
DemFGen Manual

Bryan Chadwick

September 8, 2009

Chapter 1

Introduction

The DemeterFclass generator (demfgen for short) is a Java and C#1, class/parser generator and data binding
tool (similar to DemeterJ) that merges data structure and behavior descriptions into clean code, specifically
suited for use with DemeterF. It supports modular files, parametrized class definitions, and parsing and
printing of both non-generic and generic classes. The generator is part of the current DemeterF Library
release, and no longer depends on the DemeterJ runtime2. All of the options we will discuss in this document
are relavent for both Java and C# code generation, so we will freely switch between Java and C# when
giving examples... be ready.

Running from the command line, the DemeterFclass generator accepts three mandatory arguments: a
class-dictionary (CD) file, a behavior (BEH) file, and an output directory. To simplify parametrized classes
and interface definitions we use CD and BEH syntax modified from DemeterJ with a few additions that sup-
port generics and allow modular creation of CDs and libraries. Assuming the JDK and javacc (or Mono
and csjavacc3 for C#) are correctly installed, the generator can be called with a --build option to auto-
matically compile the generated parser and classes. There are also a few other useful options: --windows
supports running on Microsoft Windows Operating Systems, --graph supports generating a visual repre-
sentation of the CD in the DOT/Graphviz language, --noparse suppresses parser generation completely,
--dgp:... supports data-generic function generation providing various toString methods, --pcdgp:...
supports per-class generation of methods like getters and updaters, and --lib:... automatically builds a
JAR (or DLL) from the resulting generated code.

The rest of this chapter gives a quick introduction to the tool and its features, while the rest of the
document provides a detailed description of file formats, options and code generation.

1.1 Quick Start

// test.cd: Sample CD File
package test;

IntList = IntCons | IntEmpty.
IntCons = <first > int <rest > IntList.
IntEmpty = .

Figure 1.1: CD File for simple int Lists
1The C# version is called DemeterFCS, or demfgencs
2DJ style traversal control is not built into the standard release.
3CSJavaCC is our port of JavaCC that generates C# parsers, available at http://www.ccs.neu.edu/home/chadwick/

demeterf/csharp/csjavacc.html

1

Fig. 1.1 contains a simple CD file for structures representing Lisp-style lists of int in a package/namespace
named test. In a CD file, abstract classes are defined using “:” providing variants separated by “|” (e.g.,
IntList). Concrete classes are defined using “=” with field names contained in “<>” followed by their type
(e.g., IntCons). Concrete syntax can be placed between field definitions and before and after variant lists for
parser generation. Fig. 1.2 is a simple Java BEH file that implements the method length() for IntLists.
The main method calls the static parse method of IntList to parse an instance from a string.

// test.java.beh: Sample BEH File
IntList {{

public static void main(String a[]) throws Exception{
IntList lst = IntList.parse("1 2 3");
System.out.println(lst);
System.out.println(lst.length ());

}
abstract int length ();

}}
IntCons {{ int length (){ return rest.length ()+1; } }}
IntEmpty {{ int length (){ return 0; } }}

Figure 1.2: Beh File for simple int Lists

Assuming the DemeterF package is correctly in the classpath and we have a directory test for generated
files, we can generate the parser and classes for this example using the following command:

java demeterf test.cd test.java.beh ./test

After running this command, demfgen will generate four files for this CD in the directory test:

Java Files : IntList.java, IntCons.java, IntEmpty.java
JavaCC File : theparser.jj

The Java files contain the classes, field definitions, constructors, and any other text taken from the BEH
file. In addition demfgen generates a boolean equals(Object) method and static parse(...) methods for
all classes. Running javacc on theparser.jj will generate parser related files including TheParser.java
that (in this case) supports the reading of our integer lists. We can then call javac on the Java files to
compile them into .class files. Alternatively we can pass the --build option and demfgen will attempt to
run JavaC and compile all the files automatically. There is also a corresponding --lib:... option that can
be used to automatically build a JAR file from the compiled code. For example, the command:

java demeterf test.cd test.java.beh ./test --lib:test.jar

will generate a parser, Java files, and compile all of them into a JAR file named test.jar.
If it makes sense to develop CD/BEH files separately we can add to the original test package by using

an include statement. If we also need the behavior of the defined classes then we can also include it in the
top level BEH file. Fig. 1.3 shows an addition to the test package that defines a Main class containing two
IntLists, separated by a colon.

The generated parser includes the parsing code for the included library, and the Java/C# files are
generated with the specified behavior. If we had previously packaged this code into an external library, or
had other hand written definitions, then we can use nogen in front of definitions to signify that Java/C#
code should not be generated. Likewise to eliminate the generation of parse code for a specific class/interface
we can prefix the definition with noparse, or both nogen and noparse can be signified by using the extern
prefix. Note that only one of those prefixes may be used.

That wraps up the quick intro; the next chapter describes the syntax of CD and BEH files; chapter 3
discusses parametrized classes and the generation of generic classes. Chapter 4 details the generation of
classes, canonical methods, parsers, and command line options. Chapter 6 finishes with a longer CD/BEH
example.

2

// use.cd: Uses test.cd
include "test.cd";

package test;

MainC = <left > IntList ":"
<right > IntList EOF.

// use.beh: Uses test.java.beh
include "test.java.beh";

MainC{{
public static void main(String a[]) throws Exception{

Main m = Main.parse("1 2 3:4 5");
System.out.println(m.length ());

}
int length (){ return left.length ()+ right.length (); }

}}

Figure 1.3: CD and BEH Files that use/include IntList

3

Chapter 2

File Formats

DemeterF uses CD and BEH input file formats that are simpler, but quite like to those of DemeterJ. Notably,
the format allows the inclusion of other CD and BEH files that can define other packages, classes, and
behavior, and prarmetrized definitions generate Java/C# generic classes and support unlimited nesting.
Each file format will be described in detail in the following sections, while parametrized definitions and
generated code will be discussed in later chapters.

2.1 CD Files

Below (Fig. 2.1) is an EBNF description of the class dictionary syntax used by DemeterF. Char stands
for any (possibly escaped) non double quote character. Double quotes and others (newline, tab, backslash,
etc.) can be escaped as usual. Digit is any character ‘0’ through ‘9’ and Ident is a normal Java/C#
identifier, which may also include underscores () or dollar signs ($)1.

CDFile ::= Include* [PackageDef] [LookAhead] Import* TypeDef*
String ::= “"” Char* “"”

Integer ::= Digit Digit*
Include ::= “include” String “;”

PackageDef ::= “package” Ident (“.” Ident)* “;”
LookAhead ::= “lookahead” “=” Integer “;”

Import ::= “import” Ident (“.” Ident)* [“.*”] “;”

TypeDef ::= [Modify] (Class | Intfc)
Modify ::= “nogen” | “noparse” | “extern”
Syntax ::= String | “EOF”

Class ::= Decl “=” [Use (“|” Use)*] (Field | Syntax)* [Impl] “.”
Intfc ::= “interface” Decl “:” Use (“|” Use)* “.”

Field ::= “<” Ident “>” Use
Decl ::= Ident [“(” ParDef (“,” ParDef)* “)”]

ParDef ::= Ident [“:” Ident]
Use ::= Ident [“(” Use (“,” Use)* “)”]

Impl ::= “implements” Use (“,” Use)*

Figure 2.1: CD File Syntax
1The dollar sign is not part of a valid C# identifier, though the Java specification allows it.

4

A CDFile begins with optional Include, PackageDef, LookAhead, and Import statements (in
that order). Package and import statements declare the package and imports to be applied to all generated
classes defined directly in the current file. The lookahead declaration is carried over to the parser, setting the
global lookahead option for JavaCC (or CSJavaCC). Class and interface definitions follow; defining abstract
classes (or sum/variant types) and/or concrete classes (or product/record) types). Abstract classes are
defined using a colon (“:”), with subclasses separated with a bar (“|”). Concrete classes are defined using
equals (“=”), with field names in brackets (< >) followed by their type. Note that we eventually generate
Java or C# code, so field names must be valid identifiers in the language, which excludes keywords such as
for, public, and return.

Definitions can be modified with “nogen”, stating that code should not be generated for them, with
“noparse”, stating that it should not be included in the generated parser, or with “extern”, stating that
the definition should be ignored for both code and parser generation2.

// simple.cd
package mypkg;

import java.io.PrintStream;

Pair(X) = <left > X <right > X.
FltPair = "(f" <p> Pair(Float) ")".
IntQuad = "(i" <q> Pair(Pair(Integer)) ")".

interface Concrete : IntQuad | FltPair.

Figure 2.2: Example CD File with parametrized classes

Fig. 2.2 contains a CD that describes the package mypkg with three classes (Pair, FltPair, and IntQuad),
one of which is generic. It also defines an interface (Concrete) that is implemented by the two non-generic
classes. Each of the generated files will import java.util.PrintStream since it will be used in the example
BEH file. The quoted strings in the definitions of FltPair and IntQuad define the concrete syntax of the
data structures, while the generated java files make up there abstract syntax. The generated parser will parse
a string like "(i 2 4 6 8)" as an IntQuad, resulting in an object similar to the construction expression:

new IntQuad(
new Pair <Pair <Integer >>(

new Pair <Integer >(2,4),
new Pair <Integer >(6 ,8)))

Java/C# style single/multi-line comments can be used within the CD file to document classes, comment
them out, or anything else that is useful. Once we have structural definitions we can add behavior (methods,
etc.) to classes using BEH files.

2.2 BEH Files

Behavior files allow methods and other syntax to be placed in classes separate from their structural definitions.
Fig. 2.3 defines the simple behavior file syntax in EBNF, reusing the Include definition from before. Text
is any string that does not include “}}”.
Any number of BEH files may be included, supporting the corresponding inclusion of related CD files. The
Text for a given class name is placed within the body of the class or interface definition during code
generation. An example behavior file for the earlier CD is given in Fig. 2.4 . Note that the type parameter
of Pair, X, is the same as in the CD definition, ßsimple.cd. We don’t include any other files, but if needed
we could split this into multiple files or include other library behavior.

2But not for DGP, which will be explained later

5

BEHFile ::= Include* Beh*
Beh ::= Ident “{{” Text “}}”

Figure 2.3: BEH File Syntax

// simple.beh
Pair{{

X getLeft (){ return left; }
X getRight (){ return right; }

void print(PrintStream p){
p.println("("+left+", "+right+")");

}
}}
FltPair {{

float product (){
return (p.getLeft ()*p.getRight ());

}
}}

Figure 2.4: Example BEH File with parametrized classes

package mypkg;
import java.io.PrintStream;

public class Pair <X>{
public X left;
public X right;

/* ... */

X getLeft (){ return left; }
X getRight (){ return right; }

void print(PrintStream p){
p.println("("+left+", "+right+")");

}
}

Figure 2.5: Java code for Pair

The resulting class definition for Pair after inserting behavior is shown in Fig. 2.5 . The generated
constructor and canonical methods (toString,equals, etc.) are left out to save a little space. The added
methods, actually, any text between “{{” and “}}”, are placed in the generated class after any generated
code. More than just methods may be added to class bodies. Within the BEH file you can insert any legal
Java/C# code, including comments, static/private fields, and alternate constructors. Because the BEH
declarations are placed directly within the class definitions, care must be taken to provide syntactically and
type correct code.

Using the --build option (or likewise --lib:...) causes DemeterFto build the generated code using
javacc/csjavacc and javac/gmcs. On Microsoft Windows the --windows option can be used, which will
compile using Microsoft’s csc, rather than searching for Mono. This functionality has been tested on Linux
and Unix (Solaris), and with Windows using the --windows opotion or the Cygwin shell. Any reports of
experience with other systems (Mac OSX?) would be appreciated.

6

Chapter 3

Generics

Parametrization can help a great deal when abstracting data structures for algorithms. In the CDFile
syntax (Fig. 2.1) you can see that a Decl may include a comma separated list of ParDefs, type parameters,
in parenthesis. The existence of type parameters defines a generic class, while a use of a parametrized type
allows us to generate a parse/print method for each specific use, or instantiation, of a generic class.

Fig. 3.1 is an example of a generic CD file that demonstrates a simple use of type parameters. It defines
a single class (Triple) in the package lib that represents a generic triple of the given type. A portion of
the generated Java file (Triple.java) will look like that in Fig. 3.2 .

// lib.cd
package lib;

Triple(T) = <l> T <c> T <r> T.

Figure 3.1: CD File with a parametrized class

public class Triple <T>{
public T l;
public T c;
public T r;

public Triple(T l, T c, T r){ /* ... */ }

/* ... parse/equals methods ... */
}

Figure 3.2: Generated Java for Triple

Because generic classes have type parameters, we can substitute different types, write more generic
algorithms, and abstract more structure, while retaining our ability to parse, print, and compare objects. In
Java and C#, class definitions we can place bounds on type parameters that specifiy a type (or interface)
that any class used as a parameter must extend (or implement). The default bound in both cases is Object.
In DemeterF we can specify a bound on a type parameter by adding it to the parameters of a Decl. For
ParDef we use a colon to signify a bound on a type parameter; an example is shown in Fig. 3.3 .

In order to have size for a generic Pair, we introduce the interface Size that contains a single size()
method. The Pair implementation of size() can then use size() on a and b, while retaining the seperate
types. The Java compiler will also check that any use of Pair<...> is given type parameters that implement
the Size interface.

7

// bound.cd
package bound;

interface Size: Apple
| Orange
| Pair.

Pair(A:Size , B:Size) = "(" <a> A B ")".

Apple = "apple" <c> String <s> int.
Orange = "orange" <s> int.

// bound.beh
Size{{ int size (); }}
Apple{{

public int size (){ return s; }
}}
Orange {{

public int size (){ return s; }
}}
Pair{{

public int size (){
return a.size ()+b.size ();

}
}}

Figure 3.3: CD/BEH File with parametric bounds

Parameterized definitions in DemeterF are actually more usefull than Java/C# generic classes because of
the mix of structure and syntax in the definitions. We can actually create definitions that are parametrized
by syntax, which will be expanded by DemeterF automatically when needed (e.g., for parser generation).

// syntax.cd
CommaList(X) = <lst > SepList(Comma ,X).
BarList(X) = <lst > SepList(Bar ,X).

// Open interface for various seperators
interface Syntax : Comma | Bar.
Comma = ",".
Bar = "|".

// Generic Seperated List
interface SepList(S:Syntax ,X) : NeSList(S,X) | SEmpty(S,X).

NeSList(S:Syntax ,X) = <first > X <rest > SList(S,X).
SList(S:Syntax ,X) : SCons(S,X) | SEmpty(S,X).
SCons(S:Syntax ,X) = <s> S <first > X <rest > SList(S,X).
SEmpty(S:Syntax ,X) = .

Figure 3.4: CD File with parametric bounds

Fig. 3.4 shows a generic implementation of seperated lists. The syntax that separates elements of the list
is given as the first parameter of the class, while the second is the elements to be stored. The two definitions

8

Chapter 4

Class/Parser Details

In earlier chapters you’ve seen a few examples of CD files and generated classes. In this chapter we dis-
cuss generated canonical and perser methods, including details (and possible pitfalls) of class and parser
generation.

4.1 Generated Methods

public X(Y y, ..., Z z)
boolean equals(Object o)
String toString()

4.2 Field Classes

4.3 Parsing

X parse(String s) throws ParseException
X parse(java.io.InputStream in) throws ParseException

4.4 Pitfalls

Type parameter mismatches. Parsing with type parameters. Interfaces/sum types and parsing (order, empty
string, etc...)

9

Chapter 5

Data-Generic Programming (DGP)

10

Chapter 6

Larger Example

Larger Grammar/Program Example(s)...

11

