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Abstract
In this paper we describe a new traversal organization inspired by
ideas behind type-generic traversals that clearly separates traversal
code and computation, implemented in an object-oriented setting.
By delegating portions of the traversal and computation to sepa-
rate functions we provide a library and methodology to develop
succinct solutions to data-structure transformation problems. Be-
cause we provide an implementation of these new traversals via
reflection in Java, all previous tools and libraries are still avail-
able and functionality can be extended and composed to deal with
data structure reorganization using inheritance and encapsulation.
We demonstrate the use of these abstractions by solving a few pro-
totypical language problems: calculation of de Bruijn indices and
type-checking.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

General Terms functional traversals, function objects, transfor-
mations

Keywords traversals, argument passing, reconstruction, transfor-
mation

1. Introduction
A common development scenario faced by programmers involves
the implementation of operations over a rich, hierarchical data
structure. Typical examples are found in language processing, and
implementation, e.g., source-to-source transformations, compil-
ers, and XML libraries for adaptive object-oriented programming.
These kinds of operations are usually done using visitors, hand-
coded traversals, or domain specific languages, however, we can
view such operations as functional transformations comprised of
three parts:

traversal the order of sub-component traversal and the application
of transformations over the data structure,

function(s) application specific tasks or transformations to be ap-
plied at each data type during traversal,

builder specialized combinations or selection of sub-components
that produce a new data-structure.

Existing solutions admit limitations including duplicating traver-
sal code and mixing traversal with functional and reconstruction
code.1 These limitations create solutions that are overly dependent
on data structures making them less amenable to structural changes
and difficult to extend. Furthermore, system constraints such as
closed code libraries make existing solutions difficult to reuse.

To give us a specific data structure to discuss examples and ex-
tensions, we introduce a variation of the � -calculus that includes
first-class functions, integers, operations (addition and equality),

1 We relate and compare our solution to previous work in Section 7.

and if expressions (Figure 1). Figure 2 defines our example lan-
guage, in a mix of concrete and abstract syntax, as a Demeter style
class dictionary [6]. Each name on the left side defines a data-type;
‘:’ defines a sum type and ‘=’ defines a product type. We include
concrete syntax in quotations, interspersed with types, but exclude
field names for brevity.

Our data structure is given in a language independent descrip-
tion, but similar data structures could be written in ML or Haskell.
Ignoring issues related to the underlying programming language,
consider the tasks related to implementing the following analysis
and extensions to the example language as transformations, focus-
ing on the three components: traversals, functions, and builders.

de Bruijn indices For our traversal we need to explore expressions
in which variables may appear and expressions that can create
new bindings. During traversal we need to maintain a list of
bound variables and their corresponding lexical depth. At each
expression that creates new bindings we need to add them to our
list. Finally, our builder needs to construct new expressions with
variable references replaced by their corresponding de Bruijn
index.

Simple Type Checking Traversal needs to reach all expressions
while maintaining a type environment. At each expression that
defines new bindings we need to extend our type environment
with the variables and their types. At each variable use we
need to look up information in the type environment. While
traversing all other expressions we must construct their types
from sub-expressions; checking that none of our typing rules
are violated in the process.

Lists Extending our language to support lists as values requires
us to modify our data-structures, and extend our type check-
ing solution. We should be able to easily update our traversal,
function, and builder with just the new cases introduced by the
addition of list related constructors, accessors and predicates.

All three extensions require information to be maintained dur-
ing traversal. While calculating de Bruijn indices and type check-
ing, information can be discarded after traversing binding forms. In
the case of de Bruijn indices the function uses the address informa-
tion collected to replace variable instances. When type-checking,
the builder uses the environment to construct the type of each ex-
pression. Ideally, when adding list constructs, we should not have
to modify any existing code, only extend it with cases for lists.

To support our design and test our claims, we provide a Java
implementation consisting of a general traversal with default func-
tion and builder classes. Our traversal, implemented through Java
reflection, visits each element of our data structure, allowing ar-
guments to be passed along during traversal. We provide an ex-
tended dispatch strategy for methods defined in function objects
(functions and builders). Our extended dispatch selects the most
specific method definition considering all method arguments and



��� ���
	��	�����	�������������� Expressions	�� � ��� �"!#!#!$�&%'�(�)�*	��+���,�"!#!#!-��%'�
�.�/� �102	3� Operators45� ��� Values

Figure 1. Concrete Syntax

E: Num | Var | Op | If | Lambda | Call.
Num = Integer.
Var: Sym.
Sym = Ident.
Op: Plus | Equals.
Plus = "+".
Equals = "=".
Arg = Sym.
If = "(if" E E E ")".
Lambda = "(lambda" "(" ArgList ")" E ")".
Call = "(" E EList ")".

Figure 2. Mixed Data Structure Syntax

Var: Sym | Addr.
Addr = Integer.

class AddrTrans extends IDf{
Var a p p l y(Var var, SymList senv){

return new Addr(senv.lookup(var));
}

}

Figure 3. Simple Address Replacement

types. Default function and builder classes can be extended to spec-
ify operations on data types of interest.

Our code for the de Bruijn index calculation is shown in Fig-
ure 3 with the addition of a traversal argument shown in Figure 7
(discussed in Section 4). Our type checker in Figure 9 follows di-
rectly from the language’s typing rules. Our type checker imple-
mentation for lists is a straight forward extension that only adds
operations for the cases introduced to our language.

The rest of this paper is organized as follows: the next section
describes a preliminary version of our general traversal, functions,
and builders. Section 3 explains our extended dispatch mechanism.
Section 4 extends our traversal with arguments and gives a detailed
description of our de Bruijn indices calculation. Section 5 adds type
annotations to our language and shows our simple type checker
implementation as a builder. Section 6 extends our type checker
implementation with lists. We discuss related work in Section 7,
future work in Section 8, and conclude with Section 9.

2. Traversal and Recombination
To begin discussion of our traversal function and decomposition
we first introduce a limited version that is useful for simple trans-
formations. Figure 4 gives the specification of our new traversal
function, parameterized by two other functions. 6 is a polymorphic
function that takes a single argument and returns a result. A builder7

is a function object that is responsible for the reconstruction of
data types.

When 8 is atomic, e.g., int or boolean (the first case of 9�:<; = ),
the builder function is not used; only 6 is called. When the data type
being traversed is compound, signified by the use of a constructor > ,
we recursively traverse its data elements and reconstruct it using the
builder, passing the original object as its first argument followed by

TRAVERSAL
9 :#; = � 8 �@? 8,A

where 8 A � 6 � 8 �
8 is atomic

9 :<; = � > � 8CB)D !#!<! DE8 %'�$�@? 6 � 7 � > � 8CB)D !#!<! D$8 %'� DF8,AB D !G!#! DH8,A% �$�
where 8 A I � 9E:#; = � 8 I �

DEFAULT FUNCTIONSJ 8K: � 8 �*? 8J 8 = � > � 8CB)D !G!#! DH8 %L� D$8,AB D !#!#! DE8,A% �M? > � 8CBND !#!#! D$8 %O�7.P � > � 8 B D !#!#! D$8 % � D$8 A B D !#!#! D$8 A % ��? > � 8 A B D !#!G! D$8 A % �

Figure 4. Transformation Traversal Function

E: ... | Bool.
Bool: True | False.
True = "#t".
False = "#f".

class BoolTrans extends IDf{
static E newtrue = Call.parse("(= 1 1)"),
static E newfalse = Call.parse("(= 1 0)");

E a p p l y(True t){ return newtrue; }
E a p p l y(False t){ return newfalse; }

}

Figure 5. Boolean Literals and Rewrite Function

the results of sub-component traversals. The resulting combination
is then passed to 6 for transformation.

Below the definition of 9E:<; = are definitions of useful instances
of 6 and

7
.
J 8 : is the identity function and

J 8 = is the builder
that ignores recomputed results, returning the original compound
object. The builder

7 P
combines the recursive results using the same

constructor, preserving the original types. We assume it is possible
to inspect the data in some way to match arguments and aid in
reconstruction. Though our Java implementation uses reflection to
distinguish data types, languages with pattern matching can provide
equivalent functionality.

To demonstrate one use of our new definitions, we add boolean
constants to the example language, using them as abbreviations: Q�9
will be short for the expression (= 1 1), and QR6 for (= 1 0).
We will transform them using a newly defined function object and
the predefined builder,

7 P
.

Figure 5 shows our additions to the syntax (both concrete and
abstract) and the function object we use to transform boolean con-
stants. The function when applied to True and False returns the
appropriate Call expression. The static parse function knows
how to create a Call given the string “(= 1 1)”. The builder7 P

will then reconstruct terms while traversing. The result will be a
copy of the original term without boolean literals.

3. Dispatch and Matching
For the sake of this discussion we will refer to our Java imple-
mentation of functions as Objects which implement the correctly
named methods [1].

Our library calls methods based on the expected name, the ac-
tual data types encountered during traversal, and all types in the
defined method’s signature. As shown in BoolTrans (Figure 5)
functions are expected to implement the method apply( ! ) for
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Figure 6. Argument Passing Traversal Functions

data types that they wish to transform. Similarly builders are ex-
pected to implement a combine( ! ) method.

Method calls are dispatched using a simple multiple dispatch
matching algorithm that reflects on the formal and actual argument
types at runtime. Method possibilities are explored until a match is
found using a list of each argument’s superclasses and interfaces.
The method whose signature contains the exact types as the actual
argument types is the most specific. The least specific is a method
whose argument types are all Object. We choose the method
which is the most specific for the first � arguments, where sub-
classes are always more specific than superclasses. The predefined
builder

7 P
is implemented using the same lookup to find construc-

tors of the original compound object’s type. If no suitable method
is found we throw an error, to help with traversal debugging.

The next section discusses an addition to the traversal function
that makes it possible to pass arguments. We use the same dispatch
strategy to allow modification of this parameter throughout traver-
sal.

4. Traversal Arguments
Now that we have an idea of the basic traversal and our dispatch
implementation, we make a simple addition that allows us to solve
more interesting problems. For our second modification of the
example language, we add support for de Bruijn indices to our
abstract syntax. Figure 3 contains the syntax additions and the
AddrTrans function object which extends

J 8': . We introduce
Addr, an integer offset, as a variant of Var. We do not need to
add concrete syntax, as Addr will only appear after rewriting.

We must keep track of a symbol environment (SymList); re-
placing each variable access with the index of its symbol in the
current environment. To support these requirements, we need to
parameterize the traversal with a third function object, an augmen-
tor, and add an argument to the traversal and each of the function
objects.

Figure 6 shows the modified traversal and default functions. Be-
fore recurring into a data element, we use the augmentor to cal-
culate a new argument for sub-traversals. The augmentor’s result
becomes the last argument passed to the traversal and other func-
tions. Our traversal implementation in Java expects the augmentor
to implement a function, update( ! ), as seen in Figure 7.

5. Type Checking
As a third addition to our mini-language we integrate type annota-
tions and write a simple type checker using a combination of func-
tion objects. The modifications to the abstract and concrete syntax

class SymExtender extends IDa{
SymList u p d a t e(Lambda lambda, SymList senv){

return senv.push(lambda.formals);
}

}

Figure 7. Sym Environment Extender

Arg = Type Sym.
Type: BoolT | IntT | FuncT.
BoolT = "bool".
IntT = "int".
FuncT = TypeList Type.

Figure 8. Added Syntax for Types

are shown in Figure 8. We add a tupe annotation to Arg represent-
ing the type of � argument(s). In this new syntax, we can write the
identity function for integers as: � � �$����\,]^�Y�$�/�Y� , while the type of
Plus can be written as (int int -> int). We will only infer
the type of the body of _ XC` 7 8 X expressions.

The problem of type checking an expression in this language is
different from all of the previous examples in that the traversal is
not type-preserving, i.e., given an E, we want to return a Type,
not another E. It is also not type-unifying, meaning we do not
always return a Type, but sometimes return a TypeList. For
example, when traversing a Call expression we build the type of
the procedure and a list of actual argument types, inferred from the
given expressions.

The solution here is to create a customized builder that will re-
turn a Type for expressions, but return a TypeList when we
encounter an ArgList, or EList. As before we need to keep
track of a type environment. Figure 9 contains a function object,
TypeBuilder, that checks the types of expressions in our exam-
ple language, and TEnvExtender, holds pairs of (Sym, Type).
For simplicity we use a Lisp-style list representation for ArgList,
EList and TypeList. We represent ConsL and EmptyL as
interfaces and assume utility methods are implemented (e.g.,
equals( ! )). We use the exception TE to signal a type error.

One major benefit of our traversal organization is that our
type checker implementation follows directly from the language’s
typing rules including the more complex cases of expressions,�����R�a�b��� and �+�b�V�W!#!G!Z��%O� . As before, environment extension is
encapsulated in a single function object (TEnvExtender). In the
next section we reuse this TypeBuilder to add list types to our
language.

6. Adding List Values
Given our organization of traversals, builders and arguments, we
can extend our type checker to handle homogeneous lists by adding
new syntax and simple rules for the types of various operators.
Figure 10 shows the new syntax for lists and the simple additions
to the TypeBuilder.

We add a new operator for each built-in function. Each operator
requires the element type to be given, except "empty?", which
implicitly accepts the type any. Because our reference implemen-
tation is written in Java, we can use inheritance to reuse our earlier
methods, adding only the specifics for this extension. We again use
the static parse( ! ) function for brevity; constructing a String
that represents the type of the operator. Notably our transformations
BoolTrans and AddrTrans are unaffected by this change.



class TypeBuilder extends IDb{
// IF-expression

Type combine(If ife, Type ttest, Type tthen, Type telse, TEnv te){
if(!ttest.isBoolT())throw new TE("Condition Not Boolean");
if(tthen.equals(telse))return telse;
throw new TE("Then and Else not the Same Type");

}
// Call-expression

Type combine(Call call, Type proc, TypeList args, TEnv te){
if(!proc.isFuncT())

throw new TE("Args Applied to Non-func");
FuncT f = (FuncT)proc;
if(f.args.equals(args))return f.ret;
throw new TE("Argument Types Incorrect");

}
// Var-expression

Type combine(Sym sym, Ident id, TEnv te)
{ return te.lookup(sym); }

// Lambda-expression
Type combine(Lambda lam, TypeList args, Type ret, TEnv te)
{ return new FuncT(args, ret); }

// Op-expression
Type combine(Plus plus, TEnv te)
{ return FuncT.parse("(int int -> int)"); }

Type combine(Equal equal, TEnv te)
{ return FuncT.parse("(int int -> bool)")}

// Num, Arg-expression
Type combine(Num num, Integer i, TEnv te){ return new IntT(); }
Type combine(Arg arg, Type t, Sym sym, TEnv te){ return t; }

// EList and ArgList
TypeList combine(ConsL cons, Type t, TypeList tlst, TEnv te)

{ return new TypeCons(t, tlst); }
TypeList combine(EmptyL mt, TEnv te){ return new TypeEmpty(); }

}

class TEnvExtender extends IDa{
TEnv visit(Lambda lam, TEnv te){

return te.extend(lam.formals);
}

}

Figure 9. Type Checker/Builder and TEnv Extender

Component Method Name Boolean Trans. de Bruijn Type Checking

function apply()
J 8 : , Customized for Bool

J 8 : , Customized for Sym
J 8 :

builder combine()
7GP 7GP

Custom for Type Rules
augmentor update() N/A

J 8,S , Customized for Var Env.
J 8,S , Customized for Type Env.

Table 1. Traversal Combination Summary

7. Related Work
Type-generic traversals (TGT) [5] are general functions that can
be applied to terms of any type and allow recursive traversal into
subterms. Transformations can be type-unifying (TU), were each
recursive traversal returns the same type, or type-preserving (TP),
were each recursive traversal returns the same type as it’s input
type. Information maintained during traversal and operations on
them are encapsulated using a monad. Our augmentors and traver-
sal argument serves the same purpose as the monad in TGT sep-
arating data from functionality. Our implementation traverses data
structures in the same generic fashion as TGT, however, we sepa-
rate traversal from construction so transformations can return any
type. TU and TP transformations become special cases. While we
give flexibility on return types checked dynamically, TGT provides
statically typed TU and TP traversals.

The goal of Scrap Your Boilerplate (SYB) [2, 3, 4] is to automat-
ically write code that traverses data structures, while the developer
provides functions that perform transformations. Generic traversal

functions take a combinator and specifies which of the nodes in the
data structure a function should be applied to. The traversal com-
binator’s argument is itself a function that transforms the data that
it’s interested in and acts like c�d for others. As with TGT, SYB pro-
vides both TU and TP traversals along with static type guarantees.
Using SYB we believe it is possible to express some of the same
transformations between TU and TP that are not possible in TGT,
but we are not sure; that is a possible direction for future work.

The implementation of our generic traversal is similar to the
WalkAbout class described by Palsberg and Jay [8]. We provide
a similar mechanism, but separate functionality into multiple func-
tion objects, use multiple argument dispatch and a more involved
matching algorithm.

Adaptive Programming (AP) [6] has provided different mech-
anisms for separating traversals from functionality. DemeterJ [9]
trades dynamic control using a static, generative approach, while
DJ [7] deploys a dynamic, refective traversal. Both use a domain
specific language to describe a set of legal paths, which allows the



Op : ... | Cons | Empty
| EmptyHuh | Car | Cdr.

Cons = "cons<" Type ">".
Empty = "empty<" Type ">".
EmptyHuh = "empty?".
Car = "car<" Type ">".
Cdr = "cdr<" Type ">".

Type: ... | AnyT | ListT.
AnyT = "any"
ListT = "[" Type "]".

class ListChecker extends TypeBuilder{
Type combine(Car car, Type t, TEnv te)
{ return FuncT.parse("(["+t+"] ->"+t+")"); }

Type combine(Cdr cdr, Type t, TEnv te)
{ return FuncT.parse("(["+t+"] -> ["+t+"])"); }

Type combine(Empty mt, Type t, TEnv te)
{ return FuncT.parse("( -> ["+t+"])"); }

Type combine(EmptyHuh mthuh, TEnv te)
{ return FuncT.parse("(any -> bool)"); }

Type combine(Cons cons, Type t, TEnv te){
return FuncT.parse("("+t+" ["+t+"]->["+t+"])");

}
}

Figure 10. New Syntax and Type Checker for Lists

tools to optimize traversals according to the selected paths. Because
traversal arguments and return values are fixed, combination and ar-
gument passing must be implemented through visitors via assign-
ment. Our generic traversal has possibilities for more flexibility but
is comparatively inefficient and lacks a form of traversal control.

8. Future Work
Our traversal abstractions have been refined from earlier ideas
in both Adaptive Programming and Type-generic Traversals. We
would like to continue exploring the uses of these abstractions
in solving larger language problems related to interpreters and
compilers, e.g., XML or Java transformations within Eclipse.

Our first task will be the addition of some form of traversal
control. In addition to the reference Java implementation, we would
like to provide implementations in other languages. We would also
like to add some form of static guarantees like those found in TGT
and SYB.

9. Conclusion
We have described a functional decomposition of traversals that
clearly separates traversal code, functional code, reconstruction,
and traversal arguments. This separation allows us to build solu-
tions to more complex problems while preserving the functional
nature of transformations.

We provide an implementation of our ideas in Java that shows
how function objects can be used to write transformations with or
without traversal arguments. We can now solve problems like type
checking that require a mix of type-preserving and type-unifying
traversals. As a reference, Table 1 summarizes our function objects
and interfaces; showing the different components used in each of
our examples. We have also tested our traversal organization with
promising results on other problems including structural duplica-
tion, Shannon Decomposition, and program evaluation.
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