal calls the matching combine method after
stepping into each object. For a Leaf we return a new Node containing the
inserted data; at a Node, we compare the inserted value to the current data, d,
recursing into the correct sub-tree and reconstructing the resulting Node after
insertion. When traversing with onestep, the Control object used is actually
Control.nowhere(), telling the traversal not to explore any edges, but there
are several other useful creators for various scenarios.

Figure 10 contains a traversal implementation of minimum, returning the
smallest value stored in a given Node. To guide the traversal we pass a control
object, constructed with Control.only(·) that tells the traversal to only recurse
into the left field of a Node, which is where the minimum will be. To eliminate
conditionals from our methods we return the left-most Leaf and match based
on the type calculated from the left field of a Node. When the left tree is a
Leaf we return the current data, otherwise we return the recursive result.
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class Min extends ID{
Leaf combine(Leaf l){ return l; }
int combine(Node n, int d, Leaf l){ return d; }
int combine(Node n, int d, int mn){ return mn; }

static int min(Node n){
return new Traversal(new Min(),

Control.only("Node.left")).<Integer >traverse(n);
}

}

Fig. 10. BST Min

The opposite of Control.only is the creator Control.bypass, describing
which fields should not be traversed. Figure 11 shows a similar implementation
that returns the maximum value in a Node. The main difference here is that we
ignore the left field of a Node, but it is kept in the signature as a place holder.
Because the bypassed field could be any BST, we use the more general type to
avoid handling cases in multiple methods.

class Max extends ID{
Leaf combine(Leaf l){ return l; }
int combine(Node n, int d, BST l, Leaf r){ return d; }
int combine(Node n, int d, BST l, int mx){ return mx;}

static int max(Node n){
return new Traversal(new Max(),

Control.bypass("Node.left")).<Integer >traverse(n);
}

}

Fig. 11. BST Max

3.3 Transformations

When traversing functional data structures we usually want to make a change to
a specific part, reconstructing the rest of the structure, but leaving it otherwise
unchanged. To support functional updates DemeterF provides a function class,
Bc (the Building combiner), that reconstructs a copy of the traversed structure.
The provided combine methods can then be overridden to transform a particular
type and Control can be used to change just a portion of a structure.

As an example, Figure 12 shows a function class that extends Bc, increment-
ing each int (data fields) in a given BST. One of the benefits of extending Bc is
the fact that it can easily adapt to structural changes and adjustments in traver-
sal control, which can be used to limit the extent of a transformation. Figure 13
shows a method that uses our Incr function class to increment just the right

spine of a given BST. We use Control.bypass(·) since Node.data must also be
traversed.
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class Incr extends Bc{
int combine(int i){ return i+1; }

static BST incr(BST t)
{ return new Traversal(new Incr()).<BST >traverse(t);}

}

Fig. 12. BST Increment

static BST incrRight(BST t){
return new Traversal(new Incr(),

Control.bypass("Node.left")).<BST >traverse(t);
}

Fig. 13. BST Right Increment

More complex transformations are possible, simply by overriding the combine
methods for compound types. Figure 14 shows a function class that implements
left rotation over BSTs. When the right branch of a Node is also a Node, we can
rotate it to the left, maintaining the BST invariant.

class RotL extends Bc{
BST combine(Node n, int d, BST l, Node r){

return new Node(r.data , new Node(d, l, r.left), r.right);
}
static BST rotLeft(BST t){

return new Traversal(new RotL()).<BST >traverse(t);
}

}

Fig. 14. BST Left Rotate

3.4 Types

As a model of our functional traversals we view a function object as a set of
functions. Given the complete traversal specification (function signatures, data
structures, a control description, and a starting class) we can type-check the
functions with respect to the traversal. In the case of Insert (Figure 9) this
checking is straight forward because the onestep traversal is used: we check the
types of each class’ fields against the methods to be sure all cases are handled and
they return the correct types. When checking ToString (Figure 6) the situation
is only slightly different, as the String values for the left and right Node fields
are calculated recursively by the traversal, though all methods return the same
type.

Each combine method signature places constraints on traversals of related
types: the return types constrain the type of a traversal of an instance of the first
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parameter type; the other parameter types place constraints on the return types
of traversals of each of the class’ field types (in order). In the case of ToString,
the constraints from the method parameter types become:

· Traversal of a BST should return a String

· Traversal of an int should return an int

from the parameters of the combine method matching Node. We conclude from
the method return types that traversal of a BST (Node or Leaf) returns a String,
and the implementation of ID contains a method for int that returns int, so
the traversal is correct.

For Min and Max (Figures 10 and 11) the situation is more complicated, since
the return types of the Leaf and Node combine methods are different, but the
algorithm is the same. For Min the Control specifies that only the left field of a
Node will be traversed, so we can infer constraints from the method parameters:

· Traversal of an int should return an int

· Traversal of a BST should return one of {int, Leaf}

while the return types of the methods give us information about what a traversal
will return:

· Traversal of a Leaf returns a Leaf

· Traversal of a Node returns an int

From these we conclude that traversal of a BST can return one of int or Leaf

(the union of the subclass return types), which matches the second constraint,
and ID contains a method that covers the first constraint. Since traversal begins
at a Node, the whole traversal is correctly assigned the type int.

With recursive type uses (e.g., Node.left) the constraints are required to
capture parameter types in unknown (recursive) field/parameter positions. After
observing the combine return types, they can be checked against the parameter
types to ensure all possibilities are handled. The DemeterF type checker imple-
mentation recursively traverses structure definitions from the starting class; for
concrete classes without recursive uses (identified using a stack) we check the
corresponding combine method using the types of field traversals, but for re-
cursive uses, we inspect the possibly applicable combine methods, and constrain
the unknown return type to the possible parameter types in the correct position.
The traversal return of an abstract class is simply the union of the return types
of its subclasses.

Generated constraints are of the form:

Traverse(C) <: D

where D is a set of classes (possible return types) and <: is defined over sets of
classes:

X <: Y if ∀ x ∈ X .∃y ∈ Y . x ≤ y

with ≤ defined between classes as the reflexive, transitive closure of the inher-
itance relation (extends) from the the program. If the constraints are satisfied
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by the traversal return types then we can be sure that the traversal will not pro-
duce an error, meaning that selection of an applicable method from the function
object will never fail.

Similar constraint based type-checking systems have been used to type-check
pure object oriented programs [22], though here we solve a slightly simpler prob-
lem. Following these ideas, our type checker computes the return type of a given
traversal and has been used successfully to verify the examples in this paper,
and our class generator, which is implemented using DemeterF traversals. The
commands used to type check all the examples here are available with the rest
of the code [5].

3.5 Performance

One of the major draws of functional programming is its potential for parallel
computation. The DemeterF traversal model was designed to separate traversal
and computation to allow programmers to substitute a multi-threaded traver-
sal (ParTraversal) for any Traversal instance without affecting results. As a
preliminary performance test we show a BST sum operation and a series of Deme-
terF traversal runs on a dual-core machine. Figure 15 shows our Sum function
class, with static methods for sequential and parallel data structure traversal.
As expected, the methods for Node and Leaf add up all the values stored in the
BST. The novel feature here is that we can use the same function class, Sum, for
both single and multi-threaded traversals.

class Sum extends ID{
int combine(Leaf l){ return 0; }
int combine(Node n, int d, int l, int r){ return d+l+r; }

static int sum(BST t, Traversal trv){ return trv.<Integer >traverse(t); }

static int seqsum(BST t){ return sum(t, new Traversal(new Sum ())); }
static int parsum(BST t){ return sum(t, new ParTraversal(new Sum ())); }

}

Fig. 15. BST Sequential and Parallel Sum

To measure the performance of various traversal schemes, we ran a series of
Java tests with BSTs of various heights using multiple traversal schemes. Fig-
ure 16 shows our preliminary results using double dispatch visitor (Visitor),
reflective sequential (Reflect), statically generated sequential (Static), and re-
flective parallel (Par.) traversals. The slowdowns of reflective sequential and
parallel traversals are given in the next columns as a multiple of the visitor
times. Each time is is in milliseconds averaged over 10 runs of the given tree size
using Sun’s JRE 1.6 on a Dell Latitude (laptop) with a 2.26 Ghz Intel Core 2
Duo Processor.

The visitor solution is very fast, since it requires minimal method calls and
delegation. The modular design of the DemeterF traversal library accounts for
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BST Size Visitor Reflect Static Par. Ref. Slwdn St. Slwdn Par. Spdup

28 2 59 61 65 29 x 32 x -3.3 %

29 2 80 75 66 40 x 33 x 6.3 %

210 2 102 87 86 51 x 43 x 14.7 %

211 3 182 119 106 60 x 35 x 34.6 %

212 3 255 165 141 85 x 47 x 35.3 %

Fig. 16. Performance of BST Sum: Standard-Visitors, Reflective-Sequential, Static-
Sequential, and Reflective-Parallel Traversals.

most of the slowdowns due to the depth of method calls in the implementation.
Our reflective numbers are much better than similar reflective visitor results [21]
though only by a constant factor. More interesting than the visitor numbers is
a comparison of reflective, static, and parallel DemeterF traversals. The static
traversal generates less garbage and eliminates the need for reflection, while the
parallel traversal consistently outperforms both sequential versions.

For this simple benchmark we approach 40% parallel speedup (maximum is
50% with 2 processor cores). Profiling reveals that the majority of slow downs
come from garbage collection, as the traversal and dispatch methods in the
library tend to create many new objects.

4 Data Description

In order to generate classes specifically for use with DemeterF traversals and
avoid having to hand write various common structure based methods (e.g.,
parse, equals, etc.) we created the DemeterF class generator, DemFGen. Inci-
dentally, the generator is written in DemeterF, and has been a good benchmark
test of the library, the type checker, and now, itself. In the spirit of other adap-
tive programming tools such as DemeterJ [24], our class generator accepts a class
dictionary file (CD) that specifies the structure of data types and a behavior file
(BEH) that describes static code to be injected into the generated classes. Our
major improvements are relate to generic classes and the ability to write data
generic functions over CDs.

4.1 CD and BEH Files

Our class dictionary syntax is slightly simplified from DemeterJ; Figure 17 shows
a CD file that describes the BST structures defined earlier (from Figure 5). Ab-
stract classes are defined with a colon (:), separating variants with a vertical bar
(|). Concrete classes are defined using equals (=), with field names in brackets
(< >), followed by their type. All definitions are terminated with a period (.) and
concrete syntax strings are allowed before and after field definitions, supporting
the creation of customized parsers/printers for the generated structures. Inter-
faces can be declared with the interface keyword, but are otherwise the same
as abstract classes.
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// bst.cd
BST: Node | Leaf.
Node = "(node" <data > int <left > BST <right > BST ")".
Leaf = .

Fig. 17. BST Class Dictionary

In order to support modular CD and BEH files DemFGen allows the inclu-
sion of other CD and BEH files using include statements, and definitions can
be preceded by noparse, nogen, or extern to suppress parser, class, or all gener-
ation respectively. As in DemeterJ, specifying succinct class structures requires
a separate file for injecting class behavior, similar to the idea of open classes.
Figure 18 shows a BEH file that completes the BST class definition by inserting
a few method stubs calling our earlier implementations.

// bst.beh
BST {{ boolean isLeaf (){ return IsLeaf.isLeaf(this); } }}
Node{{ int min(){ return Min.min(this); } }}

Fig. 18. BST Added Behavior

4.2 Parametrized Classes

DemFGen’s most novel feature is the support for Java generics using parametrized
classes. We support type parameter bounds, any depth of nested type parame-
ters, and parser and printing generation for generic classes. Figure 19 shows a
generic version of the BST CD file, storing Comparable elements.

// genbst.cd
extern interface Comparable(X): .
BST(X:Comparable(X)) : Node(X) | Leaf(X).
Node(X:Comparable(X)) = <data > X <left > BST(X)

<right > BST(X).
Leaf(X:Comparable(X)) = .

Fig. 19. Generic BST Structure

Type parameters are introduced in parenthesis with an optional bound placed
after the colon; multiple parameters can be separated by commas. The extern

keyword tells DemFGen not to generate anything for this definition; it is used for
the checking of uses and type parameters in the other definitions. Once we have
a generic class, we can use it to generate parsers/printers for specific uses of the
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data structure. Figure 20 shows a CD file that includes the generic BST defini-
tions, and wraps it in a concrete class. Once generated, the Intbst class contains
static parse(·) methods that support parsing instances of BST<Integer>.

// usebst.cd
include "genbst.cd";
Intbst = <tree > BST(Integer ).

Fig. 20. Generic BST Use

The power of correctly parametrized classes can be fully realized when mixing
syntax with definitions. Figure 21 shows CD and BEH files that describe a
generic parenthesis Wrap class. The uses of Wrap allow us to parse Strings and
Integers within two sets of parenthesis. When nesting parametrized classes we
must avoid left recursion and other pitfalls dealing with recursive parameter
substitution [15].

// nest.cd
Wrap(B) = "(" <body > B ")".
S = <s> Wrap(Wrap(String )).
I = <i> Wrap(Wrap(Integer )).

// nest.beh
Wrap{{ B inner (){ return body; } }}

Fig. 21. Nested Parametrization

For previously written library classes, nogen allows us to create parsers and
printers based on the structure and syntax in the given CD file. Developers can
then change the concrete syntax without needing access to previous code. To
support large-scale functional OO development we have created a DemFGen
library (demfgen.lib) that includes useful parametrized classes (like List(X),
Map(K,V), and Set(X)), implementing various container classes in a functional
OO style. The library is described by a CD file that programmers can modify
to create customized parsers/printers, taking advantage of the library classes
and methods. The DemeterF type checker was developed with the library, using
DemFGen to create type structures and the traversal library to generate and
check the constraints discussed in Section 3.4.

5 Example: Expression Compiler

As a more complicated example using DemeterF, in this section we discuss the
implementation of a simple expression compiler for the Exp structures from Sec-
tion 2. To make the discussion more interesting we add a new Ifz (if zero)

15



conditional expression. We first examine our target data structures, then discuss
the source structures and the different operations involved in the transformation
from one to the other.

5.1 Structures

To build a compiler we need source and target language representations. In this
case the abstract and concrete syntax can be described with a few simple CD
files. Figure 22 shows a CD file that defines our target language: a simple stack
based assembly language with labels, subtraction, stack, and control operations.

// asm.cd
Op: MathOp | StkOp | CtrlOp.

MathOp: Minus.
StkOp: Push | Pop | Define

| Undef | Load.
CtrlOp: Label | Jmp | IfNZ.

Minus = "minus".

Push = "push" <i> int.
Pop = "pop".
Define= "def".
Undef = "undef".
Load = "load" <i> int.

Label = "label" <id> ident.
Jmp = "jump" <id> ident.
IfNZ = "ifnzero" <id> ident.

Fig. 22. Assembly Structures CD

We do not show the asm.beh file, but the full code for all the examples is
available on the web [5]. It contains methods to evaluate a list of Ops used in
testing our compiler implementation. For the source expression language, we
make use of all the assembly operators by adding a new expression variant, Ifz,
to our data structures.

// exp.cd
Exp : Ifz | Def | Bin | Var | Num.
Ifz = "ifz" <cnd > Exp "then" <thn > Exp

"else" <els > Exp.
Def = <id> ident "=" <e> Exp ";" <body > Exp.
Bin = "(" <op> Oper <left > Exp <right > Exp ")".
Var = <id> ident.
Num = <val > int.

Oper : Sub.
Sub = "-".

Fig. 23. Expression Structures CD

Figure 23 shows the full expression CD file, which includes the definitions
from Section 2 including their concrete syntax and the new Ifz expression.
Once the classes have been generated and compiled, we can use the generated
static methods to parse an Exp from a String or an InputStream. A simple
term in this expression syntax would look something like:
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ifz (- 4 3) then 5 else 7

and can be parsed with the Java statement:

Exp e = Exp.parse("ifz (- 4 3) then 5 else 7");

5.2 Compiler Classes

For the sake of code organization and demonstration, we have split the compiler
implementation into four classes: one for each category of expression, and a
main class named Compile. Figure 24 shows the main compiler class containing
a single method, compile.

class Compile{
// Compile an Expression File
static List <Op> compile(String file){

Exp e = Exp.parse(new FileInputStream(file ));
return new Traversal(new Cond ()). traverse(e, List.<ident >create ());

}
}

Fig. 24. Main Compile Class

The compiler constructs an Op list (List<Op>) where List is a functional im-
plementation provided in the demfgen.lib package. The root traversal context
is an empty List<ident>, and will contain the local variables for nested defini-
tions. The final code generation function class is named Cond and an instance is
passed when creating the traversal.

class Arith extends ID{
static List <Op> empty = List.create ();
static List <Op> one(Op o){ return empty.append(o); }

List <Op> combine(Sub s){ return one(new Minus ()); }

List <Op> combine(Num n, int i){ return one(new Push(i)); }
List <Op> combine(Bin b, List <Op> o, List <Op> l, List <Op> r){

return r.append(l). append(o);
}

}

Fig. 25. Compile for Arith Ops

Figure 25 shows the code generation for math related operators. The static
field empty and the method one(·) simplify the creation of single Op lists. The
append(·) methods within the List class return a new list with the given element
or list placed on the end; the original list is not changed. As is common in
stack based assembly languages we push operands onto the stack, then call an
arithmetic operator. For example, the expression:
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(- 4 3)

will compile into the Op list:

push 3
push 4
minus

The Defs class in Figure 26 implements the compilation of environment re-
lated operations. When compiling a variable reference we generate a Load oper-
ation with the offset of the identifier in the environment. The update method
adds a defined variable to the environment stack when traversing into the body of
a definition. Once all sub-expressions have been compiled, the code for the body

expression is wrapped in Define/Undef and appended to the code for evaluating
the binding.

class Defs extends Arith{
List <ident > update(Def d, Def.body f, List <ident > s)
{ return s.push(d.id); }
List <Op> combine(Var v, ident id, List <ident > s)
{ return one(new Load(s.index(id))); }

List <Op> combine(Def d, ident id, List <Op> e, List <Op> b){
return e.append(new Define ()). append(b)

.append(new Undef ());
}

}

Fig. 26. Compile for Variables

The final, more complicated extension of the compiler deals with our condi-
tional expression, implemented in the Cond class in Figure 27. We use mutation in
order to generate unique Labels within the generated code, as the synchronized
(locked) method fresh(·) creates an new ident in a thread-safe manner. The
IfNZ operation is used to branch to the else portion if the condition is not zero.
Otherwise the then code was executed and we can safely Jmp to the done label.

The synchronized keyword is the only portion of our compiler that has
to do with thread safety; all other parts are completely functional, so we can
run our compiler traversal in multiple threads for expressions with multiple sub-
expressions. Figure 28 shows the results of running sequentially (using Traversal)
and in parallel (using ParTraversal) on large expression files. As in Section 3.5,
times are in milliseconds and each is an average of 10 different runs on a file of
the specified number of lines. Again, the immediate gains are very promising,
though the library needs to be optimized more to reach its full potential. In this
case garbage collection tends to add a significant amount of time when traversing
large expressions.

The expression compiler is separated into four classes to make things easier to
develop, but it also demonstrates the flexibility of our approach. Each expression
variant corresponds to a combine method in the body of some function class;
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class Cond extends Defs{
int lnum = 0;
synchronized ident fresh(String s)
{ return new ident(s+"_"+lnum ++); }

List <Op> combine(Ifz f, List <Op> c, List <Op> t, List <Op> e){
ident le = fresh("else"),

ld = fresh("done");
return c.append(new IfNZ(le)). append(t)

.append(new Jmp(ld))

.append(new Label(le)). append(e)

.append(new Label(ld));
}

}

Fig. 27. Compile for Conditionals

File Size Sequential Parallel Speedup

417 136 118 13.2 %

837 204 164 19.6 %

1256 291 220 24.4 %

Fig. 28. Compiler Performance Results

we begin with ID and provide extensions for new expression types. As with pure
OOP, adding new variants is easy; we only need to extend a function class.

Similar to functional languages and visitor based approaches, adding new
functions is also easy. As a final DemeterF example, we present expression sim-
plification. Functional languages are famous for, among other things, their ability
to match patterns and optimize programs. Here we examine a function class that
implements expression simplification using method matching. Figure 29 shows a
function class that implements the bottom up simplification of constant expres-
sions.

class Simplify extends Bc{
class Zero extends Num{ Zero (){ super(0); } }
Num combine(Num n, int i){ return (i==0) ? new Zero() : n; }

Exp combine(Bin b, Sub p, Exp l, Zero r){ return l;}
Exp combine(Bin b, Sub p, Num l, Num r)
{ return new Num(l.val -r.val); }

Exp combine(Ifz f, Zero z, Exp t, Exp e){ return t;}
Exp combine(Ifz f, Num n, Exp t, Exp e){ return e; }

static Exp simplify(Exp e){
return new Traversal(new Simplify ()). traverse(e);

}
}

Fig. 29. Expression Simplification
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The special cases in our arithmetic language are nicely captured by each
combine method, the rest of the reconstruction is handled implicitly by the pro-
vided class Bc. Instances of Num that contain zero are transformed into instances
of the more specific inner class Zero. Subtracting a Zero from any Exp yields
just the left Exp; for subtraction consisting of only numbers we can propagate
the resulting constant as a new Num. For Ifz expressions, our two constant cases
for the test, Zero and Num, are optimized by returning the then and else fields,
respectively.

6 Related Work

The library and class generation components of the DemeterF system have ties
to Aspect Oriented Programming (AOP) [11], supporting static AOP similar to
open classes, and dynamic AOP with function objects and traversals. DemeterF
traversals and function objects are similar to visitors [24, 20, 21] and higher-
order functions [12, 23, 18, 16] while DemFGen resembles data binding tools [24,
4, 2] and includes a form of generic programming [9] used to implement static
traversals and functions (like printing) over all data types.

6.1 DemeterF Library

In [17] the authors discuss the relations of different AOP systems, of which
DemeterJ is one. Similarly, we can define the join point model of DemeterF
as the entry (for update methods) and exit (for combine methods) of objects
during a depth-first traversal of a data structure. DemeterF function objects
can be seen as parametrized advice, while the control and method signatures
are analogous to pointcuts, selecting a set of dynamic join points corresponding
to the types that result from the previous executions of advice. Pointcuts are
enhanced through programmer controlled traversal contexts, while ignoring later
combine method parameters allows programmers to select more join points. In
contrast to DemeterJ, we execute only the most specific pointcut/advice at a
given join point, similar to Fred and Socrates [19].

Our goal is to provide a safer, functional alternative with much of the power
of AOP, while maintaining some of its dynamic flexibility. Due to the functional
nature of our traversal, execution of combines affects later method selection, but
function classes can be checked to be sure that applicable methods can always
be found. With the use of reflection we eliminate an extra compile step, at the
price of runtime penalties. We are currently exploring the static compilation
possibilities in order to reduce reflection overhead.

DemeterJ [24, 14] and DJ [20] make up the static and dynamic Demeter
imperative visitor tools. DemeterJ compiles static traversal control descriptions
(in a strategy language) and visitor definitions into so-called adaptive methods.
For certain changes to underlying data structures the traversal computation can
automatically adapt (upon recompilation) without programmer interference. DJ
is a traversal library that uses reflection to dynamically traverse objects with
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control specified using the same strategy language. Visitors perform computation
using before(·) and after(·) methods, which return void and are called during
a depth-first traversal of the data structure.

In DemeterF, update methods take the place of before and combine meth-
ods take the place of after, but the major differences between DemeterF and
DemeterJ/DJ are its functional computation and type checking. Adaptive meth-
ods and visitors in DemeterJ are type checked by the Java compiler and strategies
can be checked to be sure that valid paths exist, but due to the side-effecting
nature of visitors, not much computational information captured by the method
types. With DemeterF the programmer gives more information about the traver-
sal computation and method interaction. Though this constrains the compu-
tation more, making it less adaptive, it also allows us to check more of the
programmers assumptions against the data structure, and gives the traversal
implementation freedom to (re)order sub-computations. There is a DJ based li-
brary that adds functional visitors [26] to traversals, but this library is focused
more on integrating functions and control using around methods, and distinct
types are not used, as combine methods accept an Object array.

Recent work in visitors has focused on using OO languages with richer type
systems. In [7], the language Scala is used to create a visitor library that cap-
tures the types involved in functional visitors. The library describes the return
type of a visitor traversal based on where the traversal code is placed: internal

to the structure, or external, in the visitor. Assuming structures and traversals
are implemented correctly by programmers, a visitor program is type safe based
on Scala’s type safety guarantees. Multi-methods are used to implement visitor
methods, with traversals that return values, eliminating the need for mutation.
Though their visitor implementations look quite similar to DemeterF function
objects, there are differences in traversal flexibility, control, and contexts. Visi-
tors are restricted to return a single type, visitor control must be implemented
completely by hand (the equivalent of our onestep traversal), and mutually re-
cursive data types require separate visitors that maintain programmer assigned
mutual references. In addition to fine grained control, DemeterF provides sup-
port for parametrized and mutually recursive data types without programmer
intervention. In order to check traversal safety, we require a type checker after
compilation, but programmers can usually eliminate traversal code from their
function classes.

In the functional programming community, higher order functions are noth-
ing new, and programmers have been using similar techniques to avoid writing
boilerplate traversal code for decades. Theoretical results regarding generalized
folds [23, 18] and implementations in the statically typed functional language
Haskell have lead to the Scrap Your Boilerplate (SYB) [12] approach, Generic
Haskell [16], and a comparison of design patterns and datatype-generic pro-
gramming [9]. While our generic traversal is an OO mapping of a higher order
function, the ideas of generalized folds can be mapped directly to DemeterF
function objects with a small type extension, since the traversal (or fold) of
an instance of the same type can return different results (e.g., Min from Fig-
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ure 10). Compared to SYB, DemeterF has very similar goals, though we aim to
be slightly more general, supporting transformations (via Bc) and queries (i.e.,
folds to a single type) as special cases. Our contribution is an implementation of
generalized folds in an OOP setting with support for separate traversals, control
and extensible functions with automatic context passing. The genericity of our
traversal function allows it to adapt to different datatype shapes, and DemF-
Gen can generate specific static traversal code for a given CD. Though we suffer
somewhat from the explicitly typed syntax of Java, our approach is sufficiently
general to support similar fold-like and data generic idioms.

6.2 DemFGen

DemFGen inherits much of its input syntax from DemeterJ [24] and was origi-
nally developed as an upgrade of DemeterJ’s existing features. The CD syntax
has been simplified to eliminate complex parser annotations and ad hoc inher-
itance to support concise traversal type checking. Some notable DemeterJ fea-
tures missing from DemFGen are common fields for abstract classes and null-able
(optional) fields, though these features can be written in a safe way using our im-
proved parametrization. One of the major drawbacks of DemeterJ is its limited
support for nested parametrized classes: parameters are only substituted a single
level so variants of parametrized abstract classes cannot truly be parametrized.
Concrete classes for each case are generated with parameters included in their
names (e.g., Integer List), and incorrect uses of parameters are not checked.
DemFGen uses generics to represent parametrized classes instantiating specific
functions when needed (e.g., parsing, printing, and static traversal) with nesting
to any depth. Parameter definitions and uses are checked at generation time.

Larger differences exist in the two implementations, as both DemFGen and
DemeterJ are implemented in themselves. DemeterJ uses a visitor approach with
OutputStreams to generate class sources. This can be very difficult to modify,
and nearly impossible to parallelize given the size and interaction of the various
visitors. In DemFGen we use separate, functional traversals for each aspect of
the generated code (classes, parser, etc.). Since each traversal is independent and
eventually uses a number of file operations, we can easily speed up generation,
even on a single processor, by using a multi-threaded traversal. One drawback
of our dynamic traversal approach is the overhead of Java reflection during sub-
traversal and method dispatch, but we are currently exploring static compilation
alternatives to minimize reflection and optimize traversal paths and computation
similar to those used in DemeterJ, DAJ, XAspects.

Tools like XML Beans [4] and JAXB [2] operate on XML schemas, generat-
ing Java classes and using specialized XML parsers to read an XML document
into memory. These two implementations specifically focus on generating classes
and factories with parsing/printing (unmarshalling/marshalling) available in a
library for use with standard XML documents. The schema format accepted by
the tools is standardized by the World Wide Web Consortium (W3C) [6], and
output classes are structured with empty constructors and set/get methods. In
contrast, DemFGen uses a custom schema format, but in other respects is quite
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similar, though our target is functional OO programs so we do not generate
empty constructors or set methods. DemFGen users are free to provide any con-
crete syntax, even for previously generated classes, which makes it very easy to
transform a CD into XML syntax by adding start and end tags.

It is not initially clear whether XML Schema definitions support true generics
or parametrized classes. Though a limited form of generic/collection classes can
be simulated using unions and/or sub-classing, this can introduce unsafe het-
erogeneous parametrization. As DemFGen was implemented with generics and
type safe parametrization in mind, these features are primary. DemFGen’s meta-
programming facilities make it simple for us to add factory based construction,
though we leave it up to users to develop larger frameworks from the generated
code.

There are several tools for parser and tree generation from application specific
grammars. Two notable implementations are ANTLR [1] and JJTree, which
is part of the JavaCC distribution [3]. Both of these tools are able to create
a generic abstract syntax tree (AST) that corresponds to the parsed tokens,
allowing programmers to walk the created structure. It seems possible, though
overly verbose, to construct a concrete data structure from the resulting AST
using type casts, but when specific tree building is needed it is easier to actually
construct nodes during parsing. When given a CD, DemFGen actually generates
parser grammars intended for compilation using JavaCC. Our traversal library
does the walking and the function matching, which frees programmers from
writing tests based on types. This forces the programmer to be more verbose
when annotating functions, but allows us to check the traversal computation,
giving programmers static safety guarantees.

7 Conclusion

We have introduced DemeterF, a functional formulation of adaptive program-
ming. The implementation includes a library and set of tools for safe, flexi-
ble, parallel traversals, providing a complete solution to the expression problem.
DemeterF supports the abstraction of a large class of traversal functionality
with the addition of a fine-grained type checker that facilitates the development
and evolution of traversal based programs in a controlled way. The type checker
ensures that the flow of information during computation is consistent with the
structures and control of the traversal.

DemeterF also supports programmer controlled traversal contexts (argu-
ments) and because of its functional nature, traversals can automatically take
advantage of parallel, multi-core processors. Our class generator, DemFGen, sup-
ports the traversal library by creating class definitions from concise structural,
behavioral, and data generic descriptions with enhanced support for parametrized
classes and generics.
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7.1 Future Work

We are currently exploring performance enhancements in the library including
static method selection and the impact of parallel traversals. We believe that our
functional approach is amenable to multi-core architectures even with sequential
traversals and we are investigating the comparative performance of functional
and traditional OO data structures in various applications.
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