
Modular Proof Development in ACL2

A dissertation presented

by

Carl Eastlund

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

December, 2012

i

Thanks to everyone.

Thanks to my parents for getting me interested in reading, learning, and programming from

as long ago as I can remember. Thanks for a million other things I can’t even begin to list.

Thanks to my brother Paul for always reminding a quieter older brother what energy,

ambition, and competitiveness are for. Even if I didn’t always appreciate it at the time.

Perhaps especially because I didn’t.

Thanks to my nieces Ruthie and Claire and my nephew Paul, just for being cute and

mispronouncing words. Thanks to their expected new sister, I look forward to meeting you.

Thanks to all my friends in high school and college for constantly keeping me challenged.

Thanks especially to Tim and Simon for keeping in touch all these years and for beating

me to the Ph.D., thus reminding me to get finished, already.

Thanks to Triften for all the Sunday-morning video game sessions. I might have been able

to graduate without them, but it would hardly have been worth it.

Thanks to my fellow students in graduate school for all the cooperation, collaboration,

and commiseration. Thanks especially to Sam Tobin-Hochstadt and Stevie Strickland, my

fellow racketeers and partners in crime.

Thanks to Zoe Zhang, Ken McGrady, Sky O’Mara, and Carter Schonwald for all their

help developing and testing Dracula, the platform for all my research. Thanks to Dale

Vaillancourt for getting all this started.

Thanks to Matt Kaufmann, J Moore, and the rest of the ACL2 community for their sup-

port and acceptance of this quirky outsider with odd new ideas about how their mature,

successful, and award-winning software really ought to work.

Thanks to Dan Friedman for seeing new potential in my work, for seeing simplicity and

elegance in everything, and for patiently putting boundless energy and exuberance on hold

for two and a half years so I could finish this document.

Thanks to Rex Page, Ruben Gamboa, Pete Manolios, and Riccardo Pucella for their valu-

able feedback on this work, without which it could not have been as good as it is.

And thanks finally to Matthias Felleisen. Nine and a half years is an incredible commitment

to putting up with me and supporting me. I would not have made it without you.

Contents

Contents iii

List of Figures v

1 Introduction 1

1.1 History . 2

1.2 Roadmap . 4

2 Modules 7

2.1 Motivation . 7

2.2 Design . 9

2.3 Execution . 16

2.4 Verification . 19

2.5 Soundness . 23

3 Hygienic Macros 29

3.1 Motivation . 29

3.2 Design . 31

3.3 Semantics . 38

3.4 Evaluation . 41

4 Extended Case Study 47

4.1 The Racket Virtual Machine . 47

4.2 Verifying the Verifier . 50

4.3 Experience and Conclusions . 55

5 Refining Modules and Macros 61

5.1 Example . 61

5.2 Core Language . 63

5.3 Static Semantics . 66

iii

iv CONTENTS

5.4 Verification Semantics . 80

5.5 Executable Semantics . 88

5.6 Soundness of Refined ACL2 . 88

5.7 Implementation Details . 97

5.8 Related Work . 99

6 Finale 101

A Modular ACL2: First Model 103

A.1 Design of Modular ACL2 . 103

A.2 Modeling Modular ACL2 . 105

A.3 Logical meaning of modules . 106

A.4 Executable semantics of programs . 109

A.5 Summary and evaluation . 111

Bibliography 115

List of Figures

2.1 A finite set representation in ACL2. 8

2.2 A finite set representation in Modular ACL2. 10

2.3 Excerpts from interfaces in the interpreter experiment. 12

2.4 The core grammar of ACL2. 13

2.5 The grammar of Modular ACL2. 14

2.6 Excerpts from modified interpreter interfaces. 15

2.7 Translation from a Modular ACL2 program to an executable ACL2 program. 17

2.8 Inference rules for Modular ACL2 verification. 19

2.9 Metafunctions for Modular ACL2 verification. 20

2.10 Inference rules for ACL2 verification. 21

2.11 Metafunctions for ACL2 verification. 21

2.12 Equational reasoning used in lemma 3. 23

3.1 Syntax of fully-expanded ACL2 programs. 32

3.2 Representation of values and syntax. 38

3.3 Updated ACL2 operations. 39

3.4 Representation of expansion state. 40

3.5 Top-level expansion. 41

3.6 Impact of hygienic expansion on nontrivial ACL2 macros. 44

4.1 Grammar for machine states . 48

4.2 Execution of machine states . 49

4.3 Signatures for stack operations. 49

4.4 Grammar for bytecode abstract stacks . 49

4.5 Bytecode verification . 51

4.6 Specification of application expression data structure 52

4.7 Recursion scheme for expressions and expression lists 54

4.8 Grammar for abstract machine states . 54

v

vi LIST OF FIGURES

4.9 Conversion for abstract machine states . 55

4.10 Machine state verification . 56

4.11 Bytecode initialization lemma . 57

4.12 Machine state execution lemma . 57

5.1 Example Refined ACL2 program. 62

5.2 Grammar of Refined ACL2. 63

5.3 Expanded version of example Refined ACL2 program, part 1. 65

5.4 Expanded version of example Refined ACL2 program, part 2. 66

5.5 Typing rules for Refined ACL2 programs and definitions. 67

5.6 Typing rules for Refined ACL2 types and addresses. 68

5.7 Typing rules for Refined ACL2 environments, declarations, and types. . . . 69

5.8 Type reduction for Refined ACL2. 71

5.9 Subtyping for Refined ACL2. 72

5.10 Typing rules for Refined ACL2 expressions. 73

5.11 Equivalence rules for Refined ACL2 expressions. 74

5.12 Typing rules for ACL2 programs and definitions. 75

5.13 Typing rules for ACL2 hints, rule classes, and expressions. 76

5.14 Subtyping rules for ACL2. 77

5.15 Selected proof rules for ACL2. 77

5.16 Grammar of ACL2. 81

5.17 Verification environment for Refined ACL2. 81

5.18 Proof obligations for programs, definitions, and terms. 82

5.19 Proof obligations for environments, declarations, and types. 84

5.20 Proof obligations for hints, rule classes, expressions, and addresses. 85

5.21 Proof obligation of example program, part 1. 86

5.22 Proof obligation of example program, part 2. 87

5.23 Executable translation for Refined ACL2. 87

5.24 Executable form of example program. 89

5.25 Type flattening relation. 90

A.1 The Modular ACL2 program SQR-ALL. 104

A.2 A subset of ACL2 syntax. 105

A.3 The grammar of Modular ACL2. 105

A.4 Signatures of metafunctions used in the model. 106

A.5 Rules for computing the logical meaning of modules. 107

A.6 Transforming SQR-ALL to its logical form. 108

LIST OF FIGURES vii

A.7 A rule for computing the executable semantics of a program. 109

A.8 Transforming SQR-ALL to its executable form. 111

A.9 The logical form of linked compound module SQR-ALL-MOD. 112

Chapter 1

Introduction

ACL2 is the successor to Nqthm, the original Boyer-Moore theorem prover. In 1989, Boyer,

Moore, and Kaufmann set out to design a more practical theorem prover suited to verifying

real-world hardware and software artifacts. The resulting software has gained significant

success and popularity among industrial clients.

The ACL2 theorem prover comprises both a programming language and a logic, aptly

described by its acronym: “A Computational Logic for Applicative Common Lisp”. “Ap-

plicative Common Lisp” refers to the first-order, side-effect free variant of Common Lisp

that serves as ACL2’s programming language. The “Computational Logic” describes an

automated theorem prover for first-order logic over the domain of recursive functions in the

aforementioned language.

In addition to ACL2’s core constructs—recursive functions and theorems about them—

there are several meta-proving tools that extend the power of the language and the logic,

allowing developers to manage complicated verification tasks. From its Common Lisp her-

itage, ACL2 inherits macros for syntactic abstraction and packages for namespace man-

agement. Logically, ACL2 has tools to divide programs by file, to nest encapsulated ab-

stractions and later reinstantiate them with concrete definitions, to defer verification by

“skipping” certain proof obligations, and to extend the logic with new axioms.

For all these capabilities, there are several program development techniques ACL2 does

not natively support. The logic indirectly supports second-order universal quantification via

encapsulation (second-order existential quantification) and functional instantiation (reusing

theorems that reason about an existential), but does not support direct universal quantifi-

cation without an existential witness. Top-down development requires editing a partially-

verified program to remove “skip-proofs” annotations; the final steps in verification do not

constitute a verified artifact on their own. Packages and books do not protect their contents

from namespace collisions; encapsulated abstractions do, but at the cost of executability.

Finally, ACL2’s macros are unhygienic, meaning they do not respect lexical scope.

1

2 CHAPTER 1. INTRODUCTION

Fortunately, ACL2’s existing tools show many dimensions along which it can be extended

to accommodate these and other features. ACL2 admits to syntactic extension via macros;

to representing new features dually, split between concrete and abstract representations, as

with encapsulation blocks; and to second-order reasoning as with functional instantiation.

Based on these avenues for extending the language, I arrive at my thesis.

The language of ACL2 can be extended to express robust modular and syntactic

abstractions without changing ACL2’s logic or theorem prover.

To demonstrate this thesis, I present Refined ACL2. Refined ACL2 is a proof language

combining the programmatic and logical constructs of ACL2 with ML’s modularity mech-

anisms and Racket’s syntactic abstractions. To illustrate the design process leading up to

Refined ACL2, I also describe Modular ACL2 and Hygienic ACL2, two predecessor lan-

guages of Refined ACL2 that separately introduce modules and hygienic macros to ACL2.

Along with these languages, I present experiments validating Refined ACL2’s utility for

developing ACL2 proofs and a soundness theorem for the Refined ACL2 module system.

1.1 History

This research started with Dracula. Prof. Page (University of Oklahoma) requested ACL2

in DrRacket (then DrScheme) as a better environment for teaching formal verification.

Dale Vaillancourt designed and implemented the original Dracula, an interface for running

a simulation of ACL2 execution in DrScheme and relaying proof obligations to ACL2. Page

also requested a way to demonstrate modular programming development, which ACL2 only

supports through a fragile combination of many features. The goal was to provide a system

in which components of an ACL2 model can be specified, compiled, and verified separately,

but ultimately executed as a whole without duplicating effort (of the developer, compiler,

or theorem proving engine). I took on the task of implementing [Eastlund and Felleisen

2009b] this system.

The first iteration of the module system is based on the linking system of the Racket

unit system, with bindings determined as in mixin modules. It provides a way to specify

functions via signatures and contracts, a way to implement specifications in terms of other

specifications, and ways to link implementations together and ultimately execute them.

Our first model, described in more detail in appendix A, implemented the bare minimum

necessary for these features. Subsequent versions of the language could intermingle interface

and module definitions, could link across multiple interfaces at once, accumulated exported

1.1. HISTORY 3

bindings of executable modules at the top level, and allowed interfaces to depend on one

another.

A series of short case studies demonstrated the resulting system adequate for develop-

ing proof abstractions and restricting the theorem prover’s search efforts. However, the

specification language of signatures and contracts was not expressive enough to describe

new induction schema. For instance, one case study introduced a predicate recognizing

arithmetic expressions with integers and binary operators. In ACL2, the theorem prover

deduces structural induction over arithmetic expressions from the recursion scheme used to

define the predicate. Our language of contracts describes the predicate’s results but not

its recursion scheme. Clients of the expression datatype, therefore, were unable to perform

structural induction.

Our second iteration of the module system introduced transparent functions, describing

induction in terms of recursive function definitions as done natively by ACL2. The same

case studies were performed in the second system, this time with greater success with novel

induction schemes. The system also came with an expressivity proof, showing that the

module system could faithfully reproduce any model (in its contained subset of ACL2) split

into modules at arbitrary points.

Once modules performed adequately in our small case studies, we turned to the one

abstraction feature of ACL2 that we had never integrated with Dracula: macros. On one

hand, macros are a useful tool for enriching the core language of ACL2, understood by

the theorem prover, with useful tools for programmers that the theorem prover need not

be extended to reason about. On the other hand, ACL2’s macros are unhygienic; they do

not preserve default assumptions about lexical scope in the surface program. This makes

them difficult to trust, and a significant step down from Racket’s advanced hygienic macro

system.

Our first macro system, Hygienic ACL2, attempts to bring hygienic macro expansion to

ACL2 while preserving compatibility with its existing libraries and macros. Rather than

devise a new macro system, we augment the values of ACL2 with expansion metadata,

invisible to the logic but usable by the compiler, and use the metadata to give a hygienic

semantics to existing macro definitions. We base our definition of hygiene on the scope of

ACL2 and on compatibility with existing macro practices.

In 2009, Ms. Yue “Zoe” Zhang (M.S. 2010, Northeastern University) ran a large-scale

evaluation of Modular ACL2. She chose to model the Racket bytecode verifier and attempt

to prove its soundness. Although she did not complete the verification effort, her project

suggested several opportunities for improvement in Modular ACL2.

The primary difficulties, aside from the complexity of the bytecode verifier itself, were

4 CHAPTER 1. INTRODUCTION

structure specifications, list type abstraction, (mutually) recursive datatypes, and mutual

induction. Modular ACL2 cannot abstract over structure or recursive datatype definitions,

as they have a non-uniform format. Constructing the theories necessary to represent struc-

tures abstractly and recursive datatypes in a form that permits induction and recursion

took a disproportionate amount of time and space. Furthermore, any changes to the basic

template for either induced a manual change to each implementation. Mutual induction

did not balloon out of proportion, but provided similar syntactic difficulties.

While Modular ACL2 can abstract over list types, instantiations do not expose their

element types, which basically renders the abstraction useless. The module system’s scope

and linking mechanisms were also never augmented to allow multiple instances of one spec-

ification, so list types could not be combined.

Essentially, Modular ACL2 is useful for segmenting the large components of a model,

but does not come with good facilities for building the low level tools of representation and

reasoning in ACL2.

Our response to these difficulties is to design a language combining the modular proof

abstractions of Modular ACL2, the flexibility of linking, nesting, and specializing of the

ML module system, and the syntactic abstractions of the Racket macro system. We an-

ticipate that nesting and specializing modules will make list abstractions practical, while

hygienic macros will allow automation for mutual induction, recursive datatypes, and struc-

ture datatypes.

1.2 Roadmap

The following chapter explains Modular ACL2, our initial design for an ACL2 module sys-

tem. The discussion begins in section 2.1 with the difficulties inherent to modular proof

development in ACL2. Section 2.2 provides an overview of Modular ACL2’s features by

example. Both semantic translations from Modular ACL2 to ACL2 are described in sub-

sequent sections—section 2.3 for the executable semantics and section 2.4 for the logical

semantics. The chapter concludes with a proof of soundness relating the logical and exe-

cutable semantics.

Our adaptation of hygienic macro expansion to existing ACL2 programs is presented

in chapter 3. We provide several examples illustrating how ACL2’s unhygienic macros

can be problematic in section 3.1. Section 3.2 describes our interpretation of hygiene for

the particular syntactic forms of ACL2, including separate function and value namespaces,

implicit quantification, and local scope in encapsulated proofs. Extending this description,

we present the details of Hygienic ACL2’s expansion algorithm in section 3.3. We evaluate

1.2. ROADMAP 5

the impact of hygienic expansion on the existing body of ACL2 macros in section 3.4.

Chapter 4 discusses a case study in which we attempt to use Modular ACL2 to model

and verify the Racket virtual machine and bytecode verifier, in order to report on Modular

ACL2’s utility in practice. Section 4.1 describes a simple subset of the Racket bytecode

language and verification algorithm. In section 4.2 we present our approach to proving the

verifier’s soundness, followed by an analysis of which Modular ACL2 features worked and

which didn’t in section 4.3.

In response to the case study above, we present Refined ACL2, a language combining ML

modules, Racket macros, and the logic of ACL2 to overcome the drawbacks we uncovered.

Chapter 5 begins with a description of Refined ACL2 and an example program. Macro

expansion in our new language is described in section 5.2. Sections 5.3, 5.4, and 5.5 present

the static, logical, and executable semantics of Refined ACL2, respectively. We prove the

soundness of our logical semantics with respect to the executable semantics in section 5.6.

The chapter ends with a discussion of the implementation details for Refined ACL2 in both

Racket and ACL2.

The support of our thesis draws to a conclusion in chapter 6, in which we discuss our

accomplishments and consider future directions.

Chapter 2

Modules

Modular ACL21 augments ACL2 with modules that can be verified independently, then

linked and run as a whole. We present the motivation and design of Modular ACL2, its

semantics, and a proof demonstrating that the linking process preserves the theorems proved

about individual modules.

2.1 Motivation

For our purposes, an ACL2 program consists of a sequence of function definitions, con-

jecture statements, and expressions. Function definitions may be recursive, but may not

have forward references. A conjecture is a named expression with free variables. Lastly,

an expression applies primitive operations and previously-defined functions to atomic and

compound values.

In its default “logic mode”, the ACL2 theorem prover attempts to admit each term,

verifying its soundness before adding it to the database of logical rules and proceeding to

the next term. Functions must be proved terminating for all possible inputs; conjectures

must be established as theorems. Expressions have no logical obligations; they are simply

run.

ACL2 also has a more efficient “program mode” that ignores proof obligations and runs

terms unconditionally.

Figure 2.1 shows a short ACL2 program defining a finite set representation (setp) and

functions to add one or more elements to a set (add and add-all). The program also states

conjectures that add and add-all preserve the set representation.

To admit this program, ACL2 first verifies that setp, add, and add-all terminate for all

possible inputs. The proofs for the non-recursive functions setp and add are trivial. For

add-all, ACL2 uses its recursive structure to construct an induction scheme, which it then

proves well-founded. The theorem prover records this scheme with the definition of add-all.

1This work has been published as Eastlund and Felleisen [2009a,b].

7

8 CHAPTER 2. MODULES

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

(add-all (list 1 2 3) (list 2 3 4))

Figure 2.1: A finite set representation in ACL2.

ACL2 finishes the proof by checking that add-preserves-setp and add-all-preserves-setp

are true for all value assignments to their free variables. It verifies add-preserves-setp based

on the rules for the two built-ins: add-to-set-eql and no-duplicatesp-equal. The proof of add-

all-preserves-setp demands inductive reasoning about add-all. To this end, ACL2 applies the

induction scheme stored with add-all.

Finally, ACL2 runs add-all on the inputs (list 1 2 3) and (list 2 3 4). Based on the

admitted theorems, we can trust the result not to duplicate 2 or 3.

Now the programmer has a working implementation of sets that may be integrated into

larger programs. ACL2 provides several different tools toward this end: books, packages,

encapsulation, and functional instantiation Kaufmann and Moore [2001]. Each has its

benefits, but also drawbacks:

• Books provide reusable components containing verified functions and theorems. Un-

fortunately, they also cause namespace clashes: all definitions are exported unless

explicitly declared local. These conflicts are known to cause incompatibilities among

books distributed with ACL2.

• The Common Lisp package system provides namespaces, but no scoping or abstraction

mechanism [Padget, J. et al. 1986]. Multiple books may still clash by using the same

package. Packages also do not introduce a logical abstraction boundary; functions

and theorems in one package are fully “visible” in another.

• Encapsulation allows “local” definitions whose names and logical rules are hidden from

outside proofs. This provides scope and abstraction; however, there is no mechanism

2.2. DESIGN 9

to write down an explicit specification of the exported definitions. Furthermore, local

definitions cannot be run; one must sacrifice executability to gain abstraction. Fi-

nally, these abstractions cannot be built top-down; there must always be a “witness”

instantiation to begin the proof.

• The “functional instantiation” mechanism can be used to connect proofs based on an

encapsulation to executable code. Mart́ın-Mateos et al. [2002] demonstrate how to

easily apply functional instantations to generic libraries; however, neither the instan-

tiated theory nor its generated consequences have an explicit specification.

• The “top-down” proof style presented by Kaufmann [Kaufmann et al. 2000] simulates

specifications for abstract proofs via programming patterns. These specifications limit

the rules and names exported from part of a proof. They are not reusable: multiple

components with the same interface need separate specifications.

2.2 Design

Large proofs in ACL2 require a consolidated system for specification, abstraction, and the

management of namespaces and components. To that end our new language, dubbed Mod-

ular ACL2, introduces interfaces and modules. Interfaces provide abstract specifications

of functions, dubbed signatures, and theorems, dubbed contracts. Atomic modules supply

implementations for one or more interfaces, possibly based on other interfaces. Compound

modules link together multiple modules, using the implementations of one to satisfy the as-

sumptions of another. Modules with no further assumptions may be invoked; their exported

functions may be called by external expressions.

The finite-set example in figure 2.1 can be rewritten as a Modular ACL2 program in

which add and add-all are specified and implemented separately; see figure 2.2. The program

starts with two interfaces. The first, IOne, specifies setp and add with signatures describing

their name and arity. It states add-preserves-setp as a contract constraining the signatures

above. The second interface, IMany, is an extension of IOne; equivalently, IOne is a de-

pendency of IMany. This allows contracts in IMany to refer to signatures from IOne, and

obligates implementations of IMany to include some implementation of IOne. The exten-

sion declaration is followed by a signature for add-all and the contract add-all-preserves-setp,

which constrains setp (from IOne) and add-all.

Two atomic modules follow the interfaces. The module Many imports the interface IOne;

subsequent definitions may refer to setp and add. In turn, Many defines add-all and exports

IMany.

10 CHAPTER 2. MODULES

(interface IOne
(sig setp (xs))
(sig add (x xs))
(con add-preserves-setp

(implies (setp xs)
(setp (add x xs)))))

(interface IMany
(extend IOne)
(sig add-all (xs ys))
(con add-all-preserves-setp

(implies (and (true-listp xs) (setp ys))
(setp (add-all xs ys)))))

(module Many
(import IOne)
(defun add-all (xs ys)

(cond ((endp xs) ys)
((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(export IMany))

(module One
(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))
(export IOne))

(link OneOrMany (One Many))
(invoke OneOrMany)
(add-all (list 1 2 3) (list 2 3 4))

Figure 2.2: A finite set representation in Modular ACL2.

The module One exports the interface IOne. This supplies the functions setp and add

as implementations of IOne’s signatures, and obligates them to satsify the contract add-

preserves-setp.

Next, the program constructs OneOrMany by linking together One and Many. This yields

a module with One’s implementations of setp and add and Many’s implementation of add-all.

The new module does not rely on any imports.

Finally, the program invokes OneOrMany, which makes setp, add, and add-all available

globally. Hence, the final expression has the same meaning as in the monolithic program of

figure 2.1.

Our model of Modular ACL2 comes with a two-pronged semantics: one side produces

proof obligations for each atomic module, and the other produces an executable program

from the modules invoked at the top level. A program is considered to be verified if the

obligations of each atomic module can be proved in separate ACL2 sessions. The theorem

prover must be restarted after each module to erase the assumptions based on its imports.

2.2. DESIGN 11

The executable program comprises the definitions from all linked and invoked modules;

these are run in ACL2’s program mode to avoid redundant proof efforts. Soundness follows

from an argument that if ACL2 verifies the atomic modules’ obligations, they hold for the

executable form of the program (even though ACL2 might not automatically find their

proofs in logic mode).

A few experiments with verification in Modular ACL2 demonstrate its ability to provide

abstraction and reusability. In a variant of Moore’s graph search case study [Kaufmann

et al. 2000], we specify the graph representation and search algorithm separately, and verify

two implementations of each. In another, we verify properties of a simple video game called

“Worm”.

The third experiment highlights one of ACL2’s key reasoning mechanisms: induction

schemes inferred from function definitions. The experiment specifies the equivalence of two

interpreters via four interfaces, shown partially in figure 2.3.

The ILanguage interface provides a representation for expressions, recognized by the

predicate expr-p. An expression may be an integer or a “calculation” recognized by calc-p.

A calculation applies an operator (recognized by op-p) to left and right operands.

A reduction semantics for the language is specified by ISmallStep. It describes a single-

step function on expressions that reduces one calculation on integers at a time and a step-all

function that performs single-step until no calculations remain.

We describe recursive evaluation in IBigStep, extending ILanguage with a function that

yields an integer for each expression.

In IEquivalence, we extend ILanguage, ISmallStep, and IBigStep. Then we state the

claim that step-all and evaluate produce the same result when given an expression satisfying

expr-p. The module system guarantees that the implementation of an interface shares the

implementation of its (transitive) dependencies, so we may rely on step-all, evaluate, and

the step-all=evaluate contract to use the same definition of expr-p.

This section presents the formal definition of Modular ACL2. It starts with a description

of the design space for manifest functions, followed by two separate semantics: one for

verification and one for execution.

2.2.1 Language Design

To express induction schemes for abstraction boundaries, we introduce manifest functions

into interfaces. In addition to signatures, contracts, and dependencies, interfaces may now

express functions with a name, argument list, and body expression that may refer to other

manifest functions and opaque function signatures. These specifications supply an exporting

12 CHAPTER 2. MODULES

(interface ILanguage
(sig expr-p (x))
. . . more predicates, constructors, and selectors . . .
(con expr/calc

(iff (and (op-p o) (expr-p l) (expr-p r))
(expr-p (calc o l r))))

(con expr/integer
(iff (and (expr-p e) (not (calc-p e)))

(integerp e)))
. . . more contracts about expr-p, calc-p, and op-p. . .)

(interface ISmallStep
(extend ILanguage)
(sig single-step (e))
(con single-step-plus

(implies (and (integerp l) (integerp r))
(equal (single-step (calc ’+ l r)) (+ l r))))

. . . more contracts about single-step. . .
(sig step-all (e))
(con step-all-calc

(implies (calc-p e)
(equal (step-all e) (step-all (single-step e)))))

. . . more contracts about step-all. . .)

(interface IBigStep
(extend ILanguage)
(sig evaluate (e))
(con evaluate-plus

(equal (evaluate (calc ’+ l r))
(+ (evaluate l) (evaluate r))))

. . . more contracts about evaluate. . .)

(interface IEquivalence
(extend ILanguage ISmallStep IBigStep)
(con step-all=evaluate

(implies (expr-p e)
(equal (step-all e) (evaluate e)))))

Figure 2.3: Excerpts from interfaces in the interpreter experiment.

2.2. DESIGN 13

module with a function definition that must be proved terminating, and allow an importing

module to use the resulting logical rules: the body of the function and its attending induction

scheme, if any. Any opaque signatures to which the manifest function refers remain abstract.

Thus, interfaces as a whole are translucent, analogous to the ML signatures of Harper and

Lillibridge [1994].

The design of manifest functions is motivated by ACL2’s method of inferring induction

schemes from functions. A manifest function provides exactly the definition ACL2 needs for

inference. An alternate design might allow users to specify induction schemes abstractly.

The verification process for Modular ACL2 would still have to synthesize a function defini-

tion to communicate the scheme to the theorem prover. Manifest functions avoid this extra

step, thus simplifying the correlation between Modular ACL2 code and verified ACL2 code.

Users wishing to separate induction schemes from program behavior can export “dummy”

manifest functions with appropriate recursive structure but trivial output, e.g., returning

nil in all clauses. The resulting induction scheme can be used in other modules to reason

about other functions, even abstract ones introduced by signatures.

The new grammar of Modular ACL2 is shown in figure 2.5. It extends the core grammar

of ACL2 in figure 2.4. Keywords are set in bold and nonterminals in italics. We write
−→
X to

denote a sequence of terms of the form X or a set when order is insignificant. A sequence

of length n is written
−→
X n.

prog =
−−→
term

term = defn | expr
defn = dfun | dthm | dstub | dskip
dfun = (defun f (−→x) expr)
dthm = (defthm f expr)
dstub = (defstub f (−→x) t)
dskip = (skip-proofs defn)

Figure 2.4: The core grammar of ACL2.

ACL2 programs consist of a sequence of definitions and expressions. Definitions may

be functions, conjectures, or stubs, which provide a function name and arity but no imple-

mentation. Definitions may be wrapped in skip-proofs, which informs the theorem prover

to admit them without proof.2 ACL2 includes two variable namespaces: one for functions

and conjectures (f) and another for function parameters and local variables (x). Modular

ACL2 adds a third namespace for interfaces and modules (n).

Modular ACL2 programs (mprog) consist of a sequence of components. A component

may be an interface (ifc), atomic module (mod), compound module (link), module invo-

2The skip-proofs form may admit unsound conjectures, and is usually reserved for intermediate stages
of proof development. See section 2.4.1.

14 CHAPTER 2. MODULES

mprog = −−−→comp
comp = ifc | mod | link | inv | expr
ifc = (interface n −−→spec)

mod = (module n
−−→
body)

link = (link n (n n))
inv = (invoke n)
spec = fun | sig | con | ext
fun = (fun f (−→x) expr)
sig = (sig f (−→x))
con = (con f expr)
ext = (extend n)
body = im | ex | defn
im = (import n −→re)
ex = (export n −→re)
re = (f f)

Figure 2.5: The grammar of Modular ACL2.

cation (inv), or top level expression (expr). Interfaces and modules come with names; an

interface contains a sequence of specifications; an atomic module contains a sequence of

body terms; and a compound module links together two named constituent modules.

An interface may specify manifest functions (fun), opaque signatures (sig), contracts

(con), or dependencies (ext). A manifest function exposes the actual implementation of

a function, including a name, argument list, and body expression. An opaque signature

provides only a name and argument list. A contract has a name and a logical claim. Other

interfaces may be extended by name, thus introducing a dependency.

The body of a module may include definitions (defn), imports (im), and exports (ex).

Imports and exports name an interface and provide a sequence of renamings that map

function names in the interface to function names inside the module. Imports provide a

set of specifications that the module may rely on; exports describe a set of specifications

that the module satisfies. Since manifest functions are defined in interfaces, an exporting

module need not define them internally; the export clause implicitly defines the function,

and subsequent definitions in the module may refer to it.

Compound modules are linked nominally in Modular ACL2. Any names joined between

two modules by linking must be imported and exported via the same interface. This en-

sures the “consumer” module assumes precisely those contracts about its imports that the

“producer” module ensures.

For the purposes of this chapter, we put further syntactic restrictions on Modular ACL2

programs. An interface must explicitly extend all its transitive dependencies. A module

must explicitly import or export all transitive dependencies of its imports and exports. Each

import and export must provide explicit internal names for all functions and theorems

2.2. DESIGN 15

(interface ILanguage
. . . signatures except for expr-p. . .

(fun expr-p (v)
(cond ((integerp v) t)

((calc-p v) (and (op-p (calc-op v))
(expr-p (calc-left v))
(expr-p (calc-right v))))))

. . . contracts about calc-p and op-p. . .)

(interface ISmallStep
(extend ILanguage)
(sig single-step (e))
(con single-step-plus

(implies (and (integerp l) (integerp r))
(equal (single-step (calc ’+ l r)) (+ l r))))

. . . more contracts about single-step. . .

(fun step-all (e)
(cond ((integerp e) e)

((calc-p e) (step-all (single-step e))))))

Figure 2.6: Excerpts from modified interpreter interfaces.

from the relevant interface. These restrictions simplify verification and compilation, but

complicate programming. We therefore assume a surface syntax without these restrictions

and an elaboration process which synthesizes the implicit dependencies, imports, exports,

and names, though for brevity’s sake we do not present them.

In this system, we can reformulate the interpreter example from the preceding section

(see figure 2.3) with manifest functions. Figure 2.6 shows the modified portions of the

interfaces. In ILanguage, the signature and contracts for expr-p are replaced by a manifest

function definition. This definition adds to the previous version an induction scheme for

traversing an expression through the operands of a calculation. A module exporting this

new interface must ensure that the calc-left and calc-right of a calculation are smaller than

the original expression, and a module importing it can use the new induction scheme.

Similarly, we replace the step-all signature and related contracts in ISmallStep with a

manifest function definition. This establishes an induction scheme for reducing a calculation

step-by-step to an integer. An exporting module must ensure that step-all terminates, i.e.,

that single-step brings an expression closer to a final result. Importing modules may then

reason about the (finite) reduction sequence of an expression.

Now the proof of step-all=evaluate completes immediately using the manifest definitions

of step-all and expr-p to reason inductively about step-all and evaluate, respectively.

In general, manifest functions are useful whenever the contents of one module introduce

a pattern of recursion that another module needs to reason about. The pattern of recursion

16 CHAPTER 2. MODULES

may be a data structure (as with expr-p) or an algorithm (as with step-all). Our other

experiments use lists and list traversal for all their inductive definitions. ACL2 can therefore

use its built-in induction schemes regardless of module boundaries. Proofs using other

data structures or non-structural recursion (e.g., quicksort) must introduce new induction

schemes to support reasoning across module boundaries.

2.3 Execution

The executable semantics for Modular ACL2 turns a whole Modular ACL2 program into

a single ACL2 program intended for execution in ACL2’s program mode. Our soundness

theorem guarantees that if the verification obligation for the whole program can be proved,

the theorems in the executable form are logically sound as well. Explicitly verifying them

would therefore be redundant.

2.3.1 Executing Modules

The execution of Modular ACL2 programs is defined by the metafunction execute, shown in

figure 2.7, which transforms a Modular ACL2 program to an ACL2 program. We introduce

sequences of modules as environments (Γm) for use in compilation. During compilation, we

maintain environments of interfaces (Γi), modules (Γm), and renamings (Γr), which map

top level function names to implementations provided by invoked modules. The compila-

tion process adds interfaces, atomic modules, and compound modules to the appropriate

environments. The constituents of compound modules are extracted from the environment

and linked first.

Turning compound modules into atomic modules is the key step in compilation. The

metafunction link applies rename to the body of both constituent modules, giving their

definitions fresh names to prevent name clashes. It then links imports of the second module

(“consumer”) to exports of the first (“producer”) via the resolve metafunction. The same

process coalesces shared imports. Linking is one-directional—exports flow from the producer

to the consumer—to prevent introducing new recursion that might invalidate termination

proofs. The resulting module contains the definitions, exports, and unresolved imports of

both constituents.

The resolve metafunction consumes terms from the body of producer and consumer

modules and processes each term from the consumer in order. If it reaches an import that

coincides with an import or export of the producer, it substitutes the internal names from

the producer, drops the import, and continues. Otherwise, terms from the consumer module

are left unchanged.

2.3. EXECUTION 17

execute : mprog → prog
execute(mprog) = compile(ε, ε, ε,mprog)

compile : Γi,Γm,Γr,
−−−→comp → −−→term

compile(Γi,Γm,Γr, ifc
−−−→comp) = compile(Γi ifc,Γm,Γr,

−−−→comp)
compile(Γi,Γm,Γr,mod −−−→comp) = compile(Γi,Γm mod ,Γr,

−−−→comp)
compile(Γi,Γm,Γr, (link n (n1 n2)) −−−→comp)

= compile(Γi,Γm link(Γi,n,Γm(n1),Γm(n2)),Γr,
−−−→comp)

compile(Γi,Γm,Γr, (invoke n) −−−→comp)

=
−−−−−−−−−−−→
verify(Γi, body2) compile(Γi,Γm,Γr

−→re ,−−−→comp)

where Γm(n) = (module n
−−−→
body1)

and rename(
−−−→
body1) =

−−−→
body2

and {−→re0 | (import n −→re0) ∈
−−−→
body2 or (export n −→re0) ∈

−−−→
body2} = −→re

compile(Γi,Γm,
−−−→
(f1 f2), expr −−−→comp) = expr [

−−−→
f1 = f2] compile(Γi,Γm,

−−−→
(f1 f2),−−−→comp)

compile(Γi,Γm,Γr, ε) = ε

link : Γi,n,mod ,mod → mod

link(Γi,n,(module n1
−−−→
body1),

(module n2
−−−→
body2))

= (module n
−−−→
body3

−−−→
body4)

where rename(
−−−→
body1) =

−−−→
body3

and resolve(
−−−→
body3, rename(

−−−→
body2)) =

−−−→
body4

resolve :
−−→
body ,

−−→
body →

−−→
body

resolve(
−−−→
body1, ε) = ε

resolve(
−−−→
body1, (import n

−−−→
(f f1))

−−−→
body2) = resolve(

−−−→
body1,

−−−−−−−−−→
body2[

−−−→
f1 = f2])

if (import n
−−−→
(f f2)) ∈

−−−→
body1

resolve(
−−−→
body1, (import n

−−−→
(f f1))

−−−→
body2) = resolve(

−−−→
body1,

−−−−−−−−−→
body2[

−−−→
f1 = f2])

if (export n
−−−→
(f f2)) ∈

−−−→
body1

resolve(
−−−→
body1, (import n −→re)

−−−→
body2) = (import n −→re) resolve(

−−−→
body1,

−−−→
body2)

if n 6∈
−−−→
body1

resolve(
−−−→
body1, defn

−−−→
body2) = defn resolve(

−−−→
body1,

−−−→
body2)

resolve(
−−−→
body1, ex

−−−→
body2) = ex resolve(

−−−→
body1,

−−−→
body2)

rename :
−−→
body →

−−→
body

rename(
−−→
body) =

−−−−−−−−→
body [

−−−→
f1 = f2]

where
−−−−−−−−−−−−→
introduced(body) =

−→
f1
n

and
−→
f2
n fresh

introduced : body →
−→
f

introduced((import n
−−−→
(f1 f2))) =

−→
f2 introduced((defstub f (−→x) t)) = f

introduced(ex) = ε introduced((defthm f expr)) = f
introduced((defun f (−→x) expr)) = f introduced((skip-proofs defn)) = introduced(defn)

Figure 2.7: Translation from a Modular ACL2 program to an executable ACL2 program.

18 CHAPTER 2. MODULES

We extract executable definitions from invoked modules in the same way we extract

proof obligations during verification (verify; see section 2.4.1). This produces each module’s

internal definitions, along with the contracts and manifest functions of their exported inter-

faces (as defthm and defun forms). Modules with unresolved imports may not be invoked,

so the process does not generate any abstract definitions (defstub or skip-proofs). The ex-

tracted definitions are given fresh names to prevent clashes, and the renaming environment

is updated.

Top level expressions are linked to invoked modules by appropriate renaming. They are

then added to the executable program.

2.3.2 Execution Example

Once again, consider the finite set representation from figure 2.2. To construct executable

code for this program, we must first link together the atomic modules One and Many into

OneOrMany.

The linked, atomic form of OneOrMany constructed by link and resolve contains the

definitions and exports of One and Many:

(module OneOrMany
(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))
(export IOne)
(defun add-all (xs ys)

(cond ((endp xs) ys)
((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(export IMany))

It no longer contains the import of IOne from Many; add-all and add-all-preserves-setp now

refer to the concrete definitions of setp and add from One.

Compilation completes by invoking OneOrMany, exposing its definitions and the asser-

tions of its exported contracts and allowing top-level expressions to refer to them:

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

2.4. VERIFICATION 19

pfmprog
ε `c mprog

`p mprog

pfcomp0

Γi `c ε

pfcexpr
Γi `c −−−→comp

Γi `c expr −−−→comp

pfifc
Γi ifc `c −−−→comp

Γi `c ifc −−−→comp

pfmod
`s obligations(Γi,mod) Γi `c −−−→comp

Γi `c mod −−−→comp

pflink
Γi `c −−−→comp

Γi `c link −−−→comp

pfinv
Γi `c −−−→comp

Γi `c inv −−−→comp

Figure 2.8: Inference rules for Modular ACL2 verification.

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

(add-all (list 1 2 3) (list 2 3 4))

Aside from the reordering of add-preserves-setp and add-all, this program is the same as

the original monolithic program from figure 2.1. Modular ACL2’s compilation process has

produced a program that contains assertions of all contracts exported by the invoked module

OneOrMany, and whose soundness follows from the verification of the atomic modules One

and Many. Once the atomic modules are verified, this program can be safely run in ACL2’s

program mode.

2.4 Verification

The logical semantics for Modular ACL2 turns a whole Modular ACL2 program into a

series of ACL2 programs representing the proof obligations for each module in the source

program. These proof obligations can be verified separately and in any order using ACL2.

Once all of the proof obligations are verified, the executable form of the whole program is

guaranteed to be logically valid as well.

2.4.1 Verifying Modules

We formalize the process of generating proof obligations for Modular ACL2 programs in fig-

ures 2.8 and 2.9. For the verification semantics, we introduce two kinds of environments: in-

terface environments (Γi) and renaming environments (Γr), represented as sequences whose

elements may be looked up by name, i.e., the first f appearing syntactically. Figure 2.9

defines substitution on (Modular) ACL2 terms.

The main judgment in the verification of modular programs is `p mprog , meaning that

the program’s components can be verified by ACL2. This is defined in terms of Γi `c −−−→comp,

meaning that the components can be verified in the context of additional interfaces, and

20 CHAPTER 2. MODULES

obligations : Γi,mod → prog

obligations(Γi, (module n
−−→
body))

=
−−−−−−−−−−→
verify(Γi, body)

verify : Γi, body →
−−→
defn

verify(Γi, defn) = defn

verify(Γi, (import n
−−−→
(f1 f2))) =

−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f1 = f2] where Γi(n) = (interface n −−→spec)

verify(Γi, (export n
−−−→
(f1 f2))) =

−−−−−−−−−−−−−→
assert(spec)[

−−−→
f1 = f2] where Γi(n) = (interface n −−→spec)

assume : spec → −−→term
assume((fun f (−→x) expr)) = (skip-proofs (defun f (−→x) expr))
assume((sig f (−→x))) = (defstub f (−→x) t)
assume((con f expr)) = (skip-proofs (defthm f expr))
assume((extend n)) = ε

assert : spec → −−→term
assert((fun f (−→x) expr)) = (defun f (−→x) expr)
assert((sig f (−→x))) = ε
assert((con f expr)) = (defthm f expr)
assert((extend n)) = ε

·[·= ·] : body , f , f → body
(defun f (−→x) expr)[f1 = f2] = (defun f [f1 = f2] (−→x) expr [f1 = f2])
(defthm f expr)[f1 = f2] = (defthm f [f1 = f2] expr [f1 = f2])
(defstub f (−→x) t)[f1 = f2] = (defstub f [f1 = f2] (−→x) t)
(skip-proofs defn)[f1 = f2] = (skip-proofs defn[f1 = f2])

(import n
−−−→
(f3 f4))[f1 = f2] = (import n

−−−−−−−−−→
(f3 f4[f1 = f2]))

(export n
−−−→
(f3 f4))[f1 = f2] = (export n

−−−−−−−−−→
(f3 f4[f1 = f2]))

Figure 2.9: Metafunctions for Modular ACL2 verification.

`s prog , meaning that ACL2 verifies the program. We defer the definition of this judgment

until section 2.5.

Atomic modules entail proof obligations that must be verified by ACL2, constructed

by the obligations metafunction. Compound modules entail the proof obligations of their

combined exports, given the assumption of their combined imports except those resolved by

linking. These obligations are fulfilled by their components when verified separately. Each

constituent module entails a proof of its own exports; nominal interface linking ensures that

the “producer” module’s obligations include precisely those assumptions of the “consumer”

module that are discharged by linking. Thus, compound modules do not contribute proof

obligations beyond those of their constituents. Interfaces only generate proof obligations

insofar as they contribute to atomic modules that import or export them; module invoca-

tions and top-level expressions are for execution only and do not generate proof obligations

2.4. VERIFICATION 21

pfprog
Γ0
e `t prog

`s prog

pfterm0

Γe `t ε

pftexpr

Γe `t
−−→
term

Γe `t expr
−−→
term

pftdefn

Γe `d defn Γe theory(defn) `t
−−→
term

Γe `t defn
−−→
term

pffun
Γe `e measure(f ,−→x , expr)

Γe `d (defun f (−→x) expr)

pfthm
Γe `e expr

Γe `d (defthm f expr)

pfstub

Γe `d dstub

pfskip

Γe `d dskip

Figure 2.10: Inference rules for ACL2 verification.

theory : defn → −−→expr
theory((defun f (−→x) expr)) = (equal (f −→x) expr) induction(f ,−→x , expr)
theory((defthm f expr)) = expr
theory((defstub f (−→x) t)) = ε
theory((skip-proofs defn)) = theory(defn)

measure : f ,−→x , expr → expr
termination conditions (omitted)

induction : f ,−→x , expr → expr
induction schemes (omitted)

Figure 2.11: Metafunctions for ACL2 verification.

at all.

Each term in a module’s body is translated to ACL2 definitions representing its logical

meaning by the verify metafunction. An import becomes an assumption of a correct im-

plementation of the named interface, constructed by the assume metafunction. Signatures

are represented as stubs; manifest functions and contracts are represented as function and

conjecture definitions wrapped in skip-proofs. An export becomes a claim to be verified,

constructed by the assert metafunction. Manifest functions and contracts map to function

and conjecture definitions. In both imports and exports, an extend clause requires the

enclosing module to import or export the extended interface as well. The extend clause

inserts no definitions itself; the extended interface is instead translated separately.

2.4.2 Verification Example

To illustrate the verification process, we construct proof obligations for the set represen-

tation from figure 2.2. To verify this program, we must establish the correctness of two

modules: Many and One. We ignore for this example the syntactic restriction that all

imports and exports require explicit renaming.

First we verify Many. The assume metafunction converts the specifications of IOne into

22 CHAPTER 2. MODULES

stubs for the imported signatures and an assumption that they satisfy add-preserves-setp.

Then we include add-all and finally use assert to construct a conjecture that the definitions

satisfy add-all-preserves-setp.

(defstub setp (xs) t)
(defstub add (x xs) t)
(skip-proofs
(defthm add-preserves-setp

(implies (setp xs)
(setp (add x xs)))))

(defun add-all (xs ys)
(cond ((endp xs) ys)

((consp xs) (add (car xs) (add-all (cdr xs) ys)))))

(defthm add-all-preserves-setp
(implies (and (true-listp xs) (setp ys))

(setp (add-all xs ys))))

The last two definitions are directly from figure 2.1, while the first three are translations

of the imported interface. This permits abstract reasoning about IOne within Many, as the

theorem prover doesn’t have implementations for setp or add.

Next we construct proof obligations for One. By the definitions of obligations and

verify, we concatenate its internal definitions of setp and add with an assertion that add-all-

preserves-setp holds. We apply the assert metafunction to construct the final definitions:

(defun setp (xs) (no-duplicatesp-equal xs))
(defun add (x xs) (add-to-set-eql x xs))

(defthm add-preserves-setp
(implies (setp xs)

(setp (add x xs))))

These definitions are all present in the original set representation of figure 2.1; modules

without imports represent concrete reasoning.

The compound module OneOrMany links Many to One. It shares both their exports; since

both are verified, so are the exports of OneOrMany. Note that One provides implementations

of setp and add and a proof of add-all-preserves-setp. The verification of OneOrMany relies

on these verified definitions in place of the unverified defstub and skip-proofs forms from

Many’s proof obligation. This substitution of verified definitions for assumptions is the basis

of our soundness theorem; it roughly corresponds to the discharge of an implication.

2.5. SOUNDNESS 23

Γe `t verify(Γi, (import n
−−−→
(f f1))

−−→
body) ≡ [def. verify]

Γe `t
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f1] verify(Γi,

−−→
body) ⇒ [lemma 7]

Γe `t
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]verify(Γi,

−−→
body)[

−−−→
f1 = f2] ⇒ [lemma 8]

Γe theory(
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]) `t verify(Γi,

−−→
body)[

−−−→
f1 = f2] ≡ [lemma 5]

Γe theory(
−−−−−−−−−−−−−−→
assume(spec)[

−−−→
f = f2]) `t verify(Γi,

−−→
body [

−−−→
f1 = f2]) ≡ [lemma 9]

Γe theory(
−−−−−−−−−−−−−→
assert(spec)[

−−−→
f = f2]) `t verify(Γi,

−−→
body [

−−−→
f1 = f2]) ⇒ [ind. hyp.]

Γe theory(
−−−−−−−−−−−−−→
assert(spec)[

−−−→
f = f2]) theory(verify(Γi,

−−−→
body1))

`t verify(Γi, resolve(
−−−→
body1,

−−→
body [

−−−→
f1 = f2])) ≡ [def. verify]

Γe theory(verify(Γi,
−−−→
body1))

`t verify(Γi, resolve(
−−−→
body1,

−−→
body [

−−−→
f1 = f2])) ≡ [def. resolve]

Γe theory(verify(Γi,
−−−→
body1))

`t verify(Γi, resolve(
−−−→
body1, (import n

−−−→
(f f1))

−−→
body))

Figure 2.12: Equational reasoning used in lemma 3.

2.5 Soundness

Adding linguistic machinery to the programming language of a theorem prover demands a

rigorous soundness proof, which we provide in this section. We establish that the trans-

lation to executable code preserves verified contracts. Therefore, once a program’s atomic

modules have been verified, its fully-linked executable form is verified as well. The proof

not only demonstrates the correctness of our approach, but guarantees modular reasoning;

conclusions drawn about a module once can be applied anywhere it may be linked.

We also establish the expressivity of our system. As our experiments from section 2.2

demonstrated, Modular ACL2 without manifest functions could not express all possible

decompositions of a proof into modules. We present a proof that our new system can,

thus confirming the completeness of our specification language with respect to the theorem

prover’s logical rules.

The section starts with a formal model of the ACL2 logic. This is followed by our

soundness proof. It finishes with a proof of the expressivity of Modular ACL2 by inspection

of the language.

2.5.1 The Logical Meaning of ACL2

Before we can establish the soundness of Modular ACL2, we must describe what it means

for an ACL2 program to be provable. Our formalization, shown in figure 2.10, is based on

Kaufmann and Moore’s work [Kaufmann and Moore 1998, 2001]. Supporting definitions

are in figure 2.11.

24 CHAPTER 2. MODULES

The primary judgment, `s prog , defines the provability of whole programs. It is built

up by iteration over terms. Analogously, the judgment Γe `t
−−→
term describes the provability

of terms in a “theory environment” Γe of expressions representing proved theorems. The

environment Γ0
e represents the initial theory of ACL2.

Top level expressions add nothing to the environment. Definitions are verified according

to the judgment Γe `d defn. Then their conclusions are added to the environment. The

judgment Γe `e expr means that expr is provably valid and is used to check both explicit

conjectures and the measure conjectures (termination arguments) of functions.

Function definitions require a termination argument to be verified. Termination con-

ditions are computed by the measure metafunction (not shown here; see Kaufmann and

Moore [Kaufmann and Moore 1998] for the details of ACL2 measure conjectures). Each

admitted function contributes two expressions to the program’s theory: its definition (ex-

pressed with the equal function) and its implicit induction scheme, if any (computed by the

induction metafunction, also omitted).

Conjecture definitions require their body expression to be verified. Then the theorems

are added to the theory. Logically this is unnecessary, as the theory already entails the

conclusion; however, the addition is sound and models the rules added by the ACL2 theorem

prover to aid its proof search algorithm.

Stubs have neither proof obligations nor new introduced theorems; they only introduce

a name. Definitions inside skip-proofs are considered “provable” without verification, but

introduce expressions to the theory regardless. We omit the definition of expression prov-

ability, relying instead on the prior formalization [Kaufmann and Moore 1998] and the

well-known properties of first-order logic.

2.5.2 Proof of Soundness

The soundness of the compilation process follows from the modular verification and syntactic

well-formedness of the input program. We present a sketch of the proof, with key theorems

describing the verification of individual components, the soundness of compound module

linking, and the logical properties of substitution.

It makes no sense to consider the provability of a syntactically ill-formed program. For

instance, introducing two different definitions for the same function name results in un-

soundness. All of the provability judgments in figures 2.10 (for ACL2) and 2.8 (for Modular

ACL2) are implicitly predicated on their constituents being well-formed. ACL2 requires that

all stub, function, and theorem names be distinct and have no forward references. Modular

ACL2 requires the same of interface and module names. Atomic modules must import or

2.5. SOUNDNESS 25

export each external name by at most one interface (not counting extensions). Compound

modules must obey the same rule, which in turn requires nominal linking, i.e. definitions

resolved by linking must be imported and exported via the same interface. Soundness re-

quires all of these properties to hold true at all stages of verification and linking; however,

for brevity we do not present a formal treatment of them here.

We use the abbreviation Γi `m Γm to mean Γm =
−−→
mod implies

−−−−−−−−−−−−−−−−→
`s obligations(Γi,mod).

Main Theorem. If `p mprog, then `s execute(mprog).

Here we state the soundness of Modular ACL2 with respect to ACL2: if the theorem

prover verifies the proof obligations of each module in a syntactically well-formed program,

then the linked executable code is provable as well.

Proof. The main theorem generalizes to lemma 1, which reasons component-wise about the

body of mprog .

Lemma 1. If Γi `m Γm and Γi `c −−−→comp, then

Γe `t compile(Γi,Γm,Γr,
−−−→comp).

Note that Γr affects only top-level expressions, and thus plays no role in logical sound-

ness, just well-formedness.

Proof. By induction over −−−→comp, and by cases on its components.

Case ε: Trivial.

Case ifc −−−→comp: In this case, ifc is simply moved from the sequence of components to the

interface environment (in both verification and compilation). We show that adding

ifc to Γi entails Γi ifc `m Γm: the proof obligations of each module are unchanged,

as they make no reference to ifc. By pfifc, we reduce the proof to the inductive

hypothesis.

Case mod −−−→comp: In this case, mod is a verified atomic module. We record its verification

by storing it in the module environment. Adding mod to Γm trivially entails Γi `m
Γm mod . Using pfmod, the proof reduces to the inductive hypothesis.

Case (link n (n1 n2))
−−−→comp: Here we must prove that linking two verified constituents

produces a verified module. In lemma 2, we show that link(Γi,n,Γm(n1),Γm(n2)) is

provable in Γe and Γi. We finish with pflink and the inductive hypothesis.

26 CHAPTER 2. MODULES

Case inv −−−→comp: Invocation renames module bodies. We show in lemma 4 that this is

logically equivalent to renaming the resulting definitions. In lemma 6, we also show

that the definitions’ provability is preserved. By rule pfinv the proof reduces to the

inductive hypothesis.

Case expr −−−→comp: By pfcexpr and the inductive hypothesis.

Lemma 2. `s obligations(Γi, link(Γi,n,mod1,mod2)) holds if `s obligations(Γi,mod1) and

`s obligations(Γi,mod2).

The crux of our proof is to establish the soundness of linking.

Proof. Let mod1 be (module n1
−−−→
body1) and mod2 be (module n2

−−−→
body2). By defini-

tion, link(Γi,n,mod1,mod2) is (module n
−−−→
body3

−−−→
body4) where

−−−→
body3 = rename(

−−−→
body1) and

−−−→
body4 = resolve(

−−−→
body3, rename(

−−−→
body2)). By rule pfprog and the definition of obligations, we

must prove:

Γ0
e `t
−−−−−−−−−−−→
verify(Γi, body3)

−−−−−−−−−−−→
verify(Γi, body4)

We apply lemma 6 to show that
−−−→
body1’s provability entails

−−−→
body3’s. Then by lemma 8, we

can focus on the second set of obligations and it suffices to prove:

Γ0
e

−−−−−−−−−−−−−−−−−→
theory(verify(Γi, body3)) `t

−−−−−−−−−−−→
verify(Γi, body4)

Lemma 6, applied to
−−−→
body2, shows that rename(

−−−→
body2) is provable. Now we must demon-

strate that resolve correctly discharges the assumptions of the second module. We call this

lemma 3.

Lemma 3. If Γe `t
−−−−−−−−−−−→
verify(Γi, body2) and

−−−→
body3 = resolve(

−−−→
body1,

−−−→
body2), then

Γe
−−−−−−−−−−−−−−−−−→
theory(verify(Γi, body1)) `t verify(Γi,

−−−→
body3).

Proof. By induction on the length of
−−−→
body2 and by cases on its first element. Only the case

for imports is nontrivial; we omit the rest. Assume
−−−→
body2 = (import n

−−−→
(f f1))

−−→
body . Let

Γi(n) = (interface n −−→spec). We proceed by cases on
−−−→
body1.

Case (export n
−−−→
(f f2))∈

−−−→
body1: In this case, resolve removes the import from

−−−→
body2 and

renames the remainder based on the export from
−−−→
body1. We show that this transfor-

mation is sound: after renaming, the logical obligations of the export fill in precisely

the logical assumptions of the removed import. We rely on lemma 9 to equate assump-

tions with obligations. The proof proceeds by equational reasoning in figure 2.12.

2.5. SOUNDNESS 27

Case (import n
−−−→
(f f2))∈

−−−→
body1: This case proceeds as above, but without the appeal to

lemma 9.

Case n 6∈
−−−→
body1: Trivial.

Lemma 4. If Γe `t obligations(Γi, ε, rename(
−−→
body)), then

Γe `t rename(obligations(Γi, ε,
−−→
body)).

Lemma 5. verify(Γi,
−−→
body)[

−−−→
f1 = f2] = verify(Γi,

−−→
body [

−−−→
f1 = f2]).

Proof. By the definitions of verify and substitution. Lemma 4 follows as a corollary.

Lemma 6. If Γe `t
−−→
defn, then Γe `t rename(

−−→
defn).

Lemma 7. If Γe `t
−−→
term and

−−−−−→
f 6∈−−→term, then Γe `t

−−→
term[

−−−→
f0 = f].

Proof. This follows from the proof of soundness of simple functional instantiations [Kauf-

mann and Moore 2001]. Lemma 6 follows as a corollary.

Lemma 8. Γe `t
−−−→
defn1

−−−→
defn2 if and only if both Γe `t

−−−→
defn1 and Γe

−−−−−−−−−→
theory(defn1) `t

−−−→
defn2

Proof. Both directions follow by induction over
−−−→
defn1.

Lemma 9. theory(assume(spec)) = theory(assert(spec)).

Proof. By definitions of theory, assume, and assert.

2.5.3 Expressivity Proof

Expressivity means that any decomposition of a proof in the core grammar of ACL2 into

contiguous blocks of definitions can be represented as a set of modules in Modular ACL2,

and the theorem prover can verify the modular program if it can verify the original.

The translation from a proof to modules is straightforward. Each section of the proof

corresponds to one atomic module and one interface. The interface contains a manifest

function for every function and a contract for every conjecture. Essentially, the interface

exactly reconstructs the sequence of definitions. Each interface extends those before it. The

corresponding atomic module imports the previous interfaces and exports the matching in-

terface. The module need not contain any definitions, as all components of the specifications

are concrete (assuming no stubs in the source proof). The modular program concludes by

progressively linking the modules together in order; the final compound module consisting

of all the proof sections can be invoked to run the original ACL2 program.

28 CHAPTER 2. MODULES

This translation relies on the one-to-one mapping between core ACL2 definitions and

Modular ACL2 specifications (other than extend). Each interface expresses precisely the

definitions of one section of the proof. The proof obligation of each atomic module starts

with an import that recreates the logical environment of the proof section as it was in the

ACL2 version, and it concludes with an export that entails the same logical verification as

well.

The formal proof of correctness of this translation follows by induction over the sequence

of modules. The proof obligations of the modules can be shown to be a partitioning of the

proof obligations of the original ACL2 program by the argument above.

Chapter 3

Hygienic Macros

Hygienic ACL21 adapts the hygienic, scope-respecting macro system of Scheme to ACL2,

supplanting the unhygienic macro system it inherits from Common Lisp. We present the

high-level design and low-level semantics of Hygienic ACL2, along with an evaluation of the

impact of hygiene on existing ACL2 macros.

3.1 Motivation

From Common Lisp, ACL2 inherits macros, which provide a mechanism for extending the

language via functions that operate on syntax trees. According to Kaufmann and Moore

[1994], “one can make specifications more succinct and easy to grasp . . . by introducing

well-designed application-specific notation.” Indeed, macros are used ubiquitously in ACL2

libraries: there are macros for pattern matching; for establishing new homogenous list types

and heterogenous structure types, including a comprehensive theory of each; for defining

quantified claims using skolemization in an otherwise (explicit) quantifier-free logic; and so

on.

In the first-order language of ACL2, macros are also used to eliminate repeated syntactic

patterns due to the lack of higher-order functions:

(defmacro defun-map (map-fun fun)
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fun (cdr xs))))))

This macro definition captures the essence of defining one function that applies another

pointwise to a list. It consumes two inputs, map-fun and fun, representing function names;

the body constructs a suitable defun form. ACL2 expands uses of defun-map, supplying

1This work has been published as Eastlund and Felleisen [2010].

29

30 CHAPTER 3. HYGIENIC MACROS

the syntax of its arguments as map-fun and fun, and continues with the resulting function

definition. Consider the following terms:

(defun double (x) (+ x x))

(defun-map map-double double)

Their expansion fills the names map-double and double into defun-map’s template. The

resulting second definition is:

(defun map-double (xs)
(if (endp xs)

nil
(cons (double (car xs)) (map-double (cdr xs)))))

Unfortunately, ACL2 macros are unhygienic [Kohlbecker et al. 1986], meaning they do

not preserve the meaning of variable bindings and references during code expansion. The

end result is accidental capture that not only violates a programmer’s intuition of lexical

scope but also interferes with logical reasoning about the program source. In short, macros

do not properly abstract over syntax. For instance, consider the or macro, which encodes

both boolean disjunction and recovery from exceptional conditions, returning the second

value if the first is nil:

(defthm excluded-middle (or (not x) x))

(defun find (n xs) (or (nth n xs) 0))

The first definition states the law of the excluded middle. Since ACL2 is based on classical

logic, either (not x) or x must be true for any x. The second defines selection from a list

of numbers: produce the element of xs at index n, or return 0 if nth returns nil, indicating

that the index is out of range.

A natural definition for or duplicates its first operand:

(defmacro or (a b) ‘(if ,a ,a ,b)) (3.1)

This works well for excluded-middle, but the expanded version of find now traverses its

input twice, doubling its running time:

(defun find (n xs) (if (nth n xs) (nth n xs) 0))

Macro users should not have to give up reasoning about their function’s running time.

Consequently, macros should avoid this kind of code duplication.

The next logical step in the development of or saves the result of its first operand in a

temporary variable:

(defmacro or (a b) ‘(let ((x ,a)) (if x x ,b))) (3.2)

3.2. DESIGN 31

This macro now produces correct and efficient code for find. Sadly though, the expanded

form of excluded-middle is no longer the expected logical statement:

(defthm excluded-middle (let ((x (not x))) (if x x x)))

Specifically, the or macro’s variable x has captured excluded-middle’s second reference to x.

As a result, the conjecture is now equivalent to the unqualified statement (not x).

ACL2 resolves this issue by providing two different behaviors for the or macro. For

symbolic verification, or expands using code duplication. For execution, it expands by

introducing a fresh variable that cannot capture any other. This kind of expansion only

works for or as a special case built in to the ACL2 compiler. Ordinary macros are not

allowed to use separate expansion for verification and execution, as this is an invitation to

unsoundness. Users’ macros also cannot introduce fresh variables, as this is a side effect

that has no logical foundation.

In general, macro writers tread a fine line. Many macros duplicate code to avoid intro-

ducing a variable that might capture bindings in the source code. Others introduce esoteric

temporary names to avoid accidental capture. None of these solutions is universal, and thus

the Scheme community introduced the notion of hygienic macros [Kohlbecker et al. 1986;

Clinger and Rees 1991; Dybvig et al. 1992]. This chapter presents an adaptation of hygienic

macros to ACL2.2 Next we motivate the design and the ACL2-specific challenges, followed

by a sketch of the implementation, and finally a comprehensive evaluation of the system

vis-a-vis the ACL2 code base.

3.2 Design

Hygienic macro systems enforce a meaning for variables in macro-generated code based on

the lexical scope policies of the host language. In order to develop our system, we must

first analyze lexical scope in ACL2 and decide what meanings are appropriate for macro-

generated references and bindings.

3.2.1 Design Goals

Our hygienic macro expander is designed to observe three key principles.

Referential transparency means that variables derive their meaning from where they oc-

cur and retain that meaning throughout the macro expansion process. Specifically, variable

references inserted by a macro refer to bindings inserted by the macro or to bindings ap-

parent at its definition site. Symmetrically, variable references in macro arguments refer to

2The only other theorem prover with hygienic macros is NUPRL Griffin [1988]; however, its macro
system is much more simplistic than ACL2’s.

32 CHAPTER 3. HYGIENIC MACROS

d ∈ def = (mutual-recursion
−−−−−−−−−−−−−−−−−→
(defun sym (−−→sym) exp)) mutually recursive functions

| (defmacro sym (−−→sym) exp) macro definition

| (defthm sym exp
−−−−−−−−−−−−→
(sym

−−−−−−−→
(sym exp))) conjecture with proof hints

| (include-book str) library import

| (encapsulate (
−−−−−−−−→
(sym num))

−→
def) definition block

| (local def) local definition

e ∈ exp = sym variable reference
| (sym −→exp) function call

| (let (
−−−−−−−→
(sym exp)) exp) lexical value bindings

| (quote term) literal value

Figure 3.1: Syntax of fully-expanded ACL2 programs.

bindings apparent at the macro call site. In the tradition of prior hygienic macro systems,

we provide a disciplined method for manually violating this principle when needed.

Next, separate compilation for libraries demands that their compiled form may still be

loaded into a running program. There is no need to re-expand the contents of a library each

time it is included in a new context.

Finally, source compatibility means that our changes to ACL2 have negligible impact

on working programs. In particular, the evaluator and the verification system remain the

same. The only observable difference in our system is the expansion of macros. Most well-

behaved macros continue to function as before; changes in expansion suggest potentially

flawed macros.

3.2.2 Reinterpreting ACL2

Figure 3.1 specifies a simplified grammar for ACL2; a program is a sequence of definitions.

In source code, any definition or expression may be replaced by a macro application. The

grammar is written in terms of symbols (sym), strings (str), numbers (num), and terms

(term). We use this grammar to explain ACL2-specific challenges to hygienic macro expan-

sion.

Lexical Bindings: ACL2 inherits Common Lisp’s namespaces: function and variable

bindings are separate and cannot shadow each other. The position of a variable reference

determines its role. In an expression position, a variable refers to a value, in application

position to a function or macro. For example, the following code uses both kinds of bindings

for car:

(let ((car (car x))) (car car))

3.2. DESIGN 33

Hygienic expansion must track both function and variable bindings for each possible refer-

ence. After all, during expansion, the role of a symbol is unknown until its final position in

the expanded code is determined.

Hygienic expansion must also be able to distinguish macro-inserted lexical bindings from

those in source code or in other macros. For instance, with hygienic expansion, the version

of or with a temporary variable (3.2) should work. That is, the excluded-middle conjecture

should expand as follows:

(defthm excluded-middle (let ((xm (not x))) (if xm xm x)))

The macro expander differentiates between the source program’s x and the macro’s xm , as

noted by the subscript; the conjecture’s meaning is preserved.

Quantification: ACL2 conjectures are implicitly universally quantified:

;; claim: ∀x(x > 0⇒ x ≥ 0)
(defthm non-negative (implies (> x 0) (>= x 0)))

Here the variable x is never explicitly bound, but its scope is the body of the defthm form.

ACL2 discovers free variables during the expansion of conjectures and treats them as if they

were bound.

This raises a question of how to treat free variables inserted by macros into conjectures.

Consider the following definitions:

(defmacro imply (var) ‘(implies x ,var))

(defthm x=>x (imply x))

The body of x=>x expands into (implies xm x), with x from x=>x and xm from imply.

In x=>x, x is clearly quantified by defthm. In the template of imply, however, there

is no apparent binding for x. Therefore, the corresponding variable xm in the expanded

code must be considered unbound. Incorporating this interpretation into our semantics for

hygienic expansion yields a new design rule: macros must not insert new free variables into

conjectures.

We must not overuse this rule, however, as illustrated by the macro below:

(defmacro disprove (name body) ‘(defthm name (not ,body)))

(disprove x=x+1 (= x (+ x 1)))

Here we must decide what the apparent binding of x is in the body of x=x+1. In the source

syntax, there is nothing explicit to suggest that x is a bound or quantified variable, but

during expansion, the macro disprove inserts a defthm form that “captures” x and quantifies

over it. On one hand, allowing this kind of capture violates referential transparency. On the

34 CHAPTER 3. HYGIENIC MACROS

other hand, disallowing it prevents abstraction over defthm, because of the lack of explicit

quantification.

We resolve the dilemma by allowing defthm to quantify over variables from a single

source—surface syntax or a macro—but not over multiple variables from different sources.

This permits macros that expand into defthm, which are common, but rejects accidental

quantification, a source of bugs in the ACL2 code base.

Definition Scope: ACL2 performs macro expansion, verification, and compilation on one

definition at a time. Forward references are disallowed, and no definition may overwrite an

existing binding.

Nevertheless, just as hygiene prevents lexical bindings from different sources from shad-

owing each other, it also prevents definitions from different sources from overwriting each

other. Consider the following two similar programs:

(defun f (x) (+ x 1))

(defmacro m () ‘(defun f (x) x))
(m)

(defmacro m () ‘(defun f (x) x))
(m)

(defun f (x) (+ x 1))

Both define a function f, and both define and invoke a macro m that defines a different

function, also called f. In the left program, the top-level f is defined first. When m is

defined, a binding for f is already apparent; the body of m uses the name of an existing

binding. Therefore, the invocation of m constructs a definition that overwrites an existing

binding, which is illegal.

In the right program, the macro m is defined before the top-level f. The invocation of

m may therefore define f. Since this name originated inside the macro, its binding is not

apparent to the rest of the program. Hence, the author of (the top-level) f has seen no prior

definition for f, and should be free to choose this name. Hygienic expansion permits this

program.

Our hygiene policy for definition names is thus two-fold. First, definition names inserted

by macros—rather than taken from their input—are not made visible in the caller’s con-

text. Second, no definition may overwrite a name that already has a visible binding in the

definition’s context.

Encapsulated Abstractions: The encapsulate form in ACL2 delimits a block of defini-

tions. Definitions are exported by default; these definitions represent the block’s constraint,

describing its logical guarantees to the outside. Definitions marked local represent a witness

that can be used to verify the constraint, but they are not exported.

For example, the following block exports a constraint stating that 1 ≤ 1:

3.2. DESIGN 35

(encapsulate ()
(local (defthm x<=x (<= x x)))
(defthm 1<=1

(<= 1 1) ;; use the following hint:
(x<=x (x 1))))

The local conjecture states that (<= x x) holds for all values of x. The conjecture 1<=1

states that (<= 1 1) holds; the subsequent hint tells ACL2 that the previously verified

theorem x<=x is helpful, with 1 substituted for x.

Once the definitions in the body of an encapsulate block have been verified, ACL2 dis-

cards hints and local definitions (the witness) and recompiles the remaining definitions (the

constraint) in a second pass. The end result is a set of exported logical rules with no refer-

ence to the witness. Local theorems may not be used in subsequent hints, local functions

and local macros may no longer be applied, and local names are available for redefinition.

An encapsulate block may have a third component, which is a set of constrained functions.

The header of the encapsulate form lists names and arities of functions defined locally within

the block. These functions’ names are exported as part of the block’s constraint; their

definitions are not exported and remain part of the witness.

The following block exports a function of two arguments whose witness performs addi-

tion, but whose constraint guarantees only commutativity:

(encapsulate ((f 2))
(local (defun f (x y) (+ x y)))
(defthm commutativity (equal (f x y) (f y x))))

Definitions following this block can refer to f and reason about it as a commutative function.

Attempts to prove it equivalent to addition would fail, however, and attempts to call it would

result in a run-time error.

Our hygienic macro system preserves the scoping rules of encapsulate blocks. Further-

more, it enforces that names defined in the witness are not visible in the constraint, ensuring

that a syntactically valid encapsulate block has a syntactically valid constraint. Our guar-

antee of referential transparency also means that local names in exported macros cannot be

captured. For instance, the following macro m constructs a reference to w:

(encapsulate ()
(local (defun w (x) x))
(defmacro m (y) ‘(w ,y)))

(defun w (z) (m z)) ;; body expands to: (w z)

When a new w is defined outside the block and m is applied, the new binding does not

capture the w from m. Instead, the macro expander signals a syntax error, because the

inserted reference is no longer in scope.

36 CHAPTER 3. HYGIENIC MACROS

Books: A book is the unit of ACL2 libraries: a set of definitions that is verified and

compiled once and then reused. Each book acts as an encapsulate block without constrained

functions; it is run twice—once with witness, and once for the constraint—and the constraint

is saved to disk in compiled form. When a program includes a book, ACL2 incorporates its

definitions, after ensuring that they do not clash with any existing bindings.

ACL2 allows an exception to the rule against redefinition that facilitates compatibility

between books. Specifically, a definition is considered redundant and skipped, rather than

rejected, if it is precisely the same as an existing one. If two books contain the same

definition for a function f, for instance, the books are still compatible. Similarly, if one

book is included twice in the same program, the second inclusion is considered redundant.

This notion of redundancy is complicated by hygienic macro expansion. Because hygienic

expanders generally rename variables in their output, there is no guarantee that identical

source syntax expands to an identical compiled form. As a result, redundancy becomes

a question of α-equivalence instead of simple syntactic equality, and coalescing redundant

definitions in compiled books requires renaming all references in addition to merely removing

the second definition.

Rather than address redundancy in its full generality, we restrict it to the case of loading

the same book twice. If a book is loaded twice, the new definitions will be syntactically

equal to the old ones because books are only compiled once. That is, this important case

of redundancy does not rely on α-equivalence.

Macros: Macros use a representation of syntax as their input and output. In the existing

ACL2 system, syntax is represented using primitive data types: strings and numbers for

literals, symbols for variables, and lists for sequences of terms.

In contrast, Dybvig et al. [1992] introduce a separate class of syntax objects: terms anno-

tated with details of lexical scope and macro expansion. In order to preserve compatibility

with existing ACL2 macros, we cannot introduce an entirely new data type. Instead, we

adapt the method of Kohlbecker et al. [1986] by incorporating the annotations of syntax

objects into ACL2’s symbols.

In adapting the symbol datatype, we must be sure to preserve the axioms of ACL2;

otherwise we risk invalidating existing proofs. On one hand, it is an axiom that any symbol is

uniquely distinguished by the combination of its name and its package—an additional string

used for manual namespace management. On the other hand, the hygienic macro expander

must distinguish between symbols sharing a name and a package when one originates in

the source program and another is inserted by a macro. We resolve this issue by leaving

hygienic expansion metadata transparent to axiomatic primitives: only unverified functions

such as macro definitions or the compiler itself can distinguish between two symbols with

3.2. DESIGN 37

the same name and package. Verified functions and theorems cannot make this distinction,

i.e., ACL2’s axioms remain valid.

The symbols inserted by macros must derive their lexical bindings from the context in

which they appear. To understand the complexity of this statement, consider the following

example:

(defun parse-compose (funs arg)
(if (endp funs)

arg
‘(,(car funs) (compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose funs arg))

(compose (string-downcase symbol-name) ’SYM)
;; ⇒ (string-downcase (compose (symbol-name) ’SYM))
;; ⇒ (string-downcase (symbol-name (compose () ’SYM)))
;; ⇒ (string-downcase (symbol-name ’SYM))

The auxiliary function parse-compose creates recursive references to compose, but compose

is not in scope in parse-compose. To support this common macro idiom, we give the code

inserted by macros the context of the macro’s definition site. In the above example, the

symbol compose in parse-compose’s template does not carry any context until it is returned

from the compose macro, at which point it inherits a binding for the name. This behavior

allows recursive macros with helper functions, at some cost to referential transparency: the

reference inserted by parse-compose might be given a different meaning if used by another

macro.

This quirk of our design could be alleviated if these macros were rewritten in a different

style. If the helper function parse-compose accepted the recursive reference to compose as

an argument, then the quoted symbol ’compose could be passed in from the definition of

compose itself, where it has meaning.

(defun parse-compose (compose funs arg)
(if (endp funs)

arg
‘(,(car funs) (,compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose ’compose funs arg))

Symbols in macro templates could then take their context from their original position, ob-

serving referential transparency. However, because ACL2 macros are not generally written

in this style, our design does not mandate it.

Breaking Hygiene: There are some cases where a macro must insert variables that do

not inherit the context of the macro definition, but instead intentionally capture—or are

38 CHAPTER 3. HYGIENIC MACROS

t ∈ term = num | str | id | cons(term, term) s-expression
i ∈ id = sym | id(sym,mset , ren, ren) identifier
x ∈ sym = sym(str , str ,mset) symbol
b ∈ bool = t | nil boolean

r ∈ ren = [
−−−−−−−→
key 7→ sym] renaming x̂ ∈ xset = {−−→sym} symbol set

k ∈ key = 〈sym,mset〉 identifier key k̂ ∈ kset = {
−→
key} key set

m ∈ mark = 〈str ,num〉 mark m̂ ∈ mset = {
−−−→
mark } mark set

Figure 3.2: Representation of values and syntax.

captured by—variables in the source program. For instance, the defun-map example can be

rewritten to automatically construct the name of the map function from the name of the

pointwise function:

(defmacro defun-map (fun)
(let ((map-fun-string (string-append "map-" (symbol-name fun))))

(let ((map-fun (in-package-of map-fun-string fun)))
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fn (cdr xs))))))))

(defun-map double) ;; expands to: (defun map-double (xs) . . .)

In this macro, the name double comes from the macro caller’s context, but map-double is

inserted by the macro itself. The macro’s intention is to bind map-double in the caller’s

context, and the caller expects this name to be bound.

This implementation pattern derives from the Common Lisp package system. Specifi-

cally, the in-package-of function builds a new symbol with the given string as its name, and

the package of the given symbol. In our example, map-double is defined in the same package

as double.

We co-opt the same pattern to transfer lexical context. Thus map-double shares double’s

context, and its binding is visible to macro’s caller. In general, macro writers can use

in-package-of to break the default policy of hygiene.

3.3 Semantics

Figure 3.2 describes the new representation of terms for hygienic macro expansion. The most

important difference to a conventional representation concerns identifiers, which extend

symbols to include information about expansion. Specifically, a term t is either a number,

a string, an identifier, or a pair of terms. Numbers (n ∈ num) and strings (s ∈ str) are

3.3. SEMANTICS 39

name(id) : str

name(sym(sname, spkg, m̂)) = sname

name(id(x, m̂, rfun, rvar)) = name(x)

package(id) : str

package(sym(sname, spkg, m̂)) = spkg
package(id(x, m̂, rfun, rvar)) = package(x)

eq(id , id) : bool

eq(i1, i2)
iff name(i1) = name(i2) and package(i1) = package(i2)

symbolp(term) : bool

symbolp(i) = t
symbolp(t) = nil otherwise

intern(str , str) : sym

intern(sname, spkg) =
sym(sname, snative, {})
where snative = · · ·

in-package-of(str , id) : id

in-package-of(s, x) = intern(s, package(x))
in-package-of(s, id(x, m̂, rfun, rvar)) =
id(in-package-of(s, x), m̂, rfun, rvar)

id =b
f id : bool

id =b
v id : bool id =r

f id : bool id =r
v id : bool

Figure 3.3: Updated ACL2 operations.

unchanged. An identifier i is either a symbol or an annotated symbol. A symbol x has

three components: its name, its package, and a set of inherent marks used to support

unique symbol generation. Annotated symbols contain a symbol, a set of latent marks used

to record macro expansion steps, and two renamings assigning unique names to function

and value bindings. We represent booleans with symbols, abbreviated t and nil.

Identifiers are used to represent variable names in unexpanded programs; unique symbol

names are chosen for variables in fully expanded programs. The mapping between the two

is mediated by keys (k); each function or value binding’s key combines the symbol corre-

sponding to the name’s previous binding and the (latent) marks of the binding identifier.

A renaming (r) maps surface names—keys—to compiled names—symbols.

A mark (m) is used to uniquely identify an event in macro expansion. Each one com-

prises its source file as a string—to distinguish marks generated during the compilation of

separate books, in an adaptation of Flatt’s mechanism for differentiating bindings from sep-

arate modules Flatt [2002]—as well as a number chosen uniquely during a single compilation

session.

This representation of terms is used both for syntax during macro expansion and for

values during ordinary runtime computation. Hence, ACL2 functions that deal with symbols

must be updated to work with identifiers. The updated definitions of these operations are

shown in figure 3.3.

The name and package functions produce the respective fields of a symbol, ignoring any

identifier metadata. There is no explicit accessor for a symbol’s inherent marks. Similarly,

the equality predicate eq ignores identifier metadata and inherent marks. Two identifiers

40 CHAPTER 3. HYGIENIC MACROS

ψ ∈ state = 〈str , bool , bool , ren, table, xset , kset〉 expansion state
τ ∈ table = [−−−−−−−→sym 7→ rec] def. table
ρ ∈ rec = 〈sig , fun, thm〉 def. record
σ ∈ sig = fun(bool ,num) | macro(id ,num) | thm(xset) | special def. signature

φ ∈ funn = · | −−→termn → term n-ary function
θ ∈ thm = · | · · · theorem formula

Figure 3.4: Representation of expansion state.

are considered equal by the ACL2 logic and runtime if their observable fields are the same.

The intern function produces symbols from a name and package, assigning them an empty

inherent mark set. We elide the details by which symbol names are looked up in a package

table to find a symbol’s “native” package. The related function in-package-of takes a string

and an identifier, and constructs a new identifier with the string as its name, the package

and metadata of the given identifier, and no inherent marks. Essentially, in-package-of(s, i)

represents the variable name s in the lexical context of i.

We also introduce four new identifier comparisons: =b
f , =r

f , =b
v, and =r

v. They are sepa-

rated according to the ACL2 function and value namespaces, as signified by the subscripts,

and to compare either references or binding occurrences, as signified by the superscripts.

These procedures do not respect ACL2’s axioms. They can distinguish between symbols with

the same name, so we provide them as low-level Common LISP functions that cannot be

accessed by ACL2’s logic. Specifically, they may be used in macros as variable comparisons

that respect apparent bindings.

Macro expansion requires an additional set of data representations to keep track of

the expansion process. Figure 3.4 presents the relevant definitions. An expansion state ψ

contains seven fields. The first names the source file being expanded. The second and third

determine expansion modes: global versus local definition scope and “logic mode” versus

“program mode”. Fields four and five provide mappings on the set of compiled definitions;

one renames the keys of definitions to unique symbols, and the other maps those symbols

to meanings. The sixth field is the subset of symbolic definition names that are exported

from the nearest enclosing block, and the seventh is the set of keys for constrained functions

that are declared but not yet defined in the current encapsulate block.

A definition table τ maps each definition to a record ρ describing its signature, executable

behavior, and logical meaning. A signature σ describes the various kinds of definitions:

functions of a particular mode (“logic” or “program”) and arity, macros of a given lexical

context and arity, theorems with a set of quantified variables, and special built-in definitions

like defun and encapsulate. An executable function φ implements a function or macro, and

3.4. EVALUATION 41

repl(
−−→
term) : bool

repl(
−→
t) = t

where 〈ψ,
−→
d 〉 = expand(init(“”),

−→
t)

repl(
−→
t) = nil otherwise

certify(str ,
−−→
term) : state

certify(s,
−→
t) = ψ

where 〈ψ,
−→
d 〉 =

expand(init(s), (encapsulate ()
−→
t))

expand(state,
−−→
term) : 〈state,

−→
def 〉 init(str) : state

Figure 3.5: Top-level expansion.

a logical formula θ describes a function or theorem equationally.

There are two entry points into the ACL2 expansion, verification, and execution process:

repl, which manages interactive verification, and certify, which verifies saved books and

records their compiled form. Both are defined in figure 3.5 in terms of the underlying

function expand.

Interactive programs consist of a sequence of unexpanded definitions. Expansion pro-

ceeds from an initial state constructed by init, not shown here. Interactive verification

reports whether a program is syntactically and logically valid.

Certification of books requires the name of the book and the sequence of terms within

it. The process begins with the same initial state as repl except for the source name used

to generate unique symbols. The terms in the book are wrapped in encapsulate to protect

local definitions. Certification produces a compiler state whose definitions can be merged

into future programs.

The expand function is the workhorse of the macro expander. It expands definitions in

a sequence, whether from the user, a book, or encapsulate, producing their expanded form

along with an updated expansion state. It dispatches to constraint to build the constraint

for books and encapsulate, discarding the witness, and to expr to expand expressions in

functions, conjectures, and macros.

Our expander relies on the existing behavior of verification and compilation. Once the

defn and constraint functions obtain fully expanded code, they dispatch to the underlying

compiler and proof engine for ACL2. In this way, we preserve the semantics of all stages

beyond macro expansion.

3.4 Evaluation

Our design goals for hygienic ACL2 macros mention three guiding principles: referential

transparency, separate compilation, and source compatibility. As explained, the macro ex-

42 CHAPTER 3. HYGIENIC MACROS

pansion process preserves referential transparency by tracking the provenance of identifiers,

with two key exceptions: symbols inserted by macros take their context from the macro

definition site rather than their own occurrence, and conjecture quantification can “cap-

ture” free variables in macro inputs. Furthermore, our representation for compiled books

guarantees separate compilation. Only source compatibility remains to be evaluated.

Our preliminary prototype does not support many of the advanced, non-macro-related

features of ACL2 and we are thus unable to run hygienic expansion on most existing books.

To determine the degree of compatibility between our system and existing macros, we

manually inspected all 2,954 defmacro forms in the books provided with ACL2 version 3.6,

including the separate package of books accumulated from the ACL2 workshop series. Most

of these macros are simple aliases for previously defined functions and would not be affected

one way or another by the introduction of hygiene. We found 488 nontrivial macros that

interact with hygienic expansion, which we discuss in this section.

Code Duplication: The behavior of macro-duplicated code does not change with hygienic

expansion; however, hygiene encourages the introduction of local variables in macros and

thus avoids duplication. With our system, all 130 code-duplicating macros can benefit from

hygiene.

Variable Comparison: Comparing variable names with eq does not take into account

their provenance in the macro expansion process and can mistakenly identify two symbols

with the same name but different lexical contexts. We found 26 macros in ACL2 that

compare variable names for assorted purposes, none of which are served if the comparison

does not respect the variable’s binding. The new functions =b
f , =r

f , =b
v, and =r

v provide

comparisons for variables that respect lexical context. Once again, the result of eq does not

change in our system, so these macros will function as they have; however, macro writers

now have the option of using improved tools.

Free Variables: Free variables in macros usually represent some protocol by which macros

take their meaning from their context; i.e., they must be used in a context where the names

in question have been bound. Much like mutable state in imperative languages, free variables

in macros represent an invisible channel of communication. When used judiciously, they

create succinct programs, but they can also be a barrier to understanding. Of the 90 cases

of macros that insert free variables, 83 are based on such a protocol. Of these, 36 rely on

built-in ACL2 features that bind names implicitly. Our hygienic macro expander will reject

uses of these 83 macros; they must be rewritten to accept explicit arguments.

Five further cases of “free variables” are forward references, in which a macro’s body

constructs a reference to a subsequent function or macro. To a macro writer, this may not

seem like a “free” reference, but it is, due to the scope of ACL2 definitions. Therefore this

3.4. EVALUATION 43

use of forward references does not satisfy the principle of referential transparency. These

macros must also be rewritten or reordered to function under hygienic macro expansion.

The final two cases of free variables in a macro were, in fact, bugs. The macro is used

to generate the body of a conjecture. It takes several expressions and splices them into a

large implication. One of the inputs is named top, and its first reference in the implication

is accidentally quoted—that is, instead of filling in the contents of the input named top,

the macro inserts a literal reference to a variable named top. By serendipity, this macro is

passed a variable named top, and nothing goes wrong. Were this macro ever to be used with

another name, it would construct the wrong conjecture and either fail due to a mysterious

extra variable or succeed spuriously by proving the wrong proposition. Our interpretation of

hygienic expansion for defthm catches this bug early, reporting a conflict between quantified

variables from different contexts.

Variable Capture: We found 242 instances of variable (85) or definition (157) names

inserted by macros that introduce bindings to the macro’s input or surrounding program. Of

the macros that insert definition names, there were 95 that used in-package-of to explicitly

bind names in the package of their input, 44 that used intern to bind names in their own

package, 16 that used hard-coded names not based on their input at all, and two that used

the make-event facility Kaufmann and Moore [2009] to construct unique names.

The package-aware macros will continue to function as before. The intern-based macros

guarantee neither that the constructed names bind in the context of the input, nor that

they don’t. In contrast, hygienic expansion provides a consistent guarantee that they don’t,

making their meaning predictable. Hard-coded names in macros will no longer bind outside

of the macro itself. These are the other side of free variable protocols; they must be made

explicit to interoperate with hygiene. The make-event utility allows inspection of the current

bindings to construct a unique name, but nothing prevents that name from clashing with

any subsequent binding. Hygiene eliminates the need to manually scan the current bindings

and guarantees global uniqueness.

Local variables account for the other 85 introduced bindings. We discovered nine whose

call sites exploited these bindings as part of an intentional protocol. These macros can

be made hygienic by taking the variable name in question as an argument, thus making

the macro compatible with hygienic expansion, freeing up a name the user might want for

something else, and avoiding surprises if a user does not know the macro’s protocol.

Of the other 76 macros that bind local variables in the scope of their arguments, 59

attempt to avoid capture. There are 12 that choose long, obscure names; for instance,

gensym::metlist (meaning “metlist” in the “gensym” package), indicating a wish for the

Lisp symbol-generating function gensym, which is not available in ACL2. There is also a

44 CHAPTER 3. HYGIENIC MACROS

Improves
for free

Improves
with work Unchanged

Broken;
improves

Broken;
restores

Code Duplication – 130 – – –
Free variable 2 – – 83 5
Lexical capture 29 47 – 9 –
Definition capture – 2 95 44 16
Variable comparison – 26 – – –

Total 31 205 95 136 21

Figure 3.6: Impact of hygienic expansion on nontrivial ACL2 macros.

convention of adding -do-not-use-elsewhere or some similar suffix to macro-bound variables;

in one case, due to code copying, a variable named hyp--dont-use-this-name-elsewhere is in

fact bound by two macros in different files. Obscure names are a poor form of protection

when they are chosen following a simple formula, and a macro that binds a hard-coded long

name will never compose properly with itself, as it always binds the same name.

A further 40 macros generate non-capturing names based on a known set of free variables,

and seven more fail with a compile error if they capture a name as detected by check-vars-

not-free. These macros are guaranteed not to capture, but the latter still force the user to

learn the name bound by the macro and avoid choosing it for another purpose. Some of

these macros claim common names, such as val and x, for themselves.

Finally, we have found 17 macros in the ACL2 books that bind variables and take no

steps to avoid capture. All of the accidentally variable-capturing macros will automatically

benefit from hygienic expansion.

Exceptions: The notable exceptions to hygiene we have not addressed are make-event,

a tool for relective code transformation, and state, a special variable used to represent

mutation and i/o. We have not yet inspected most uses of make-event in the ACL2 code

base, but do not anticipate any theoretical problems in adapting the feature. For state and

similar “single-threaded” objects, our design must change so as to recognize the appropriate

variables and not rename them.

Summary: Figure 3.6 summarizes our analysis. We categorize each macro by row ac-

cording to the type of transformation it applies: code duplication, free variable insertion,

capture of lexical or definition bindings, and variable comparison. We omit the trivial case

of simple alias macros from this table.

We split the macros by column according to the anticipated result of hygienic expansion.

In the leftmost column, we sum up the macros whose expansion is automatically improved

by hygienic expansion. Next to that, we include macros that work as-is with hygiene, but

permit a simpler definition. In the center, we tally the macros whose expansion is unaffected.

To the right, we list macros that must be fixed to work with hygienic macro expansion, but

3.4. EVALUATION 45

whose expansion becomes more predictable when fixed. In the rightmost column, we list

those macros that must be fixed and gain no benefit from hygienic expansion.

Many libraries and built-in features of ACL2 rely on the unhygienic nature of expansion

and use implicit bindings; as a result, our system cannot cope with every macro idiom in

the code base. Fortunately, there appear to be few exceptions, and we anticipate that all of

the macros distributed with ACL2 can be made to work with hygienic expansion, requiring

at worst a straightforward fix to reorder definitions or accept explicit arguments in place of

free variables. Furthermore, the bulk of macros will continue to work, and more will benefit

from hygiene than will break in its presence. The frequent use of code duplication, obscure

variable names, and other capture prevention mechanisms shows that ACL2 users recognize

the need for a disciplined approach to avoiding unintentional capture in ACL2 macros.

Chapter 4

Extended Case Study

4.1 The Racket Virtual Machine

The Racket family of programming languages [Flatt and PLT 2010] operates by translating

source code to a bytecode language, then executing the bytecode on a stack-based virtual

machine (with a JIT compiler). The Racket virtual machine accepts an expression as input

and submits it to a bytecode verifier. If the expression passes verification, it is translated

into a machine state, which is then executed directly. The bytecode verifier ensures that a

given expression performs only legal actions. To do this, it mimics the process of execution

on an abstract machine that tracks the state of accessible locations for reading and writing

values.

Our simplified model of a Racket machine state has three registers: value, code, and

stack; it may alternately be in an error state. The value register is a location; the stack is a

sequence of frames,1 each of which is a sequence of locations. A location may be uninitialized

or contain a value; machine values are closures with an arity, stored environment, and body

expression.2

The code register contains a sequence of instructions, which may swap the value register

with a stack location, set the value of a stack location, pop or push a set of two stack frames,

call a function with some number of arguments, or evaluate a machine expression.

Our grammar for expressions encompasses the lambda calculus, modified to operate on a

stack machine with multiple-argument functions. Variable lookup is performed by reference

to stack locations. Each lambda abstraction carries an explicit arity, the stack locations of

all free variables in its body, and the body expression itself. Function application includes

one expression for the function to apply and a sequence of argument expressions. See

figure 4.1 for the full grammar. We use the notation −→x to represent a sequence of terms of

the form x, or −→x n to specify the length n of the sequence.

1Our ACL2 implementation requires a stack to include at least one frame.
2Our ACL2 implementation also stores metadata for verification with each location; the model we

47

48 CHAPTER 4. EXTENDED CASE STUDY

m ∈ mstate = (loc, stack , code) | error machine state

s ∈ stack =
−−−→
frame stack

f ∈ frame = 〈
−→
loc〉 stack frame

` ∈ loc = value | uninit value location

v ∈ value = clos(nat ,
−−−→
value , expr) value

c ∈ code =
−−−→
instr machine code

i ∈ instr = pop | push | set | swap | call | expr instruction
e ∈ expr = loc(nat) expression

| lam(nat ,
−→
nat , expr)

| app(expr ,−−→expr)

Figure 4.1: Grammar for machine states

Execution proceeds according to the single-step relation −→, shown in figure 4.2. A loc

expression copies the contents of the appropriate stack index to the value register. A lam

expression creates a closure in the value register with the same arity and body, and with the

values of free variables extracted from the stack. An app expression expands into a sequence

of instructions that perform the steps in a function application: evaluate the function and

argument expressions, each with a fresh set of two stack frames; store the function value in

the value register and the arguments in new locations on top of the stack; and finally, call

the function.

The push and pop instructions add and remove, respectively, the top two frames of the

stack. Every function call makes use of two stack frames: the first stores temporary results

in the evaluation of function arguments and the second stores the lexical environment and

arguments of the current function call.3

Executing a set or swap instruction copies the contents of the value register to the

indicated stack location; swap instructions also copy the value at that stack location to the

value register.

Finally, the call instruction installs the body of a closure as the next instruction to exe-

cute and repopulates the top two stack frames for the new function call. If the instruction’s

arity does not match the arity of the closure in the value register, the call instruction instead

produces an error state.

We omit full definitions of the straightforward stack manipulation functions, but we

present their signatures in figure 4.3. The function stack-size reports the number of value

locations in a stack. The pair of functions stack-ref and stack-set perform stack lookup

and update based on location indices. Pairs of stack frames are added and removed by

stack-push and stack-pop, and stack-alloc adds a sequence of locations to the top frame of a

stack.

present here infers this metadata prior to verification.
3Our ACL2 model uses three stack frames, separating the lexical environment and function arguments.

4.1. THE RACKET VIRTUAL MACHINE 49

mstate−→mstate
(`, s, loc(n) c) −→ (stack-ref(s,n), s, c)

(`, s, lam(narity ,
−−→nfree , e) c) −→ (clos(narity ,

−−−−−−−−−−−−→
stack-ref(s,nfree), e), s, c)

(`, s, app(e, ε) c) −→ (`, s, push e pop call(0) c)
(`, s, app(efun ,

−−→earg
n) c) −→ (`, sapp , capp c)

where
sapp = stack-alloc(

−−−→
uninitn , s)

capp = push efun pop set(n − 1) argc(0,−−→earg)
(`, s, push c) −→ (`, stack-push(s), c)
(`, s, pop c) −→ (`, stack-pop(s), c)
(`, s, set(n) c) −→ (`, stack-set(s,n, `), c)
(`, s, swap(n) c) −→ (stack-ref(s,n), stack-set(s,n, `), c)
(`, s, call(n) c) −→ (`, 〈〉 〈−−→varg

−−→vfree 〉 srest , e c)
where

` = clos(n,−−→vfree , e)

s = 〈−−→varg
n −−−→`temp 〉 fenv srest

(`, s, call(n) c) −→ error
where

` = clos(narity ,
−−→vfree , e)

n 6= narity

argc(nat ,−−→expr) : code

argc(n, e) = push e pop swap(n) call(n + 1)
argc(n, e0

−→e) = push e pop set(n) argc(n + 1,−→e)

Figure 4.2: Execution of machine states

stack-size(stack) : nat
stack-ref(stack ,nat) : loc
stack-set(stack ,nat , loc) : stack
stack-push(stack) : stack
stack-pop(stack) : stack

stack-alloc(
−→
loc , stack) : stack

Figure 4.3: Signatures for stack operations.

sb ∈ bstack =
−−−−→
bframe | invalid bytecode abstract stack

f b ∈ bframe =
−−→
bloc bytecode abstract stack frame

`b ∈ bloc = read | neither bytecode abstract value location

Figure 4.4: Grammar for bytecode abstract stacks

50 CHAPTER 4. EXTENDED CASE STUDY

For this language, bytecode verification amounts to ensuring that the stack locations

in every loc and lam expression refer to positions that are guaranteed to be both allocated

and initialized with a value by the time they are read. The bytecode verifier operates by

simulating execution of an expression on a bytecode abstract stack that replaces the value

at each location with an annotation of whether the location can be legally read or written.

Abstract execution over-approximates control flow by checking all function bodies, even if

they might not be executed at runtime.

A bytecode abstract stack for bytecode verification is represented as a sequence of byte-

code abstract stack frames, or invalid to indicate that verification has failed. A bytecode

abstract stack frame is a sequence of bytecode abstract values. Each bytecode abstract

value in the stack is either a readable (but not writable) value, representing a variable in

scope, or a location that is neither readable nor writable, representing space allocated for

arguments to a function call. See figure 4.4 for the grammar of bytecode abstract stacks.

The bytecode verifier operates via the bverify function, shown in figure 4.5, which sim-

ulates a given expression starting with an empty stack via bsimulatee and ensures that the

final stack is not invalid.

Within bsimulatee, simulation of loc expressions amounts to checking whether the given

stack index is allocated and readable. For lam expressions, the stack index of each free

variable must be allocated and readable; furthermore, the body expression must be verified

in the bytecode abstract stack corresponding to a function call: the body’s free variables

allocated on top of the function’s arguments. An app expression is simulated by allocating

an unreadable stack location for each argument, then simulating the operator expression and

each argument in turn via bsimulate∗e . The bsimulate∗e function simulates each expression in

a new pair of stack frames, removing them before proceeding with the rest.

We generalize the stack operations from figure 4.3 to bytecode abstract stacks; invalid is

considered to have stack-size of 0, and all other operations on invalid produce invalid.

Expressions are converted to machine states by first verifying them, then adding an

uninitialized value register, a stack with two empty frames, and installing the expression as

the sole initial instruction. This process is defined as init in figure 4.5.

4.2 Verifying the Verifier

Klein [2009] formulates the safety property stated for the bytecode verifier, adapted to our

model, as follows:

If the verifier accepts be and init(be) −→∗ (`, s` , c), then either c = ε (i.e.,

no instructions remain) or (`, s` , c) −→ m, for some machine state m.

4.2. VERIFYING THE VERIFIER 51

init(expr) : mstate

init(e) = (uninit, 〈〉 〈〉, e) if bverify(e)

bverify(expr) : bool

bverify(e) = (bsimulatee(e, 〈〉 〈〉) 6= invalid)

bsimulatee(expr , bstack) : bstack

bsimulatee(loc(n), sb) = sb

where

n < stack-size(sb)
stack-ref(sb ,n) = read

bsimulatee(lam(narity ,
−−→nfree , e), sb) = sb

where
−−−−−−−−−−−−−−−→
nfree < stack-size(sb)
−−−−−−−−−−−−−−−−−−→
stack-ref(sb ,nfree) = read

bsimulatee(e, 〈〉 〈
−−→
read|

−−→nfree |+narity 〉) 6= invalid
bsimulatee(app(efun ,

−−→eargs), sb) = bsimulate∗e (efun
−−→eargs , s

b)

bsimulate∗e (−−→expr , bstack) : bstack

bsimulate∗e (ε, sb) = sb

bsimulate∗e (e0
−→e , sb) = bsimulate∗e (−→e , stack-pop(bsimulatee(e0 , stack-push(sb))))

Figure 4.5: Bytecode verification

To express this claim in Modular ACL2, we must first formalize the languages of bytecode

expressions and machine states, the behavior of the bytecode verifier, and the process of

execution. We specify these features in four interfaces: (1) ifc-bytecode contains the gram-

mar for bytecode expressions and abstract bytecode stacks, (2) ifc-machine describes the

language of machine states, (3) ifc-verify presents a theory of bytecode verification, and (4)

ifc-execute formalizes machine state execution. A fifth interface, ifc-safety, states the safety

property in terms of the functions in the other four.

(interface ifc-safety
(include ifc-machine ifc-verify ifc-initialize ifc-execute)
(con safety

(implies
(and (natp n) (bytecode-expr-p bc) (verify-bytecode-program bc))
(machine-state-p (machine-execute (machine-initialize bc) n)))))

The contract safety states that executing a verified bytecode expression for a given number

of steps always results in a machine state (rather than some value outside the grammar

of machine states). This statement relies on our transparent definition of the function

machine-execute in ifc-execute:

52 CHAPTER 4. EXTENDED CASE STUDY

(sig app (fun args))
(sig app-p (x))
(sig app.fun (x))
(sig app.args (x))

(con app/boolean
(booleanp (app-p x))
:rule-classes :type-prescription)

(con app/predicate
(app-p (app fun args)))

(con app/constructor
(implies (app-p x)

(equal (app (app.fun x) (app.args x)) x))
:rule-classes :elim)

(con app/selectors
(and (equal (app.fun (app fun args)) fun)

(equal (app.args (app fun args)) args)))
(con app/acl2-count

(and (< (acl2-count fun) (acl2-count (app fun args)))
(< (acl2-count args) (acl2-count (app fun args)))))

Figure 4.6: Specification of application expression data structure

(fun machine-execute (ms n)
(cond

((zp n) ms)
((error-state-p ms) ms)
((endp (registers.control ms)) ms)
(t (machine-execute (machine-step ms) (− n 1)))))

Execution proceeds until n steps have been performed, the machine reaches an error state,

or the machine runs out of instructions.

Because the bytecode and machine state grammars share constructors such as loc, lam,

and app, these data structures are specified in a separate interface ifc-representation that

is included by both ifc-bytecode and ifc-machine. Each constructor is given an associated

predicate and accessors, and each data structure is described by a set of contracts.

Figure 4.6 shows the signatures and contracts used for the app data structure. The

contracts app/boolean and app/predicate describe the type of the predicate app-p and that

it recognizes all app structures. The app/constructor contract permits ACL2 to split any

value satisfying app-p into its fun and args fields. Both accessors’ behavior is specified by

app/selectors, and the fact that the value in a field is always smaller than its containing

structure is given by app/acl2-count. Note that the type of app’s fields are not specified

here. The only relationship between data structures specified in ifc-representation is that

each structure type is distinct from the others.

4.2. VERIFYING THE VERIFIER 53

The contracts in each interface describe the associated signatures abstractly when prac-

tical, leaving out irrelevant implementation details, data representations, and the behavior

of functions for unintended inputs. For example, here is the contract in ifc-verify specifying

the behavior of bytecode verification for loc expressions:

(con verify-bytecode-expr/loc
(equal (verify-bytecode-expr (loc n) (valid fs))

(if (and (stack-index-p n fs)
(bytecode-readable-p (stack-lookup n fs)))

(valid fs)
(invalid))))

Given a valid stack, simulation of a loc expression preserves the stack when n refers to an

allocated, initialized stack location, and renders it invalid otherwise. This contract provides

an algebraic specification of verify-bytecode-expr. The function’s inputs are described using

the constructors loc and valid; the implementation of dispatch within verify-bytecode-expr

and its result for other inputs are not given.

For recursive datatypes and algorithms, we add a transparent function definition to the

associated interface that follows the same recursion scheme. This definition permits clients

to perform induction using the same scheme. We express mutual recursion, such as that of

verify and verify∗, with a single recursive function containing all of the recursion patterns

and choosing among them based on a flag parameter. For instance, the recursion scheme

for bytecode expressions and expression lists is shown in figure 4.7.

Our proof proceeds in a top-down fashion; we start with a module importing all of the

interfaces specifying the Racket virtual machine and exporting ifc-safety. The natural first

step in our proof is induction over the number of steps executed. A näıve attempt, however,

results in an inductive hypothesis that is too weak: it is not sufficient to know that machine-

state-p holds at one step in order to conclude that it holds at the next. Instead, we need a

stronger property that expresses the invariants checked by verify-bytecode-program in terms

of machine states.

For this purpose, we specify machine state verification in a new interface ifc-simulate.

Machine state verification checks properties similar to bytecode verification, such as that

every execution step refers to valid stack indices and preserves a well-formed stack.

Abstract machine states consist of an abstract value location and an abstract stack, or

may be invalid. An abstract stack is a sequence of abstract stack frames, each of which

may be a sequence of abstract value locations or unknown. Abstract value locations may

be read-only, write-only, or neither. We once again generalize stack operations to abstract

stacks; stack-pop may remove unknown frames, but all other operations are undefined for

abstract stacks containing unknown. Figure 4.8 gives the grammar of abstract machine

54 CHAPTER 4. EXTENDED CASE STUDY

(fun bytecode-recursion (x kind)
(declare (xargs :measure (bytecode-measure x kind)))
(cond

((equal kind ’bytecode-expr)
(cond

((loc-p x) (loc (loc.s-addr x)))
((lam-p x)
(lam (lam.args x)

(lam.fvars x)
(bytecode-recursion (lam.body x) ’bytecode-expr)))

((app-p x)
(app (bytecode-recursion (app.fun x) ’bytecode-expr)

(bytecode-recursion (app.args x) ’bytecode-expr-list)))
(t x)))

((equal kind ’bytecode-expr-list)
(cond

((null x) nil)
((consp x)
(cons (bytecode-recursion (car x) ’bytecode-expr)

(bytecode-recursion (cdr x) ’bytecode-expr-list)))
(t x)))

(t x)))

Figure 4.7: Recursion scheme for expressions and expression lists

ma ∈ astate = (aloc, astack) | invalid abstract machine state

sa ∈ astack =
−−−−→
aframe abstract stack

f a ∈ aframe = 〈
−−→
aloc〉 | unknown abstract stack frame

`a ∈ aloc = read | write | neither abstract value location

Figure 4.8: Grammar for abstract machine states

states, figure 4.9 presents the convertion from machine states to abstract machine states,

and figure 4.10 describes the process of machine state verification.

Given the definition of abstract machine verification, the safety property reduces to

two lemmas: passing a verifiable bytecode expression to machine-initialize yields a verifiable

machine state, and executing a verifiable machine state yields yet another verifiable machine

state. We formalize these two in the interfaces ifc-bytecode-safety and ifc-machine-safety (see

figures 4.11 and 4.12), and complete our main theorem by importing these interfaces and

supplying appropriate hints to ACL2 in the proof of safety.

The proof of each lemma takes place in its own module. The proof of bytecode-safety

proceeds by induction on the verification of the initial machine state. This induction scheme

must be developed explicitly for the proof as a new function, as it blends the induction

schemes of both bytecode and machine verification; that is, it must account for the “abstract

value” field of machine state induction, but it can ignore instructions and intermediate stack

4.3. EXPERIENCE AND CONCLUSIONS 55

abstract-state(loc, stack) : astate

abstract-state(`, s) =
(abstract-value(`), abstract-stack(s))

abstract-value(`) : `a

abstract-value(uninit) = write
abstract-value(v) = read

abstract-stack(s) : sa

abstract-stack(ε) = ε

abstract-stack(〈
−→
`1 〉 〈

−→
`2 〉 s) =

〈
−−−−−−−−−−−→
abstract-arg(`1)〉 〈

−−−−−−−−−−−→
abstract-var(`2)〉 abstract-stack(s)

abstract-arg(`) : `a

abstract-arg(uninit) = write
abstract-arg(v) = neither

abstract-var(`) : `a

abstract-var(uninit) = neither
abstract-var(v) = read

Figure 4.9: Conversion for abstract machine states

states, as an initial machine state cannot contain these. The proof of machine-safety proceeds

by induction on the steps in a finite execution trace, and by cases on the possible machine

transitions.

At the time of this writing, we have complete and verified implementations of ifc-

representation, ifc-bytecode, ifc-machine, ifc-bytecode-safety, and ifc-safety. We have a par-

tial proof of ifc-machine-safety, and have not yet implemented ifc-execute, ifc-verify, or ifc-

simulate.

4.3 Experience and Conclusions

In constructing our model and partial safety proof for the Racket virtual machine, we derive

several benefits from the use of Modular ACL2 over plain ACL2; in addition, we can identify

new directions of improvement for the design and implementation of Modular ACL2.

At the level of component specifications, interfaces allow theories in Modular ACL2 to

be “under-specified”, leaving out irrelevant aspects of implementations that have nothing

to do with the proof at hand. Concretely, this allows ifc-execute to specify transitions

only for “good” machine states, while the implementation is free to handle other inputs

arbitrarily. This contrasts with the implementation of Klein [2009], which is obligated to

ensure that bad inputs invariably either map to bad inputs or get “stuck” so that random

testing would yield a false negative if the verifier were overpermissive. Since our proof is

in terms of the interface, which guarantees only the behavior of “good” machine states, a

successful safety proof thereby assures that verified bytecode yields only “good” machine

states. This greatly simplifies our task, as we need neither reason about the behavior of

56 CHAPTER 4. EXTENDED CASE STUDY

mverify(mstate) : bool

mverify(`, s, c) = (msimulate∗i (abstract-state(`, s), c) 6= invalid)

msimulate∗e (astate,−−→expr) : astate

msimulate∗e (ma , ε) = ma

msimulate∗e (ma , e0
−→e) =

msimulate∗e (msimulatee(ma , e0),−→e)

msimulate∗i (astate,
−−−→
instr) : astate

msimulate∗i (ma , ε) = ma

msimulate∗i (ma , i0
−→
i) =

msimulate∗i (msimulatei(m
a , i0),

−→
i)

msimulatee(astate, expr) : astate

msimulatee((`
a
1 , s

a
1), e) = (read, stack-pop(sa2))

where

(`a2 , s
a
2) = msimulatei((`

a
1 , stack-push(sa1)), e)

msimulatei(astate, instr) : astate

msimulatei((`
a , sa), loc(n)) = (read, sa)

where

n < stack-size(sa)
stack-ref(sa ,n) = read

msimulatei((`
a , sa), lam(narity ,

−−→nfree , e)) = (read, sa)
where
−−−−−−−−−−−−−−−→
nfree < stack-size(sa)
−−−−−−−−−−−−−−−−−−→
stack-ref(sa ,nfree) = read

f a = 〈
−−→
read|

−−→nfree |+narity 〉
msimulatei((read, 〈〉 f a , e)) 6= invalid

msimulatei(m
a , app(efun ,

−−→earg)) = msimulate∗e (ma , efun
−−→earg)

msimulatei((`
a , sa), push) = (`a , stack-push(sa))

msimulatei((`
a , sa), pop) = (`a , stack-pop(sa))

msimulatei((read, sa), set(n)) = (read, stack-set(sa ,n, read))
where

n < stack-size(sa)
stack-ref(sa ,n) = write

msimulatei((read, sa), swap(n)) = (read, sa)
where

n < stack-size(sa)
stack-ref(sa ,n) = neither

msimulatei((read, sa1), call(n)) = (read, 〈〉 unknown sa2)
where

sa1 = 〈
−−→
readn −→`a 〉 f a sa2

msimulatei(m
a , i) = invalid otherwise

Figure 4.10: Machine state verification

4.3. EXPERIENCE AND CONCLUSIONS 57

(interface ifc-bytecode-safety
(include ifc-initialize ifc-verify ifc-simulate)
(con bytecode-safety

(implies (and (bytecode-expr-p bc) (verify-bytecode-program bc))
(and (machine-state-p (machine-initialize bc))

(verify-machine-state (machine-initialize bc))))))

Figure 4.11: Bytecode initialization lemma

(interface ifc-machine-safety
(include ifc-simulate ifc-execute)
(con machine-safety

(implies (and (machine-state-p ms) (verify-machine-state ms))
(and (machine-state-p (machine-execute ms n))

(verify-machine-state (machine-execute ms n))))))

Figure 4.12: Machine state execution lemma

execution of “bad” states, nor detect them in our implementation of execution and produce

“bad” results.

Our choice to represent data structures abstractly, focusing on constructors and acces-

sors and ignoring their representations in terms of symbols and lists, yields much more

maintainable proofs. The intermediate lemmas generated by ACL2 remain in terms of our

virtual machine’s data model. For instance, claims about the stack register of a non-invalid

abstract machine refer to (result.stack (valid.contents am)). Using a concrete, cons-based

implementation yields instead a reference to (cddadr (car am)). This form of expression is

not only harder to read, but harder to reason about, as ACL2 cannot apply rewrite rules

based on result.stack or valid.contents to claims based solely on car and cdr.

Unfortunately, our abstract data representation imposes a high burden of manual spec-

ification. Each data structure requires a sequence of five contracts, similar to those in fig-

ure 4.6, which increase in complexity with the number of fields specified. Furthermore, the

size of the contracts needed to state disjointness of all structure types increases quadrat-

ically in the number of separate data structures. This aspect of development would be

significantly improved by direct support for data structure theories in Modular ACL2, so a

user need only specify a datatype and all of the necessary contracts would be automatically

generated.

Another drawback of Modular ACL2’s interfaces occurs at a low level. The bodies

of contracts are not compiled by the DrRacket front-end in the current implementation.

Instead, they are only compiled by ACL2 at verification time. This can lead to significantly

delayed error reports, and even masked errors if an include dependency is omitted, but the

58 CHAPTER 4. EXTENDED CASE STUDY

two interfaces happen to be used together most of the time.

Developing proofs and implementations in terms of imported interfaces allows both

greater abstraction and more a straightforward method of developing proofs top-down than

ACL2 normally affords. Once a proof of a component is completed, changes to the imple-

mentation of lower-level components cannot cause Modular ACL2 to “lose” the previously

developed proof. In contrast, adding new definitions in the early parts of a proof, or chang-

ing a lemma from assumed to proved, alters the logical “world” used by (non-modular)

ACL2 and can disrupt proofs that previously worked at a higher level of abstraction. This

guarantee of Modular ACL2 adds stability to development; the only time one component

must change to suit another is when an interface must be edited.

Verifying a program module-by-module not only enables top-down development; it al-

lows arbitrary interleaving of proof development among different components. For instance,

if developing a top-level component raises questions about a lower-level interface, it is easy

to switch over to implementing and verifying the low level component to determine what

contracts are valid and can be tractably verified of an implementation. We used this tech-

nique to ensure our abstract datatype specifications and the mutual induction schemes for

our expression grammar were valid; we implemented and maintained these data structures

as their specification evolved.

Sadly, the user interface for Modular ACL2 presents a barrier to interleaved editing of

different modules and interfaces. Specifically, while verifying a module, Drackula locks all

previous definitions—including its imported and exported interfaces—from editing. Any

time the output of ACL2 suggests a change to be made to an interface, the current veri-

fication progress must be abandoned, the interface edited, and the theorem prover started

over from scratch. Dracula and Modular ACL2 would benefit from a user interface that

does less to discourage back-and-forth editing during proof development.

Within individual modules, Eastlund and Felleisen [2009a] claim that Modular ACL2

can obviate the need for most or all proof annotations such as ACL2’s “hints” to optimize

the performance of the theorem proving engine. Our proof of the bytecode safety lemma

required hints for approximately two-thirds of all of its intermediate lemmas. These hints

are necessary to make the proof complete successfully; they are not used strictly to improve

speed.

At intermediate stages of proof development, some of our efforts to provide an abstract

specification of imported components may have been counterproductive. Our attempts to

provide an underspecified theory of verification and evaluation, ignoring their behavior on

“bad” inputs, requires each contract to have extra hypotheses constraining each free variable

to the minimum set of values required for correctness. Unfortunately, using these contracts

4.3. EXPERIENCE AND CONCLUSIONS 59

during verification requires ACL2 to discharge all of these hypotheses. This can significantly

slow down the verification process; it can also cause ACL2 to pass up opportunities to use

a contract because its hypotheses are not “obviously” true. In a few cases, we decided to

make our contracts less abstract and more flexible in the interests of pragmatic theorem

proving.

Reasoning in terms of data constructors rather than accessors—for instance, claiming

that x and y are integers in (cons x y) rather than (car p) and (cdr p) in p when (consp p)

holds—makes writing straightforward, abstract contracts easy, but it often makes complet-

ing proofs in ACL2 harder. Function definitions and induction schemes that inspect values

in ACL2 are based on predicates and accessors, not constructors. While ACL2 does use

so-called “elimination rules” to expand constrained variables (e.g., p when (consp p) holds)

into constructor expressions (e.g., (cons x y)), these rules are applied late in the process of

rewriting a claim. ACL2 therefore misses many opportunities to apply lemmas written in

terms of constructors. In order to make use of these lemmas, the user must either write

many explicit proof hints or else derive predicate-based corollaries from the constructor-

based contracts.

Chapter 5

Refining Modules and Macros

Modular ACL2 provides reusable specifications but does not support a mechanism to ab-

stract over them. In this chapter we describe Refined ACL2, which adapts Modular ACL2 in

two ways to address this problem: with macros, which abstract over syntax—including that

of specifications—and with refinements, which extend specifications to describe a particular

implementation in detail.

As in Modular ACL2, Refined ACL2 has an executable semantics and a verification

semantics. The executable semantics takes the form of a step relation that removes compo-

nent constructs from the program one at a time, eventually yielding a plain ACL2 program.

The verification semantics translates a Refined ACL2 program into an ACL2 verification

obligation. We also formalize a static semantics for Refined ACL2 and ACL2, which ensures

syntacic and logical well-formedness.

5.1 Example

We present an example program in the macro-extensible surface syntax of Refined ACL2

in figure 5.1. The first two definitions present two types: TYPE and LISTOF.

The type named TYPE specifies component instances implementing predicates. The

predicate must be a unary function named is? and must be accompanied by a proof of the

theorem is?/boolean?, which states that is? produces a boolean result.

The type LISTOF specifies instances implementing homogenous lists. Each implemen-

tation of LISTOF must include a nested instance named Elem, a unary function filter, and

a theorem filter/member; the type also supplies two macros named add and make. The

nested instance Elem must implement TYPE in order to provide a type predicate for list ele-

ments. The filter function must be unary and must satisfy the stated theorem filter/member

meaning any elements of its result must satisfy the predicate is? from Elem. The macro

add conditionally adds an element to the front of a list, returning the given list unless the

61

62 CHAPTER 5. REFINING MODULES AND MACROS

(description TYPE
(stub (is? x))
(theorem (is?/boolean? x)

(boolean? (is? x))))

(description LISTOF
(component Elem : TYPE)
(stub (filter xs))
(theorem (filter/member x xs)

(implies (member x (filter xs))
(Elem.is? x)))

(macro add
[(e1 e2)
(let {[x e1] [xs e2]}

(if (Elem.is? x) (cons x xs) xs))])
(macro make

[() ’()]
[(e1 e2 . . .) (add e1 (make e2 . . .))]))

(generic (Listof E : TYPE) : LISTOF where {[Elem = E]}
(function (filter xs)

(cond
[(empty? xs) xs]
[(cons? xs) (add (first xs) (filter (rest xs)))])))

(component Integer : TYPE where {[is? = integer?]})

(instance Listof-Integer (Listof Integer))

(Listof-Integer.make 1 "two")

Figure 5.1: Example Refined ACL2 program.

new element satisfies Elem.is?. Full lists can be constructed with the macro make, which

expands into nested uses of add. Macros are always made available for use by clients of the

description. For convenience, macros made available to providers of a description as well.

The third definition provides Listof, a generic component accepting an implementation of

TYPE. The generic’s result is sealed at the type LISTOF refined by a where clause, exposing

that the nested instance Elem is implemented by the generic’s argument E. The body of

Listof implements filter; Elem is already implemented via description refinement, and the

theorem filter/member required by LISTOF is implicitly defined with no proof annotations.

The body of filter uses the macro add; in this context, Elem.is? in the macro’s output refers

to the Elem refined to be equal to E.

We implement TYPE in the fourth definition. The instance Integer refines TYPE to

specify that its member is? is implemented by integer?.

Finally, we instantiate Listof as Listof-Integer using Integer as its argument and construct

5.2. CORE LANGUAGE 63

p :=
−→
d

d := i = t
t := a

| fun i(
−→
i) e e

−→
h

| thm (
−→
i) e−→r

−→
h

| inst{
−−→
` . d}

| gen (i : T) t
| t(a)
| seal t : T
| type T

P :=
−→
D

D := i : T
T := a
| stub (n)

| fun i(
−→
i) e e

| thm (
−→
i) e−→r

| inst{
−−−→
` .D}

| gen (i : T) T

| T where
−→
` = a

| type T
| ref a
| value

a := i
| a � `

e := i
| n
| if e e e
| let i = e in e
| a(−→e)

r := e equals e when e
| e recurs as e

h := lemma a(−→e)
| induct e

Figure 5.2: Grammar of Refined ACL2.

a list using Listof-Integer.make. In this context, the reference to add in the expansion

of make refers to Listof-Integer.add, and the reference to Elem.is? in add refers to Listof-

Integer.Elem.is?.

5.2 Core Language

Macros extend Refined ACL2; before verification and execution, we must expand a source

program into a macro-free core language. Expansion also effectively alpha-renames the

source programs; in a fully-expanded program, there is no shadowing. Figure 5.2 shows the

grammar of this core. A program p is a sequence of definitions; each definition d assigns a

name to a term.

Terms, t, denote ACL2 definitions, components that combine them, and types that

describe them. A term may be an address referring to an existing definition. Terms also

include functions and theorems à la ACL2. A function definition consists of an identifier

used internally for recursive references, a sequence of identifiers naming formal arguments,

expressions for its body and measure, and a sequence of hints to aid the theorem prover.

Theorems have universally quantified identifiers, a body expression, a sequence of rule

classes, and a sequence of hints. Components may be instances, which contain a sequence

of labelled definitions, as well as generics, which have a formal argument with a specified

type as well as a body term. Application terms provide a term representing a generic

with an actual argument specified by an address. A component may also be sealed at a

given type, possibly hiding details of its implementation. Finally, types themselves can be

encapsulated as terms.

Types, T, describe the contribution of terms to an ACL2 logical theory. Types include

64 CHAPTER 5. REFINING MODULES AND MACROS

references to defined types. A type may describe a function of a given arity for which

nothing else is known, denoted stub (n). A type may also describe a complete function

or theorem, denoted the same as their terms except that proof hints are not included.

Component instances have corresponding types, mapping labels to declarations. The type

of a generic has a formal argument and input and output types. A type can be refined,

specifying an implementation by address for the base type or one of its members. Refined

members may be deeply nested; a member’s location is specified by a sequence of labels in

order from outermost to innermost. An empty sequence of labels signifies a refinement to

the entire base type. Encapsulated types serve as their own types. The type of references

to a previously defined function or theorem are given nominally. Finally, value bindings are

described simply as value.

Just as types describe terms, environments, P, and declarations, D, describe programs

and definitions. Their forms are analogous.

An address, a, can be either an identifier or a reference to a labelled member of another

address. Expressions in function and theorem bodies can be variable references, constants,

conditionals, lexical bindings, and function applications. A rule class can be an equational

rewrite or a recursion-scheme association. Finally, proof hints may invoke a lemma or may

specify induction scheme. Lemmas are specified as an application of a function or theorem

name to explicit arguments. Induction schemes are given as expressions.

We macro-expand the example from figure 5.1 to the core Refined ACL2 language in

figures 5.3 and 5.4.

In the definition of TYPE, we assign labels to each declaration using the same name

as the surface identifier, and alpha-rename the identifiers to is?1 and is?/boolean?1. In

is?/boolean?1 we also rename the formal argument and add the default rewrite rule class

based on the theorem’s body.

Labels and fresh identifiers are added to LISTOF similarly. The theorem filter/member1

gets a default rewrite rule class as well, and references to the dotted identifier Elem.is? are

converted to references to the member labelled is? in Elem1. Note that make and add are

not present in the elaborated description; macros are all expanded at their application sites

during the elaboration process.

The generic Listof and its argument E have unique identifiers and do not need to be

renamed. We assign the names Elem2, filter2, and filter/member2 to the contents of Listof

and map the labels of LISTOF to these identifiers. Elaboration adds an alias from Elem2

to E based on the refinement of LISTOF in the range of Listof. The function filter2 gets

the default measure of 0 and an internal name of filter3 for recursion. The conditional in

its body becomes a chain of if expressions terminating with a call to void at the end. The

5.2. CORE LANGUAGE 65

TYPE =
type

inst
{ is? . is?1 : stub (1);

is?/boolean? . is?/boolean?1 :
thm (x1)

boolean?(is?1(x1))
boolean?(is?1(x1)) equals #true when #true }

LISTOF =
type

inst
{ Elem . Elem1 : TYPE;

filter . filter1 : stub (1);
filter/member . filter/member1 :

thm (x2, xs1)
implies(member(x2, filter1(xs1)),Elem1 � is?(x2))
Elem1 � is?(x2) equals #true when #true }

Listof =
gen (E : TYPE)

seal
inst
{ Elem . Elem2 = E;

filter . filter2 =
fun filter3(xs2)

if cons?(xs2)
let x3 = first(xs2)
in let xs3 = filter3(rest(xs2))

in if Elem2 � is?(x3) cons(x3, xs3) xs3
void()

0
ε;

filter/member . filter/member2 =
thm (x4, xs4)

implies(member(x4, filter2(xs4)),Elem2 � is?(x4))
Elem2 � is?(x4) equals #true when #true
ε }

: LISTOF where Elem = E

Figure 5.3: Expanded version of example Refined ACL2 program, part 1.

void function is defined as a stub; Refined ACL2 cannot reason about what specific value

cond produces if all clauses fail. The application of add in the original definition of filter

is expanded; the reference to Elem.is? in the original becomes Elem2 � is? inside Listof. The

definition of filter/member2 is filled in with no proof hints, and a body and rule classes based

on the description LISTOF.

In the definition of Integer, we assign the names is?2 and is?/boolean?2 to the internal

66 CHAPTER 5. REFINING MODULES AND MACROS

Integer =
seal

inst
{ is? . is?2 = integer?;

is?/boolean? . is?/boolean?2 =
thm (x5)

boolean?(is?2(x5))
boolean?(is?2(x5)) equals #true when #true
ε }

: TYPE where is? = integer?

Listof-Integer = Listof(Integer)

let x6 = 1
in let xs5 =

let x7 = ”two”
in let xs6 = null()

in if Listof-Integer � Elem � is?(x7) cons(x7, xs6) xs6
in if Listof-Integer � Elem � is?(x6) cons(x6, xs5) xs5

Figure 5.4: Expanded version of example Refined ACL2 program, part 2.

definitions for the members labelled is? and is?/boolean?. We elaborate the internal defini-

tions to add an automatic alias for the refined declaration of is? and an automatic, hint-free

definition for is?/boolean?2.

Finally, we expand the reference to Listof-Integer.make, which generates references to

Listof-Integer.add based on the add in the original macro definition. We expand these in

turn, alpha-renaming all introduced identifiers, and producing the final expression.

5.3 Static Semantics

The static semantics for Refined ACL2 ensures that each part of a program is sufficiently

well-formed for verification: identifier references must be unambiguous, arguments to gener-

ics must implement the expected type, and so forth. We also disallow shadowing in all con-

texts. Macro-expanded programs never shadow bindings, so input programs always satisfy

this constraint; preserving this constraint aids us in defining our verification and execution

semantics. The type of each definition describes a contribution to the program’s overall

logical theory; the type-checking rules build up a theory one type at a time.

The typing rules for Refined ACL2 programs and definitions appear in figure 5.5. The

judgment P1 `p p :: P2 means that in the context of environment P1, the program p

contributes P2 to the current logical theory. The empty program contributes nothing to

a theory. In a non-empty program, the tail of the program is type-checked in a context

5.3. STATIC SEMANTICS 67

P `p p :: P

P `p ε :: ε

P1 `p d :: D P1; D `p p :: P2

P1 `p d; p :: D; P2

P `d d :: D

i0, i1,
−→
i2 distinct i0, i1,

−→
i2 6∈ dom(P1)

P2 = P1; i1 : stub (|−→i2 |);
−−−−−→
i2 : value

P2 `e e1 P2 `e e2
−−−−−→
P2 `h h

P1 `d i0 = fun i1(
−→
i2) e1 e2

−→
h :: i0 : fun i1(

−→
i2) e1 e2

i0,
−→
i1 distinct i0,

−→
i1 6∈ dom(P1)

P2 = P1;
−−−−−→
i1 : value

P2 `e e
−−−−→
P2 `r r

−−−−−→
P2 `h h

P1 `d i0 = thm (
−→
i1) e r

−→
h :: i0 : thm (

−→
i1) e−→r

i 6∈ dom(P) P `t t :: T

P `d i = t :: i : T

Figure 5.5: Typing rules for Refined ACL2 programs and definitions.

extended by the declaration of the first definition’s type. The whole program’s contribution

appends that of the definition and the program’s tail.

A definition is mapped to a declaration, given an environment as context. This judgment

is denoted P `d d :: D. Functions and theorems in Refined ACL2 are nominal entities;

because they are identified by their names, they must appear directly on the right-hand

side of a definition. In both cases, all of their introduced identifiers must be unique and

unbound. Each of their subcomponents—expressions, rule classes, and hints—must be well-

formed in an environment where their formals and, in the case of functions, their local names

are bound. Both functions and theorems are assigned a type that is equivalent to their term

except that the hints are dropped. For other terms, the term is typechecked independently

and the full definition is assigned the term’s type.

Figure 5.6 shows the rules that assign types to Refined ACL2 terms and addresses. A

term is assigned a type in a given environment according to the judgment P `t t :: T.

When a term is an address, its type is looked up in the environment, then refined to

state its name. This refinement during lookup allows types to be stored in the environment

without referring to their own names, an important invariant for other judgments.

Instance terms are assigned a type based on the types of the definitions in their body,

so long as their labels are unique. The mapping of labels to declarations assumes that the

68 CHAPTER 5. REFINING MODULES AND MACROS

P `t t :: T

P `a a :: T

P `t a :: T where ε = a

−→
` distinct P `p

−→
d ::
−→
D

P `t inst{
−−→
` . d} :: inst{

−−−→
` .D}

P `T T1 P `T T1 6 inst{ε}
i 6∈ dom(P) P; i : T1 `t t :: T2

P; i : T1 `T T2 6 inst{ε}
P `t gen (i : T1) t :: gen (i : T1) T2

P `t a :: T1 P `t t :: T2

P `T T2 ↪→ gen (i : T3) T4 P `T T1 6 T3

P `t t(a) :: [a/i]T4

P `T T1 P `T T1 6 inst{ε}
P `t t :: T2 P `T T2 6 T1

P `t seal t : T1 :: T1

P `T T

P `t type T :: type T

P `a a :: T

i : T ∈ P

P `a i :: T

P `a a :: T1 P `T T1 ↪→ inst{
−−−−−−−→
`1 . i1 : T1 ; `0 . i0 : T0;

−−−−−−−→
`2 . i2 : T2}

P `a a � `0 :: [
−−−→
a�`1/i1]T0

Figure 5.6: Typing rules for Refined ACL2 types and addresses.

type judgment for definitions produces a sequence of declarations in the same order.

For a generic term to be well-typed, several conditions must hold. The generic’s formal

argument must be unbound and its input type must be well-formed. In an environment

where the formal argument has the input type, the generic’s body has to be well-typed. We

further restrict the input and the body to have instance types by requiring an upper bound

of inst{ε}. This restriction keeps the input and output of generics from having nominal

types of the form ref a; we rely on this restriction in our soundness proof.

To typecheck the application of a generic, we first determine the type of the generic and

its argument. The generic’s type must in fact reduce to an appropriate generic type, and

the argument’s type must be a subtype of the generic’s domain. The type of the application

term is the generic’s output type with the argument address substituted for the generic’s

formal argument.

Sealing a term at a given type requires the term to be well-typed and the sealed type to

be well-formed. The argument term’s type must be a subtype of the sealed type; the entire

sealing term is assigned the sealed type.

For any well-formed type T, the term type T serves as its own type.

The judgment P `a a :: T looks up the type assigned to a given address by the current

environment. For an identifier, this requires merely looking up the appropriate declaration.

Finding the type of a member reference entails recursively finding the type of the base ad-

5.3. STATIC SEMANTICS 69

P `P P

P `P ε
P1 `D D P1; D `P P2

P1 `P D; P2

P `D D

i 6∈ dom(P) P `T T

P `D i : T

i 6∈ dom(P)

P `D i : stub (n)

i0, i1,
−→
i2 distinct i0, i1,

−→
i2 6∈ dom(P1)

P2 = P1; i1 : stub (|−→i2 |);
−→
i2 :value

P2 `e e1 P2 `e e1

P1 `D i0 : fun i1(
−→
i2) e1 e2

i0,
−→
i1 distinct i0,

−→
i1 6∈ dom(P1)

P2 = P1;
−→
i1 :value

P2 `e e
−−−−→
P2 `r r

P1 `D i0 : thm (
−→
i1) e−→r

P `T T

P `a a :: T1 P `T T1 ↪→ type T2

P `T a P `T value

−→
` distinct P `P

−→
D

P `T inst{
−−−→
` .D}

i 6∈ dom(P) P `T T1 P `T T1 6 inst{ε}
P; i : T1 `T T2 P; i : T1 `T T2 6 inst{ε}

P `T gen (i : T1) T2

P `t a :: T1 P `T T2 P `T T1 6 T2 @
−→
`

P `T T1 where
−→
` = a

P `T T

P `T type T

P `a a :: T P `T T 6 stub (n)

P `T ref a

P `a a :: T P `T T 6 thm (
−→
i) e−→r

P `T ref a

Figure 5.7: Typing rules for Refined ACL2 environments, declarations, and types.

dress, then reducing it to an instance type. This instance type must contain the appropriate

label. Its type is returned, with all references to local names from the instance replaced

with appropriate external member references.

The well-formedness of environments, declarations, and types largely follows the same

pattern as typechecking programs, definitions, and terms, as shown in figure 5.7.

An environment P2 is determined to be well-formed in an enclosing environment P1 by

the judgment P1 `P P2. An empty environment is always well-formed; declarations are

typechecked individually and accumulate in the environment.

The judgment P `D D states that a declaration is well-formed in a given environment.

As with the corresponding definitions, function and theorem declarations require their in-

troduced names to be unique and unbound and their contents to be well-formed in an

70 CHAPTER 5. REFINING MODULES AND MACROS

environment including their local bindings. Stub declarations are well-formed so long as

their name is unbound. Other types in declarations must be well-formed on their own for

the declaration as a whole to be well-formed.

Well-formed types are determined by the judgment P `T T. Addresses as types must

refer to components whose type reduces to type T.

The type value is well-formed.

An instance type is well-formed when its labels are distinct and its declarations are

well-formed as an environment.

A generic is well-formed if its formal argument is unbound, its input type is well-formed,

its output type is well-formed when its argument is bound, and both the input and output

type are subtypes of inst{ε}.

For a refined type to be well-formed, the specified address must be well-typed and the

base type must be well-formed. Furthermore, the address’s type must be a subtype of the

specified member’s type, as denoted by the judgment P `T T1 6 T2 @
−→
` .

The type of an encapsulated type is well-formed if the contained type is well-formed.

A nominal reference type’s address must have a function or theorem type.

The type reduction relation P `T T1 ↪→ T2 serves to reduce T1 to T2 by looking up

references and resolving refinements according to P.

When the type of an address reduces to type T, that address itself reduces to T.

Instance types can be reduced by reducing their constituent declarations as an environ-

ment and reconstructing the instance type with the result.

A generic type reduces by recursively reducing its input and output types.

A stub, function, or theorem type refined to a specific name with an empty sequence of

labels reduces to a reference type.

Refined instance types reduce by “pushing” the refinement inward to the types of mem-

bers. When the refinement has at least one label, the refinement is transferred to the

member corresponding to the first label; that member is refined with the remaining labels

and the original address. A refinement with no labels is distributed across all members, with

the refined address for each updated to dereference the corresponding label. Furthermore,

all references to local names in the instance type are updated to refer to the appropriate

member of the refined address.

Reduction simply drops refinements from generic types, reference types, and the types

of types themselves.

The type of a type-component reduces according to the reduction of the contained type.

Reduction can “chase” aliases in reference types back to the original reference.

Finally, type reduction is reflexive and transitive.

5.3. STATIC SEMANTICS 71

P `T T ↪→ T

P `a a :: T1 P `T T1 ↪→ type T2

P `T a ↪→ T2

P `P
−→
D1 ↪→

−→
D2

P `T inst{
−−−→
` .D1} ↪→ inst{

−−−→
` .D2}

P `T T1 ↪→ T3 P; i : T3 `T T2 ↪→ T4

P `T gen (i : T1) T2 ↪→ gen (i : T3) T4 P `T stub (n) where ε = a ↪→ ref a

P `T fun i1(
−→
i2) e1 e2 where ε = a ↪→ ref a P `T thm (

−→
i1) e−→r where ε = a ↪→ ref a

P `T inst{
−−−−→
`1 .D1 ; `3 . i : T;

−−−−→
`2 .D2}where `3,

−→
`4 = a

↪→ inst{
−−−−→
`1 .D1 ; `3 . i : T where

−→
`4 = a;

−−−−→
`2 .D2}

P `T inst{
−−−−−→
` . i : T}where ε = a ↪→ inst{

−−−−−−−−−−−−−−−−−−−−→
` . i : [

−−→
a�`/i]T where ε = a � `}

P `T gen (i : T1) T2 where ε = a ↪→ gen (i : T1) T2 P `T type T where ε = a ↪→ type T

P `T ref a1 where ε = a2 ↪→ ref a1

P `T T1 ↪→ T2

P `T type T1 ↪→ type T2

P `a a1 :: ref a2

P `T ref a1 ↪→ ref a2

P `T T ↪→ T

P `T T1 ↪→ T2 P `T T2 ↪→ T3

P `T T1 ↪→ T3

P `P P ↪→ P

P `P ε ↪→ ε

P0 `T T1 ↪→ T2 P0; i : T2 `P P1 ↪→ P2

P0 `P i : T1; P1 ↪→ i : T2; P2

Figure 5.8: Type reduction for Refined ACL2.

Environment reduction is denoted P1 `P P2 ↪→ P3. This signifies that in environment

P1, P2 reduces to P3. The empty environment reduces to itself; non-empty environments

are reduced one declaration at a time, binding each name to its reduced type in turn.

The relation P `T T1 6 T2 @
−→
` states that in environment P, T1 is a subtype of the

potentially deeply-nested member of T2 found by successively dereferencing the labels in
−→
` , which are ordered from outermost to innermost. When the sequence of labels are empty,

this reduces directly to subtyping.

When there is at least one label, T2 must reduce to an instance type containing the first

label to dereference. Member-subtyping proceeds by introducing the local type bindings

from the instance to the environment, then comparing T1 to the appropriate member type

using the remaining labels. We assign fresh names to the new bindings and rename the

72 CHAPTER 5. REFINING MODULES AND MACROS

P `T T 6 T @
−→
`

P `T T1 6 T2

P `T T1 6 T2 @ ε

P `T T2 ↪→ inst{
−−−−−−−→
`3 . i3 : T3 ; `1 . i1 : T0;

−−−→
`4 .D}

−→
i0 fresh P;

−−−−−−−−→
i0 : [
−−→
i0/i3]T3 `T T1 6 [

−−→
i0/i3]T0 @

−→
`2

P `T T1 6 T2 @ `1,
−→
`2

P `T T 6 T

P `T T 6 T

P `T T1 6 T2 P `T T2 6 T3

P `T T1 6 T3

P `T T1 ↪→ T3 P `T T2 ↪→ T4 P `T T3 6 T4

P `T T1 6 T2

P `T fun i1(
−→
i2) e1 e2 6 stub (|−→i2 |)

|−→i2 | = |
−→
i4 | P2 = P1; i1 : stub (|−→i2 |);

−−−−−→
i2 : value

P2 `e e1 ≡ [i1/i3,
−−→
i2/i4]e2 P2 `e e3 ≡ [i1/i3,

−−→
i2/i4]e4

P1 `T fun i1(
−→
i2) e1 e2 6 fun i3(

−→
i4) e3 e4

|−→i1 | = |
−→
i2 | P2 = P1;

−−−−−→
i1 : value

P2 `e e1 ≡ [
−−→
i1/i2]e2 P2 `r r1 ≡ [

−−→
i1/i2]r2

P1 `T thm (
−→
i1) e1

−→r1 6 thm (
−→
i2) e2

−→r2

{
−→
`1 } ⊇ {

−→
`2 }

−−−−−−−→
`2 . i3 : T3 ⊆

−−−−−−−→
`1 . i1 : T1

−→
i4 fresh

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
P;
−−−−−−−−→
i4 : [
−−→
i4/i1]T1 `T [

−−→
i4/i1]T3 6 [

−−→
i4/i1][

−−→
i3/i2]T2

P `T inst{
−−−−−−−→
`1 . i1 : T1} 6 inst{

−−−−−−−→
`2 . i2 : T2}

P `T T3 6 T1 i3 fresh P; i3 : T3 `T [i3/i1]T2 6 [i3/i2]T4

P `T gen (i1 : T1) T2 6 gen (i2 : T3) T4

P `a a :: T

P `T ref a 6 T

Figure 5.9: Subtyping for Refined ACL2.

member type accordingly in order to avoid reusing any names also bound in T1.

We determine whether T1 is a subtype of T2 in environment P with the judgment

P `T T1 6 T2. Subtyping is reflexive and transitive, and two types are subtypes if they

have reduced forms that are subtypes.

Any function type is a subtype of the stub with the same arity.

One function type is a subtype of another if they are α-equivalent, as determined by

renaming the local name and formal arguments of one to match the other and comparing

their body and measure expressions.

Similar to function types, one theorem type is a subtype of another if they are α-

equivalent. Once again, we rename one type’s formal arguments and compare the corre-

5.3. STATIC SEMANTICS 73

P `h h

P `t a :: T
−−−−→
P `e e

P `T T 6 stub (|−→e |)
P `h lemma a(−→e)

P `t a :: T
−−−−→
P `e e1

P `T T 6 thm (
−→
i) e2

−→r |−→i | = |−→e1 |
P `h lemma a(−→e1)

P `e e

P `h induct e

P `r r

P `e e1 P `e e2 P `e e3

P `r e1 equals e2 when e3

P `e e1 P `e e2

P `r e1 recurs as e2

P `e e

P `a i :: value

P `e i P `e n

P `e e1 i 6∈ dom(P) P; i : value `e e2

P `e let i = e1 in e2

P `e e1 P `e e2 P `e e3

P `e if e1 e2 e3

P `a a :: T P `T T 6 stub (|−→e |)
−−−−→
P `e e

P `e a(−→e)

Figure 5.10: Typing rules for Refined ACL2 expressions.

sponding expression and rule classes.

Instance subtyping is complex. The subtype must contain all the labels from the super-

type. The comparison proceeds by binding all of the declarations from the subtype in the

environment under fresh names. We then compare the member types from the supertype

to the corresponding members of the subtype, renamed to use the aforementioned fresh

identifiers.

Generic subtyping compares input types contravariantly and output types covariantly;

when comparing output types, a fresh name is bound to the formal argument of the su-

pertype, and both output types are renamed to use the fresh name in place of their corre-

sponding formal argument.

A reference type is always a subtype of the type recorded for its address.

Typing rules for expressions, hints, and rule classes appear in figure 5.10. The judgment

P `h h determines hint well-formedness. In a lemma hint, the argument expressions must be

well-formed and the lemma address must have a function or theorem type of the appropriate

arity. The expression in an induction hint must be well-formed.

Rule classes are well-formed when their subexpressions are well-formed, according to the

judgment P `r r.

Expression well-formedness requires variable references to be bound as values, lexical

binders to be unbound in the enclosing environment, and applied functions to be bound at

74 CHAPTER 5. REFINING MODULES AND MACROS

P `r r ≡ r

P `e e1 ≡ e4 P `e e2 ≡ e5 P `e e3 ≡ e6

P `r e1 equals e2 when e3 ≡ e4 equals e5 when e6

P `e e1 ≡ e3 P `e e2 ≡ e4

P `r e1 recurs as e2 ≡ e3 recurs as e4

P `e e ≡ e

P `e i ≡ i P `e n ≡ n

P `e e1 ≡ e3 i3 fresh P; i3 : value `e [i3/i1]e2 ≡ [i3/i2]e4

P `e let i1 = e1 in e2 ≡ let i2 = e3 in e4

P `e e1 ≡ e4 P `e e2 ≡ e5 P `e e3 ≡ e6

P `e if e1 e2 e3 ≡ if e4 e5 e6

P `T ref a1 ↪→ ref a3 P `T ref a2 ↪→ ref a3
−−−−−−−−−→
P `e e1 ≡ e2

P `e a1(−→e1) ≡ a2(−→e2)

Figure 5.11: Equivalence rules for Refined ACL2 expressions.

function types with the appropriate arity. All this is determined by the relation P `e e.

Figure 5.11 describes the judgments for equivalence and well-formedness of hints, rule

classes, and expressions. The judgment P `r r1 ≡ r2 determines rule class equivalence by

comparing respective subexpressions.

Two expressions are equivalent according to the judgment P `e e1 ≡ e2 if they are α-

equivalent; function references are compared using reference type reduction to track aliases.

The typing rules for ACL2 programs are given in figure 5.12. The judgments P1 `p p ::

P2 and P1 `d d :: P2 determine the type of programs, function declarations, and theorem

declarations analogously to their Refined ACL2 counterparts.

ACL2 additionally allows stub definitions, which have the corresponding stub type so

long as their name is unbound.

A set of hidden definitions must be well-typed, but does not contribute to the environ-

ment of the rest of the program.

Assumed definitions, by contrast, contribute directly to the surrounding environment.

Figure 5.13 defines well-formedness of ACL2 hints, rule classes, and expressions, which

proceed analogously to those in Refined ACL2. There are two key differences. First,

as there are no components, identifiers suffice in place of addresses and all types can be

directly looked up in the environment. Second, we define subtyping only for environments

and declarations, not for types. As a result, function and lemma applications directly test

for stub, function, and theorem types in the environment.

5.3. STATIC SEMANTICS 75

P `p p :: P

P `p ε :: ε

P1 `d d :: P2 P1; P2 `p p :: P3

P1 `p d ; p :: P2; P3

P `d d :: P

i 6∈ dom(P)

P `d i = stub (n) :: i : stub (n)

i0, i1,
−→
i2 distinct i0, i1,

−→
i2 6∈ dom(P1)

P2 = P1; i1 : stub (|−→i2 |);
−−−−−→
i2 : value P2 `e e1 P2 `e e2

−−−−−→
P2 `h h

P1 `d i0 = fun i1(
−→
i2) e1 e2

−→
h :: i0 : fun i1(

−→
i2) e1 e2

i0,
−→
i1 distinct i0,

−→
i1 6∈ dom(P1)

P2 = P1;
−−−−−→
i1 : value P2 `e e

−−−−−→
P2 `r r

−−−−−→
P2 `h h

P1 `d i0 = thm (
−→
i1) e

−→
r
−→
h :: i0 : fun

−→
i1 (e)

−→
r

P1 `p p :: P2

P1 `d hidden {p} :: ε

P1 `p p :: P2

P1 `d assume {p} :: P2

Figure 5.12: Typing rules for ACL2 programs and definitions.

Subtyping in ACL2 proceeds in terms of environments and declarations, and is used

in determining valid functional instantiations; see figure 5.14. The judgment P1 `P P2 6
−→
i @ P3 states that in environment P1, P2 is a valid functional instantiation for P3, using
−→
i as the instantiations for the names in P3. The comparison proceeds by determining

whether the union of P1 and P2 entails each declaration in P3, renamed to the instantiated

identifiers.

Declaration entailment is written P |=D D . Any declaration is entailed by an environ-

ment if the environment maps the same name to an alpha-equivalent type. As we disallow

shadowing, alpha-equivalence is defined straightforwardly. A stub declaration is also en-

tailed if the environment contains a corresponding function with the same arity.

Figure 5.15 gives a few relevant rules for proof entailment in ACL2; we only formalize

those aspects of ACL2’s logic that are relevant to the soundness of Refined ACL2. The

judgment P |=p p means that environment P represents a logical theory that entails the

proof obligations of p .

Proving a set of definitions proceeds one definition at a time, adding the type of each to

the environment in turn. Furthermore, if one environment entails a proof, any functional

76 CHAPTER 5. REFINING MODULES AND MACROS

P `h h

i : stub (|−→e |) ∈ P
−−−−→
P `e e

P `h lemma i(
−→
e)

i0 : fun i1(
−→
i2) e1 e2 ∈ P |−→i2 | = |

−→
e0 |

−−−−−→
P `e e0

P `h lemma i0(
−→
e0)

i0 : thm (
−→
i1) e1

−→r ∈ P |−→i1 | = |
−→
e0 |

−−−−−→
P `e e0

P `h lemma i0(
−→
e0)

P `e e

P `h induct e

P `r r

P `e e1 P `e e2 P `e e3

P `r e1 equals e2 when e3

P `e e1 P `e e2

P `r e1 recurs as e2

P `e e

i : value ∈ P

P `e i P `e n

P `e e1 P `e e2 P `e e3

P `e if e1 e2 e3

P `e e1 i 6∈ dom(P) P ; i : value `e e2

P `e let i = e1 in e2

i : stub (|−→e |) ∈ P
−−−−→
P `e e

P `e i(
−→
e)

i0 : fun i1(
−→
i2) e1 e2 ∈ P |−→i2 | = |

−→
e0 |

−−−−−→
P `e e0

P `e i0(
−→
e0)

Figure 5.13: Typing rules for ACL2 hints, rule classes, and expressions.

instantiation of a portion of that environment entails the same proof renamed according to

the instantiation.

The judgment P |=d d describes when a definition is provable from a given environment.

We do not formalize provability for stub, function, and theorem definitions; our design is not

dependent on ACL2’s rules for atomic definitions. Assumed definitions are always provable;

hidden definitions are provable whenever their content is provable.

To demonstrate the typechecking process, we examine the elaborated program from

figures 5.3 and 5.4. To typecheck the program, we must assign a type to each definition.

We assume an initial environment with built-in functions like integer? and boolean?, and an

extended grammar that includes boolean constants #true and #false.

The type component TYPE can be used as its own type so long as it is well-formed,

meaning its constituent declarations must be well-formed. Since the instance type’s labels

and names are all unique and the function and variable references in is?/boolean?1 are all

bound, the type is well-formed. The resulting declaration for TYPE follows:

5.3. STATIC SEMANTICS 77

P `P P 6 P @
−→
i

−−−−−−−−−−−−−−−−→
P1; P2 |=D i1 : [

−−→
i1/i2]T

P1 `P P2 6
−−−→
i2 : T @

−→
i1

P |=D D

i : T 2 ∈ P T 1
α
= T 2

P |=D i : T 1

i0 : fun i1(
−→
i2) e1 e2 ∈ P

P |=D i0 : stub (|−→i2 |)

Figure 5.14: Subtyping rules for ACL2.

P |=p p

P |=p ε

P1 |=d d P1 `d d :: P2 P1; P2 |=p p

P1 |=p d ; p

P1;
−−−→
i1 : T |=p p P1 `P P2 6

−−−→
i1 : T @

−→
i2

P1; P2 |=p [
−−→
i2/i1]p

P |=d d

P |=p assume {p}
P |=p p

P |=p hidden {p}

Figure 5.15: Selected proof rules for ACL2.

TYPE :
type

inst
{ is? . is?1 : stub (1);

is?/boolean? . is?/boolean?1 :
thm (x1)

boolean?(is?1(x1))
boolean?(is?1(x1)) equals #true when #true }

We address the same considerations for LISTOF. Once again, the instance type’s labels

and names are unique and unbound. The reference to TYPE is legal, since it has been type-

checked; stub declarations are always well-formed; and the function and variable references

in filter/member are all valid. The result is:

78 CHAPTER 5. REFINING MODULES AND MACROS

LISTOF :
type

inst
{ Elem . Elem1 : TYPE;

filter . filter1 : stub (1);
filter/member . filter/member1 :

thm (x2, xs1)
implies(member(x2, filter1(xs1)),Elem1 � is?(x2))
Elem1 � is?(x2) equals #true when #true }

In order to typecheck Listof, we must check the body of the generic in an environment

containing a declaration for E:

E : TYPE

The body of Listof is an instance sealed at a specified type. Typechecking begins by

assigning a type to the instance term, going through its definitions one by one. The first

definition in the instance is an alias for E. When referring to E, we refine its type to identify

its nominal elements. Thus Elem2 is declared at the following type:

Elem2 : TYPE where ε = E

Next, the typechecking process encounters filter2, defined as a function. We ensure

that its bound identifiers are unique and that its body and measure are well-formed. The

declaration for filter2 assigns it a function type, dropping the empty sequence of hints from

the function term:

filter2 :
fun filter3(xs2)

if cons?(xs2)
let x3 = first(xs2)
in let xs3 = filter3(rest(xs2))

in if Elem2 � is?(x3) cons(x3, xs3) xs3
void()

0

Typechecking for filter/member2 proceeds similarly; its constituent parts are well-formed

and it is assigned a theorem type:

filter/member2 :
thm (x4, xs4)

implies(member(x4, filter1(xs4)),Elem2 � is?(x4))
Elem2 � is?(x4) equals #true when #true

We arrive at the following type for the instance term in Listof, reducing the type of

Elem2 to show the types of its members:

5.3. STATIC SEMANTICS 79

inst
{ Elem . Elem2 :

inst
{ is? . is?1 : ref E � is?;

is?/boolean? . is?/boolean?1 : ref E � is?/boolean? };
filter . filter2 :

fun filter3(xs2)
if cons?(xs2)

let x3 = first(xs2)
in let xs3 = filter3(rest(xs2))

in if Elem2 � is?(x3) cons(x3, xs3) xs3
void()

0;
filter/member . filter/member2 :

thm (x4, xs4)
implies(member(x4, filter1(xs4)),Elem2 � is?(x4))
Elem2 � is?(x4) equals #true when #true }

To finish typechecking the sealing term, we must determine whether its explicit type

is well-formed and whether its term has a subtype of the explicit type. The reference to

LISTOF is valid as a type; the refinement equating the member Elem to the reference E is

valid because the type of E is a subtype of the member Elem of LISTOF. We arrive at the

following reduced type at which to seal the body of Listof:

inst
{ Elem . Elem1 :

inst
{ is? . is?1 : ref E � is?;

is?/boolean? . is?/boolean?1 : ref E � is?/boolean? };
filter . filter1 : stub (1);
filter/member . filter/member1 :

thm (x2, xs1)
implies(member(x2, filter1(xs1)),Elem1 � is?(x2))
Elem1 � is?(x2) equals #true when #true }

We must compare the two previous types to establish a subtype relationship. To do

this, we bind the contents of the instance term’s type in an extended environment. Using

that environment, we compare the type of each corresponding pair of members. The Elem

members both have identical types. The instance’s function type for filter is sealed at a

stub type of the same arity. The theorem types for filter/member are α-equivalent to each

other. The generic Listof can therefore be assigned a generic type:

Listof : gen (E : TYPE) LISTOF where Elem = E

The sealing term for Integer must be checked in the same way as the body of Listof. We

arrive at the following type for the nested instance term.

80 CHAPTER 5. REFINING MODULES AND MACROS

inst
{ is? . is?2 : ref integer?;

is?/boolean? . is?/boolean?2 :
thm (x5)

boolean?(is?2(x5))
boolean?(is?2(x5)) equals #true when #true }

When reduced, the type at which Integer is sealed appears as follows.

inst
{ is? . is?1 : ref integer?;

is?/boolean? . is?/boolean?1 :
thm (x1)

boolean?(is?1(x1))
boolean?(is?1(x1)) equals #true when #true }

Both declarations for is? use the same type, and again the theorem types for the final

declarations are α-equivalent. We can thus add Integer to the top-level environment.

Integer : TYPE where is? = integer?

The final definition applies Listof to Integer. The typechecking process ensures that In-

teger’s type is a subtype of Listof’s expected input type. We arrive finally at a type for

Listof-Integer.

Listof-Integer : LISTOF where Elem = Integer

5.4 Verification Semantics

Refined ACL2 verification proceeds much like verification in Modular ACL2. We convert

each program to an ACL2 program that expresses the necessary proof obligations. Unlike

in Modular ACL2, we need produce only one program for verification. We use encapsulated

ACL2 definitions to logically separate parts of the program from each other.

We formalize a core subset of ACL2 in order to describe proof obligations for the Refined

ACL2 language. For the most part, our ACL2 grammar is the same as Refined ACL2

without components, their types, or member references.

The grammar for ACL2 used in proof obligations appears in figure 5.16. ACL2 programs,

p , are sequences of definitions. A definition, d , can assign a name to a term as in Refined

ACL2. It can also specify a set of hidden, to-be-verified definitions whose names and logical

consequences are not available to the rest of the program. Finally, a definition may describe

a set of assumed definitions that are not mechanically verified, but instead trusted and

added directly to the current logical theory.

5.4. VERIFICATION SEMANTICS 81

p :=
−→
d

d := i = t
| hidden {p}
| assume {p}

t := stub (n)

| fun i(
−→
i) e e

−→
h

| thm (
−→
i) e

−→
r
−→
h

P :=
−→
D

D := i : T
T := stub (n)

| fun i(
−→
i) e e

| thm (
−→
i) e

−→
r

e := i
| n
| if e e e
| let i = e in e

| i(
−→
e)

r := e equals e when e
| e recurs as e

h := lemma i(
−→
e)

| induct e

Figure 5.16: Grammar of ACL2.

Σ :=
−−−→
i 7→ σ

σ := none
| self
| alias i

| inst {
−−→
` . i}

Figure 5.17: Verification environment for Refined ACL2.

Terms in ACL2, t , can be functions with or without bodies, or theorems. Types for

ACL2 programs mirror terms, except that there are no special types for hidden and assumed

definitions. Expressions, rule classes, and hints in ACL2 are exactly the same as in Refined

ACL2.

Figure 5.17 introduces shapes and shape mappings. A shape describes the ACL2 name

or names corresponding to a particular term in Refined ACL2. Shapes can be none for

terms that are erased or hidden in the program’s verification obligation. The shape self

describes function and theorem terms whose name is preserved. A reference to a previously

defined term named i is assigned the shape alias i. Finally, instance shapes map labels to

ACL2 names. A shape mapping maps names to shapes.

Figure 5.18 describes the rules that produce verification obligations for programs, defini-

tions, and terms. The judgment P,Σ1 `p p Σ2, p constructs a verification obligation for

the program p in the context of P and Σ1. This translation generates a new shape mapping,

Σ2 and proof obligations, p . The empty program produces an empty shape mapping and an

empty proof obligation. Definitions are verified one at a time, with their types and shape

mappings added to the context of the rest of the program.

Individual definitions in Refined ACL2 can produce multiple ACL2 definitions in their

proof obligations. The judgment P,Σ1 `d d Σ2, p reflects this, as it produces a shape

mapping and ACL2 program fragment for every Refined ACL2 definition in the context of

82 CHAPTER 5. REFINING MODULES AND MACROS

P,Σ `p p Σ, p

P,Σ `p ε ε, ε

P,Σ0 `d d Σ1, p1 P `d d :: D
(P; D), (Σ0; Σ1) `p p Σ2, p2

P,Σ0 `p (d; p) (Σ1; Σ2), (p1; p2)

P,Σ `d d Σ, p

(Σ; i1 7→ self) `e e1 e1 (Σ; i1 7→ self) `e e2 e2

−−−−−−−−−−−−−−−−−→
(Σ; i1 7→ self) `h h h

P,Σ `d i0 = fun i1(
−→
i2) e1 e2

−→
h i0 7→ self, i0 = fun i1(

−→
i2) e1 e2

−→
h

Σ `e e e
−−−−−−−−→
Σ `r r r

−−−−−−−−→
Σ `h h h

P,Σ `d i0 = thm (
−→
i1) e−→r

−→
h i0 7→ self, i0 = thm (

−→
i1) e

−→
r
−→
h

P,Σ1 `t t Σ2, σ, p

P,Σ1 `d i = t (Σ2; i 7→ σ), p

P,Σ `t t Σ, σ, p

Σ `a a ↪→ i

P,Σ `t a ε, alias i, ε

−→
i2 fresh P,Σ1 `p

−−−−−−−→
i2 = [

−−→
i2/i1]t Σ2, p

P,Σ1 `t inst{
−−−−−−→
` . i1 = t} Σ2, inst {

−−−→
` . i2}, p

P,Σ0 `T T Σ1, σ1, p1 (P; i : T), (Σ0; Σ1; i 7→ σ1) `t t Σ2, σ2, p2

P,Σ0 `t gen (i : T) t ε, none, hidden {assume {p1}; p2}

P,Σ0 `t t Σ1, σ1, p1 P `t t(a) :: T P,Σ0 `T T Σ2, σ2, p2

P,Σ0 `t t(a) (Σ1; Σ2), σ2, (p1; assume {p2})

P,Σ0 `t t Σ1, σ1, p1 P,Σ0 `T T Σ2, σ2, p2

P,Σ0 `t seal t : T Σ2, σ2, (hidden {p1}; assume {p2}) P,Σ `t type T ε, none, ε

Figure 5.18: Proof obligations for programs, definitions, and terms.

an environment and initial shape mapping.

Function and theorem definitions, however, do each correspond to a single ACL2 defi-

nition. Their constituent expressions, rule classes, and hints are each translated to ACL2

using the shape mapping, extended in the case of functions to include the function’s local

name. These translated components are used to construct an ACL2 definition; function

and theorem names are always mapped to the shape self.

Other definitions are translated based on the verification obligation for their term. The

resulting shape mappings and ACL2 definitions are produced for the whole definition. The

shape mapping is extended to map the definition’s name to the shape produced for its term.

5.4. VERIFICATION SEMANTICS 83

The ACL2 form of terms is determined by the judgment P,Σ1 `t t Σ2, σ, p . As

with programs and definitions, terms are translated in the context of an environment and

a shape mapping. The verification process for a term produces its own shape in addition

to its ACL2 proof obligations and any additional shape mappings.

Addresses incur no proof obligations, as the term to which they refer must already have

its own proof obligation. An address likewise introduces no new shape mappings; its own

shape is an alias to the ACL2 name corresponding to the address.

We produce the verification obligation for an instance term by first assigning fresh names

to each definition in the instance. By translating these renamed definitions, we obtain new

shape mappings and proof obligations. The instance’s proof obligation consists of these

mappings and obligations plus an instance shape mapping labels to their new names.

The proof obligation for a generic consists of two key parts: an assumption of the logical

consequences of the input type and the obligations of the body term. The body is translated

using the environment and shape mapping produced by translating the input type. The

result for the whole generic term introduces no shape mappings and has a shape of none, as

the contents of a generic are not directly accessible. The generic’s verification obligation is

hidden from the rest of the ACL2 program, as its logical conclusions are not valid without a

witness for its input. The consequences of the input are assumed, and from these the body

of the generic can be verified.

Applying a generic introduces no additional proof obligations beyond those necessary

for the generic itself. The consequences of the resulting instance type can therefore safely

be assumed and used by the rest of the program.

When a term is sealed at a type, we hide the term’s verification from the rest of the

program. This essentially abstracts the details of the term’s implementation out of subse-

quent proofs. The rest of the proof obligation assumes the consequences of the sealed type,

giving a potentially simpler theory from which to reason.

Type components have neither proof obligations nor shape mappings of their own, and

are assigned the shape none.

The rules for generating the consequences of environments, declarations, and types are

given in figure 5.19. These rules closely mirror those for programs, definitions, and terms

except that all hidden verification obligations are omitted.

Environments are translated to ACL2 one declaration at a time, accumulating bindings

in the environment and shape mapping for each one. The empty environment produces

an empty shape mapping and an empty proof obligation. This process is defined by the

judgment P1,Σ1 `P P2 Σ2, p .

We generate the logical consequences of each individual declaration via the relation

84 CHAPTER 5. REFINING MODULES AND MACROS

P,Σ `P P Σ, p

P,Σ `P ε ε, ε

P1,Σ0 `D D Σ1, p1 (P1; D), (Σ0; Σ1) `P P2 Σ2, p2

P1,Σ0 `P (D; P2) (Σ1; Σ2), (p1; p2)

P,Σ `D D Σ, p

P,Σ `D i : stub (n) i 7→ self, i : stub (n)

(Σ; i1 7→ self) `e e1 e1 (Σ; i1 7→ self) `e e2 e2

P,Σ `D i0 : fun i1(
−→
i2) e1 e2 i0 7→ self, i0 : fun i1(

−→
i2) e1 e2

Σ `e e e
−−−−−−−−→
Σ `r r r

P,Σ `d i0 : thm (
−→
i1) e−→r i0 7→ self, i0 : thm (

−→
i1) e

−→
r

P,Σ1 `T T Σ2, σ, p

P,Σ1 `D i : T (Σ2; i 7→ σ), p

P,Σ `T T Σ, σ, p

P `T T1 ↪→ T2 P,Σ1 `T T2 Σ2, σ, p

P,Σ1 `T T1 Σ2, σ, p

Σ `a a ↪→ i

P,Σ `T ref a ε, alias i, ε

−→
i2 fresh P,Σ1 `P

−−−−−−−→
i2 : [
−−→
i2/i1]T Σ2, p

P,Σ1 `T inst{
−−−−−→
` . i1 : T} Σ2, inst {

−−−→
` . i2}, p P,Σ0 `T gen (i : T1) T2 ε, none, ε

P,Σ `T type T ε, none, ε

Figure 5.19: Proof obligations for environments, declarations, and types.

P,Σ1 `D D Σ2, p . Stubs, functions, and theorems are all transformed straightforwardly,

merely resolving references in their expressions and rule classes and assigning their names

a shape of self. Other declarations are translated based on their type.

Translating types to ACL2 relies on the judgment P,Σ1 `T T Σ2, σ, p . We re-

duce types during this process, as address references and type refinements have no direct

consequences of their own.

Reference types correspond to aliases. They have no logical consequences; they are

merely mapped to their source identifier.

Instance types are given proof consequences based on their consituent declarations,

which are assigned fresh names to avoid any possible name clashes in the ACL2 environment.

The translation of these declarations forms the result for the instance type, with the addition

of an instance shape mapping members to their freshly assigned names.

The types of generics and type components have no logical consequences.

Translation from Refined ACL2 hints, rule classes, and expressions to their ACL2 coun-

5.4. VERIFICATION SEMANTICS 85

Σ `h h h

Σ `a a ↪→ i
−−−−−−−−→
Σ `e e e

Σ `h lemma a(−→e) lemma i(
−→
e)

Σ `e e e

Σ `h induct e induct e

Σ `r r r

Σ `e e1 e1 Σ `e e2 e2 Σ `e e3 e3

P `r e1 equals e2 when e3 e1 equals e2 when e3

Σ `e e1 e1 Σ `e e2 e2

P `r e1 recurs as e2 e1 recurs as e2

Σ `e e e

Σ `e i i Σ `e n n

Σ `e e1 e1 Σ `e e2 e2 Σ `e e3 e3

Σ `e if e1 e2 e3 if e1 e2 e3

Σ `e e1 e1 Σ `e e2 e2

Σ `e let i = e1 in e2 let i = e1 in e2

Σ `a a ↪→ i
−−−−−−−−→
Σ `e e e

Σ `e a(−→e) i(
−→
e)

Σ `a a ↪→ i

i 7→ self ∈ Σ

Σ `a i ↪→ i

i 7→ none ∈ Σ

Σ `a i ↪→ i

i1 7→ alias i2 ∈ Σ Σ `a i2 ↪→ i3

Σ `a i1 ↪→ i3

i1 7→ inst {
−−−→
` . i2}

Σ `a i1 ↪→ i1

Σ `a a ↪→ i0 i0 7→ inst {
−−−→
`2 . i2 ; `1 . i1;

−−−→
`3 . i3} ∈ Σ Σ `a i1 ↪→ i4

Σ `a a � `1 ↪→ i4

Figure 5.20: Proof obligations for hints, rule classes, expressions, and addresses.

terparts proceeds recursively according to the judgments Σ `h h h ; Σ `r r r ; and

Σ `e e e . Applied function and lemma addresses are resolved to ACL2 identifiers;

otherwise the result is the same as the original in all three cases. See figure 5.20 for details.

Addresses resolve to ACL2 identifiers based on their shape. Identifiers mapped to alias

shapes are resolved by following the alias; all other identifiers resolve to themselves. When

resolving a member reference, the base address must resolve to an identifier with an in-

stance shape. The resolution process proceeds by resolving the the identifier listed for the

appropriate label in the instance shape.

The verification obligation for the example program from figures 5.3 and 5.4 is shown

in figures 5.21 and 5.22.

The proof obligation for TYPE and LISTOF is empty; types incur no obligations.

The entire proof obligation for Listof is hidden, as generics only contribute to the outside

environment when applied. Inside the hidden block, the proof begins by assuming the

consequences of E : TYPE. This establishes E.is? as a stub and states that E.is?/boolean?

86 CHAPTER 5. REFINING MODULES AND MACROS

Obligations of Listof:

hidden

{ Consequences of Listof’s formal, E:

assume
{ E.is? = stub (1);

E.is?/boolean? =
thm (x1)

boolean?(E.is?(x1))
boolean?(E.is?(x1)) equals #true when #true
ε };

Obligations of Listof’s body:

hidden
{ filter2 =

fun filter3(xs2)
if cons?(xs2)

let x3 = first(xs2)
in let xs3 = filter3(rest(xs2))
in if E.is?(x3) cons(x3, xs3) xs3
void()

0
ε;

filter/member2 =
thm (x4, xs4)

implies(member(x4, filter1(xs4)),E.is?(x4))
E.is?(x4) equals #true when #true
ε };

Consequences of Listof’s body:

assume
{ Listof.filter : stub (1);

Listof.filter/member =
thm (x2, xs1)

implies(member(x2, filter1(xs1)),E.is?(x2))
E.is?(x2) equals #true when #true
ε } }

Figure 5.21: Proof obligation of example program, part 1.

holds.1

The body of Listof is a sealed term, so the verification of the nested instance term is

hidden. This hidden block holds the contents of the original instance, with references to

E � is? resolved to E.is?.

Outside the hidden block for the sealed term, the obligation for Listof’s body concludes

by assuming the consequences of the sealed type. These assumptions consist of the stub

Listof.filter and the theorem Listof.filter/member.

1We use “dotted” names such as E.is? and E.is?/boolean? for readability. Any fresh name may be used
for functions and theorems in proof obligations.

5.5. EXECUTABLE SEMANTICS 87

Obligations of Integer:

hidden
{ is?/boolean?2 =

thm (x5)
boolean?(integer?(x5))
boolean?(integer?(x5)) equals #true when #true
ε };

Consequences of Integer:

assume
{ Integer.is?/boolean? =

thm (x1)
boolean?(integer?(x1))
boolean?(integer?(x1)) equals #true when #true
ε };

Consequences of Listof-Integer:

assume
{ Listof-Integer.filter : stub (1);

Listof-Integer.filter/member =
thm (x2, xs1)

implies(member(x2, filter1(xs1)), integer?(x2))
integer?(x2) equals #true when #true
ε }

Figure 5.22: Proof obligation of example program, part 2.

p1; i = a; p2 −→ p1; [a/i]p2

p1; i = type T; p2 −→ p1; p2 where i 6∈ fv(p2)
p1; i = seal t : T; p2 −→ p1; i = t; p2

p1; i1 = gen (i2 : T) t; p2 −→ p1; [gen (i2:T) t/i1]p2

p1; i1 = (gen (i2 : T) t)(a); p2−→ p1; i1 = [a/i2]t; p2

p1; i1 = inst{
−−−−−−→
` . i2 = t}; p2 −→ p1;

−−−−−−−→
i3 = [

−−→
i3/i2]t ; [

−−−→
i3/i1�`]p2 where

−→
i3 fresh and i1 6∈ fr(p2)

Figure 5.23: Executable translation for Refined ACL2.

Our next proof obligation is that of Integer. Like the body of Listof, this term is sealed.

Its obligation consists of two parts: a hidden block for the contents of the instance, and an

assumption block for the consequences of its sealed type.

Finally, the proof obligation of Listof-Integer is merely an assumption of its type’s con-

sequences. Since Listof is verified above, there is nothing more to prove. The assumptions

introduce Listof-Integer.filter as a stub and state the property Listof-Integer.filter/member.

88 CHAPTER 5. REFINING MODULES AND MACROS

5.5 Executable Semantics

The executable semantics for Refined ACL2 is generated by the step relation shown in

figure 5.23. The judgment p1 −→ p2 means that program p1 takes a step resulting in p2.

Each step eliminates a component construct from the overall program. Ultimately, every

sequence of steps results in a program that is equal to its own verification obligation.2

Alias definitions are eliminated by substituting the target address for all references to

the name of the alias.

Type definitions are simply dropped from the program once no further references to

them remain.

Definitions of sealed terms step to the unsealed version of the term; logical hiding does

not affect the ultimate behavior of the program.

Generics are substituted for their name. Elsewhere we avoid substituting terms for

identifiers, as many positions in the grammar accept only addresses. However, in a well-

typed program, references to generics can only occur in positions where all terms are allowed.

We replace the application of a generic with its body, with the actual argument substi-

tuted for the formal argument.

The definitions inside instances are lifted to the top level under fresh names and all

references to members of the instance are replaced with these names. This step may only

occur when all references to the instance are used to look up a member by its label, as

determined by the fr. . . metafunction. Other uses, such as arguments to generics, must be

eliminated before this step.

Figure 5.24 shows the executable form of the program from figures 5.3 and 5.4. The fol-

lowing steps construct this program. Some steps may be transposed; the result is equivalent

up to choice of fresh names. We first substitute the definition of Listof into its application

in Listof-Integer. Next, we resolve the application by substitution. Subsequently, we unseal

the resulting instance. Once it is unsealed, we lift the instance’s definitions to the top level.

By substituting integer? for its alias, we eliminate another definition. As with Listof-Integer,

we unseal and lift the contents of Integer and resolve its alias definition. Finally, we drop

the definitions of TYPE and LISTOF, as no references to them remain.

5.6 Soundness of Refined ACL2

We verify Refined ACL2 programs using their proof obligations, but we execute their fully-

linked forms. In order to ensure that the process of verification tells us something meaningful

2We do not prove this property; our soundness proof does not rely on it.

5.6. SOUNDNESS OF REFINED ACL2 89

Integer.is?/boolean? =
thm (x5)

boolean?(is?2(x5))
boolean?(is?2(x5)) equals #true when #true
ε;

Listof-Integer.filter =
fun filter3(xs2)

if cons?(xs2)
let x3 = first(xs2)
in let xs3 = filter3(rest(xs2))

in if integer?(x3) cons(x3, xs3) xs3
void()

0
ε;

Listof-Integer.filter/member =
thm (x4, xs4)

implies(member(x4, Listof-Integer.filter(xs4)), integer?(x4))
integer?(x4) equals #true when #true
ε

Figure 5.24: Executable form of example program.

about the program we execute, we must prove a soundness theorem. Our theorem states

that when we verify the proof obligation of a well-typed program, then the executable form

of the same program must be logically valid as well. This holds regardless of whether the

verification process—specifically, the proof heuristics in the ACL2 theorem prover—would

be able to verify the program directly in its fully-linked form.

In order to reason about the relationship between ACL2 types and Refined ACL2 types,

we introduce a “type-flattening” relation; see figure 5.25. Given a shape mapping, we can

translate a Refined ACL2 environment to an ACL2 environment by lifting the types of

instance members to top-level declarations. The shape mapping provides names for these

lifted declarations.

Theorem 5.6.1 (Soundness). If (ε `p p1 :: P1); (ε, ε `p p1 Σ1, p1); (p1 −→ p2);

(ε, ε `p p2 Σ2, p2); and (ε |=p p1); then (ε |=p p2).

Proof. The proof of the soundness theorem proceeds by cases on the derivation of p1 −→ p2.

In each case, p1 is divided up into pa; d; pb.

• Case d := i = a. In this case, p1 is equal to p2 by induction on the derivation of the

verification obligation of [a/i]pb.

• Case d := i = type T where i does not appear free in pb. In this case, d is dropped.

As in the case above, p1 is the same as p2. Once again, the proof proceeds based on

90 CHAPTER 5. REFINING MODULES AND MACROS

P,Σ ` P ∼= P

P,Σ ` ε ∼= ε

P1,Σ ` D ∼= P1 P1; D,Σ ` P2
∼= P2

P1,Σ ` D; P2
∼= P1; P2

P,Σ ` D ∼= P

i0 7→ self ∈ Σ

P,Σ ` stub (n) ∼= stub (n)

i0 7→ self ∈ Σ Σ `e e1 e1 Σ `e e2 e2

P,Σ ` i0 : fun i1(
−→
i2) e1 e2 ∼= i0 : fun i1(

−→
i2) e1 e2

i0 7→ self ∈ Σ Σ `e e e
−−−−−−−−→
Σ `r r r

P,Σ ` i0 : thm (
−→
i1) e−→r ∼= i0 : thm (

−→
i1) e

−→
r

i 7→ σ ∈ Σ P,Σ ` T @σ ∼= P

P,Σ ` i : T ∼= P

P,Σ ` T @σ ∼= P

P,Σ ` T @ none ∼= ε P,Σ ` T @ alias i ∼= ε

P `T T1 ↪→ inst{
−−−−−−→
` . i2 : T2} P,Σ `

−−−−−−−−→
i1 : [
−−→
i1/i2]T2

∼= P

P,Σ ` T1 @ inst {
−−−→
` . i1} ∼= P

Figure 5.25: Type flattening relation.

the derivation of pb’s verification obligation.

• Case d = i0 = gen (i1 : T) t. In this case, the (hidden) verification obligation of the

generic is duplicated once for every reference into which it is substituted, each time

with different fresh names. These duplicate proofs naturally hold.

• Case d = i = inst{
−−−→
` . d1}. The resulting verification obligation p2 is the same as p1;

lifting the instance’s contents to the top level is also performed by the verification

translation. The proof proceeds by induction on the derivation of p2.

• Case d := i = seal t : T. We know that p2 is equal to pa; i = t; pb. From the derivations

of p1 and p2, we know the following:

ε, ε `p pa Σa, pa ε `p pa :: Pa

Pa `t t :: T0 Pa `T T0 6 T

Pa,Σa `t t Σz, σz, pz Pa,Σa `T T Σx, σx, px

Pa; i : T `p pb :: Pb Pa; i : T,Σa; Σx; i 7→ σx `p pb Σb, pb

Pa; i : T0 `p pb :: Pc Pa; i : T0,Σa; Σz; i 7→ σz `p pb Σc, pc

Lemma 5.6.7 states that a program’s verification obligation is well-typed using the

flattened version of the source program’s environment. Using this lemma, we can

5.6. SOUNDNESS OF REFINED ACL2 91

derive types for p1 and p2. We assign names to these types:

ε `p pa :: Pa

Pa `p px :: Px

Pa; Px `p pb :: Pb

Pa `p pz :: Pz

Pa; Pz `p pc :: Pc

According to the derivation of ε |=p p1, we know that:

ε |=p pa

Pa |=p pz

Pa; Px |=p pb

We must show that Pa; Pz |=p pc. We do this by introducing an intermediate step. In

between the original proof obligation based on T and the unsealed obligation based

on t, we introduce one based on T0.

– Pa,Σa `T T0 Σw, σw, pw, which holds because the verification obligation rela-

tion is total on well-formed types. The proof of this proceeds by straightforward

induction.

– Pa `p pw :: Pw, by lemma 5.6.7.

– Pa; i = T0,Σa; Σw; i 7→ σw `p pb Σd, pd, which holds because the verification

obligation translation is also total on well-typed programs. Once again, this is

proved by induction on the type derivation for pb.

– Pa; Pw |=p pd. By lemma 5.6.7, Px and Pw are both derived from T0, differing

only based on Σx versus Σz. This amounts to a substitution of identifiers, by

straightforward inspection of the rules for type flattening. Furthermore, pb and

pd differ only by this renaming. Thus we can conclude that Pa; Pw |=p pd by a

trivial application of functional instantiation using the renaming induced by Σx

versus Σz.

Finally, we must show that Pa; Pz |=p pc, which we do once again by functional

instantiation. Lemma 5.6.11 tells us that because Pa `T T0 6 T, Pz is also a subtype

of Pw based on the renaming induced by Σz versus Σw. Furthermore, pc differs from

pd by the same renaming. Therefore functional instantiation can apply.

92 CHAPTER 5. REFINING MODULES AND MACROS

• Case d = i0 = gen (i1 : T1) t(a). The type derivation establishes the following facts:

ε `p pa :: Pa

Pa; i1 : T1 `t t :: T2

Pa `t a :: T3

Pa `T T3 6 T1

Pa; i0 : [a/i1]T2 `p pb :: Pb

By lemma 5.6.2, we can derive Pa `t [a/i1]t :: [a/i1]T2.

From the derivations of p1 and p2, we know the following:

ε, ε `p pa Σa, pa

Pa,Σa `T T1 Σx, σx, px

Pa; i1 : Ta,Σa; Σx; i1 7→ σx `t t Σy, py,

Pa,Σa `T [a/i1]T2 Σz, σz, pz

Pa; i0 : [a/i1]T2,Σa; Σz; i0 7→ σz `p pb Σb, pb

Pa,Σa `t [a/i1]t Σw, σw, pw

Pa; i0 : [a/i1]T2,Σa; Σw; i0 7→ σw `p pb Σc, pc

Once again, lemma 5.6.7 allows us to assign types to our verification obligations:

ε `p pa :: Pa

Pa `p px :: Px

Pa; Px `p py :: Py

Pa `p pz :: Pz

Pa; Pz `p pb :: Pb

Pa `p pw :: Pw

Pa; Pw `p pc :: Pc

By the derivation of ε |=p p1, we know:

ε |=p pa

Pa; Px |=p py

Pa; Pz |=p pb

From this we must show that Pa |=p pw and Pa; Pw |=p pc. We show the former

by functional instantiation based on the proof of py and the renaming induced by

substituting a for i1 in Σa; Σx; i1 7→ σx. We show the latter by functional instantiation

as well, based on the renaming mapping Pz to Pw and pb to pc.

5.6. SOUNDNESS OF REFINED ACL2 93

Lemma 5.6.2 (Substitution and Term Types). If P1 `t a1 :: T1, P1 `T T1 6 T2, and

P1; i : T2; P2 `t t :: T3, then P1; [a1/i]P2 `t [a1/i]t :: T4 such that P1; [a1/i]P2 `T T4 6

[a1/i]T3.

Lemma 5.6.3 (Substitution and Type Well-Formedness). If P1 `t a1 :: T1, P1 `T T1 6

T2, and P1; i : T2; P2 `T T3, then P1; [a1/i]P2 `T [a1/i]T3.

Proof. The proof of lemmas 5.6.2 and 5.6.3 proceeds by mutual induction on the derivation

of the type of t and the well-formedness of T3. We first consider the cases for the type of t.

• Case t = inst{
−→
` d}. The proof proceeds by sub-induction on the types assigned to

−→
d . Considering the types for definitions adds cases for function and theorem defini-

tions. These cases in turn hold by straightforward induction on the well-formedness

derivation for hints, rule classes, and expressions.

• Case t = gen (i0 : T0) t0. The proof relies on the inductive hypothesis for the type of

t0 in the context where i0 has the type [a1/i]T0.

• Case t = t1(a2). Here we must know that subtype relationships are preserved by

substitution, which follows from lemma 5.6.6. We conclude by using the inductive

hypothesis for t1.

• Case t = seal t0 : T0. This case exploits the inductive hypotheses for the type of t0

and for the well-formedness of T0, as well as lemma 5.6.6 for subtype relationships.

• Case t = type T0. Once again, this case relies on the inductive hypothesis for the

well-formedness of T0.

• Case t = a2. This case relies on lemmas 5.6.5 and 5.6.4 stating that address types

and type reduction, respectively, are preserved under substitution.

We next consider the cases for the well-formedness of T3.

• Case T3 = a2. In this case, we use lemmas 5.6.5 and 5.6.4 and the fact that encapsu-

lated types are invariant under subtyping.

• Case T3 = T4 where
−→
` = a2. The inductive hypothesis tells us that T4 is well-formed;

we rely on lemmas 5.6.5 and 5.6.6 to show that a2 still has an appropriate type.

• The remaining cases are either trivial or reduce directly to the inductive hypothesis.

94 CHAPTER 5. REFINING MODULES AND MACROS

Lemma 5.6.4 (Substitution and Type Reduction). If P1 `t a1 :: T1, P1 `T T1 6 T2, and

P1; i1 : T2; P2 `T T3 ↪→ T4, then P1; [a1/i1]P2 `T [a1/i1]T3 ↪→ [a1/i1]T4.

Lemma 5.6.5 (Substitution and Environment Lookup). If P1 `t a1 :: T1, P1 `T T1 6 T2,

and P1; i1 : T2; P2 `a a2 :: T3, then P1; [a1/i1]P2 `a [a/i]a2 :: T4 such that P1; [a1/i1]P2 `T
T4 where ε = [a1/i1]a2 6 [a1/i1]T3.

Proof. The proof of lemmas 5.6.4 and 5.6.5 proceeds by mutual induction on the derivation

of type reduction for T3 and on the derivation of type lookup for a2. We start by examining

the cases for type reduction.

• Case T3 = a2. In this case, a2 has type T5 which reduces to type T6. Thus T4 =

T6. By lemma 5.6.5, after substitution a2 reduces to a subtype of T5, also post-

substitution. We can inspect the rules for subtypes to see that type T6 is only a

subtype of itself. Therefore [a1/i1]T4 is equal to [a1/i1]T6, and the case reduces to the

inductive hypothesis.

• Case T3 = inst{
−−−→
` .D}. This proof proceeds by induction on the reduction of

−→
D and

by the inductive hypothesis for each contained type.

• Case T3 = gen (i2 : T5) T6. This proof proceeds by two applications of the inductive

hypothesis.

• Case T3 = T5 where
−→
`2 = a2. This proof proceeds by further cases on the form of T5;

each case is straightforward.

• Case T3 = ref a2. This case relies on lemma 5.6.5.

• Case T3 = type T5, holds by the inductive hypothesis.

• Transitive case: this case holds by two applications of the inductive hypothesis.

• Reflexive case: holds trivially.

Next, we examine the cases for looking up a2 in the environment.

• Case a2 = i2.

If i2 = i1, then [a1/i1]a2 = a1. Thus T1 = T4 where ε = a1, T2 = T5, and the conclusion

naturally holds.

If i2 ∈ dom(P1), then substitution has no effect on a2 or its type as i1 is not in scope

for them.

5.6. SOUNDNESS OF REFINED ACL2 95

If i2 ∈ dom(P2), then [a1/i1]a2 = i2 and T4 = [a1/i1]T3. This case also holds, as

T3 where ε = i2 is always a subtype of T3. This is proved by straightforward induction

on the derivation of type reduction for refined types.

• Case a2 = a3 � `1.

In this case, P1; i1 : T2; P2 `a a3 :: T5 and P1; i1 : T2; P2 `T T5 ↪→ inst{
−−−−−−−→
`2 . i2 : T6

`1 . i3 : T7

−−−−−−−→
`3 . i4 : T8}. We thus know that T3 = [

−−−−→
a3�`2/i2]T7. By the inductive hypothesis,

we know that P1; [a1/i1]P2 `a [a/i]a3 :: T9 such that P1; [a1/i1]P2 `T T9 where ε =

[a1/i1]a3 6 [a1/i1]T5. The derivations of term reduction and substitution tell us that

T9 must therefore reduce to some instance type which, when refined to [a1/i1]a3, is a

subtype of the instance type which T5 reduces to. By the derivation of subtypes for

instance types, we can determine that the respective labels’ types must therefore also

be subtypes. The extra type bindings for instance members are irrelevant, as reduction

for refined instance types removes all references to them. This case therefore holds.

Lemma 5.6.6 (Substitution and Subtyping). If P1 `t a1 :: T1, P1 `T T1 6 T2, and

P1; i1 : T2; P2 `T T3 6 T4, then P1; [a1/i1]P2 `T [a1/i1]T3 6 [a1/i1]T4.

Proof. This proof is by induction on the derivation of subtyping of T3 and T4.

• Reduction case: holds by lemma 5.6.4.

• Reflexive case: holds trivially.

• Case T3 = fun i2(
−→
i3) e1 e2 and T4 = stub (|−→i3 |). This case is trivial.

• Case T3 = fun i2(
−→
i3) e1 e2 and T4 = fun i4(

−→
i5) e3 e4. This case holds based on the

preservation of expression equivalence under substitution. The proof proceeds by

sub-induction on the derivation of expression equivalence.

• Case T3 = thm (
−→
i2) e1

−→r1 and T4 = thm (
−→
i3) e2

−→r2 . This case holds based on the

preservation of expression and rule class equivalence. Again, the proof proceeds by

cases on rule classes and the prior proof that expression equivalence is preserved.

• Case T3 = inst{
−−−→
` .D}. This case proceeds by induction on

−→
D and the inductive

hypothesis for each contained type.

• Case T3 = gen (i2 : T5) T6. This case uses the inductive hypothesis twice.

96 CHAPTER 5. REFINING MODULES AND MACROS

• Case T3 = ref a2. The proof uses lemma 5.6.5 and the fact that for any well-formed

type of the form ref a, any well-formed type of the form T where ε = a must reduce to

ref a.

• Transitive case: holds by the inductive hypothesis twice.

Lemma 5.6.7 (Types for Verification Obligations of Programs). If ε,Σ1 ` P1
∼= P1,

P1 `p p :: P2, P1,Σ1 `p p Σ2, p, and P1,Σ1; Σ2 ` P2
∼= P2, then P1 `p p :: P2.

Lemma 5.6.8 (Types for Verification Obligations of Terms). If ε,Σ1 ` P1
∼= P1, P1 `t

t1 :: T1, P1,Σ1 `t t1 Σ2, σ1, p, and P1,Σ1; Σ2 ` T1 @σ1 ∼= P2, then P1 `p p :: P2.

Proof. The proof of lemmas 5.6.7 and 5.6.8 proceeds by mutual induction on the two deriva-

tions of p . We first examine the different kinds of definitions.

• Function definition case. This case proceeds by sub-induction on the translation of

expressions.

• Theorem definition case. This case relies on the previous proof about expressions and

by cases on rule classes.

• The final case proceeds by the inductive hypothesis for terms.

Next, we proceed by cases on terms.

• Reference case: trivial.

• Instance case: proceeds by the inductive hypothesis for programs.

• Generic case: proceeds by the inductive hypothesis for input and output type.

• Instantiation case: proceeds using the inductive hypothesis for the applied generic,

and by lemma 5.6.10 for the formal’s type.

• Sealing case: as above case, proceeds by the inductive hypothesis for its subterm and

lemma 5.6.10 for the sealed type.

• Type case: trivial.

Lemma 5.6.9 (Types for Verification Consequences of Environments). If ε,Σ1 ` P1
∼= P1,

P1 `P P2, P1,Σ1 `P P2 Σ2, p, and P1,Σ1; Σ2 ` P2
∼= P2, then P1 `p p :: P2.

5.7. IMPLEMENTATION DETAILS 97

Lemma 5.6.10 (Types for Verification Consequences of Types). If ε,Σ1 ` P1
∼= P1,

P1 `T T1, P1,Σ1 `T T1 Σ2, σ1, p, and P1,Σ1; Σ2 ` T1 @σ1 ∼= P2, then P1 `p p :: P2.

Proof. These two lemmas proceed symmetrically with lemmas 5.6.7 and 5.6.8, without

instantiation or sealing cases but with a type reduction case that proceeds via the inductive

hypothesis.

Lemma 5.6.11 (Verification Obligations and Subtyping). If ε,Σ0 ` P0
∼= P0, P0 `T T1 6

T2, P0,Σ0 `T T1 Σ1, σ1, p1, P0,Σ0 `T T2 Σ2, σ2, p2, P0,Σ0; Σ1 ` T1 @σ1 ∼= P1, and

P0,Σ0; Σ2 ` T2 @σ2 ∼= P2, then Σ1 and σ1 versus Σ2 and σ2 induce a mapping from the

domain of P2 to
−→
i1 , and P0 `P P1 6 P2 @

−→
i1 .

Proof. The proof proceeds based on the derivation of subtyping.

• Type reduction case: by induction on the derivation of type reduction, we show that

the verification artifacts are unchanged.

• Reflexive case: trivial.

• Function/stub case: trivial as well.

• Function and theorem cases: by induction on expression equivalence.

• Instance case: by induction on the sequence of member declarations and the I.H. for

each one’s type.

• Generic, type, and reference cases: trivial due to empty obligation.

• Transitive case: this case holds by the transitivity of functional instantiation.

5.7 Implementation Details

Refined ACL2 is implemented under the name Dracula using the language-extension features

of Racket and the theorem proving engine of ACL2. Programs are written as Racket modules

beginning with #lang dracula. Racket’s compiler then performs macro expansion, compiling

the program down to a simple core language. The Dracula implementation processes this

compiled program, interpreting specific patterns of Racket primitives as elements of the

Refined ACL2 grammar. The resulting Refined ACL2 is typechecked before continuing;

if the program is ill-typed, Dracula reports an error and halts compilation. From a well-

typed Refined ACL2 interpretation, Dracula produces an ACL2 book representing the proof

98 CHAPTER 5. REFINING MODULES AND MACROS

obligation of the program. Users can thus execute the compiled form of the Dracula program

via Racket and verify its proof obligation using ACL2.

When compiling programs to an executable form, Dracula uses compound values for

instances rather than lifting their members to the top level, and uses closures for generics

rather than syntactically substituting their bodies at all application sites. This translation

is designed to behave the same as our semantics from figure 5.23, while generally performing

better during both compile-time and run-time.

In order to interpret fully-expanded Racket programs as Refined ACL2, we must recog-

nize certain combinations of Racket primitives as Refined ACL2 forms. Furthermore, we

must ensure that every Dracula program expands to one of these recognizable patterns.

Some Racket primitives have multiple interpretations. For instance, the #%plain-lambda

form—Racket’s primitive function-creation mechanism—is used for Refined ACL2 functions,

theorems, and generics in both terms and types. Others are not used at all, such as begin0.

Dracula introduces “landmark” functions—e.g. make-generic to wrap #%plain-lambda, indi-

cating its intended use—and other conventions to make parsing Racket programs as Refined

ACL2 into a deterministic process.

At a higher level, Dracula comes equipped with a set of macros implementing function,

theorem, and component definition forms such as those in figure 5.1. These macros must

ensure that their full expansion can be interpreted as Refined ACL2. Furthermore, they

must support the addition of macro definitions to instance types; these macros must be

context sensitive, mapping local member references to the appropriate concrete instance

when applied. We adapt the approach used for macros in Racket’s unit system [Culpepper

et al. 2005].

When constructing proof obligations, Dracula must map the value literals and primi-

tives of Racket to those of ACL2. For literals, we use a fixed mapping for a core set of

values. Immutable cons-pairs map to ACL2 pairs. Immutable strings using only ASCII

characters map to ACL2 strings. ASCII characters map to ACL2 characters. Racket’s

exact numbers map to ACL2 numbers. Interned symbols in Racket map to ACL2 symbols

in the ”DRACULA” package; keywords map to ACL2 symbols in the ”KEYWORD” pack-

age. ACL2 symbols in other packages have no Racket equivalent; similarly other Racket

values such as mutable strings, inexact numbers, and user-defined structures have no ACL2

equivalent. Quoted literals in Dracula source programs are translated using this mapping

to quoted ACL2 literals.

Primitive functions such as cons, car, and cdr are registered at compile time in Dracula

along with an arity, package name, and symbol name for use in ACL2. For instance, cons?

has arity 1 and maps to ACL2::CONSP. These mappings are used when creating proof

5.8. RELATED WORK 99

obligations when the registered functions are applied.

Of course, the grammar shown in figure 5.2 is not precisely what the ACL2 theorem

prover uses. For instance, although local names for functions are convenient for our pur-

poses, ACL2 has only one name for each function. We map function definitions from Refined

ACL2 to defun forms in ACL2 by substituting the function’s global name for its local name

in the body, measure, and hints. Theorem definitions become defthm forms and stub defi-

nitions use defstub. An assumed sequence of definitions
−→
d translates to (skip-proofs (progn

d . . .)). Hidden sequences become (encapsulate () (local d) . . .). By using only two special

forms of encapsulate—one where all definitions are local and the defstub macro—and no

defaxiom forms, we avoid much of the complexity of the ACL2 logic in our formalism and

translation.

5.8 Related Work

The design space of modules with explicit specifications has been well-explored. The lit-

erature begins with Modula-2 [Wirth 1983b], and includes more recent developments such

as the ML module system [Harper and Lillibridge 1994; Leroy 1994], Racket units [Flatt

and Felleisen 1998a; Owens and Flatt 2006b], and mixin modules [Dreyer and Rossberg

2008]. These systems introduce a variety of features, including higher-order and first-class

modules, recursive linking, and opaque, translucent, and transparent specifications.

It is well-known that theorem provers impose somewhat different requirements on mod-

ule systems than regular programming languages. The modular constructs for theorem

provers include Isabelle’s locales [Kammüller et al. 1999], Coq’s sections [The Coq Develop-

ment Team 2006], and the “little theories” of IMPS [Farmer et al. 1993]. These constructs

provide little more than lightweight scope and abstraction mechanisms; they can be used

to separate parts of a proof, and their abstract local definitions can be instantiated to ex-

tract variations on their exports. So long as the underlying logic can express higher order

abstractions, these constructs do not extend its expressivity, but instead provide syntactic

convenience.

Extended ML (EML) [Sannella 1991] equips SML [Milner et al. 1990] with logical prop-

erties and a verification semantics. The language is designed around the top-down method-

ology of beginning with an abstract specification and refining it step-by-step to a concrete

implementation. EML allows the user to supply the term “?” for any type, value, or mod-

ule, representing a component whose implementation is deferred but assumed correct. This

allows a top-down development style in which there may be no executable implementation

until the very end, but individual proof fragments can be checked along the way.

100 CHAPTER 5. REFINING MODULES AND MACROS

Coq [Courant 2007; Chrzaszcz 2003] inherits aspects of the ML module system and

enriches it with a language of logical specifications. The two are sufficiently expressive to

describe the specific implementation of a term (value or type), much like the manifest type

specifications of ML. In turn, manifest type specifications allow the client of a specification

to reason about the precise definition of an imported term.

Our module system for ACL2 inherits many aspects of these systems and builds on

them. We use nestable modules with external linking and external interfaces with translu-

cent, refineable member specifications as in ML functors and signatures. Refined ACL2

also supports a top-down development process for ACL2, similar to Extended ML. The

introduction of parameterized components allows low-level details to be left as an abstract

import while high-level parts of the proof are developed.

Furthermore, our system provides higher-order, instantiable abstractions much like lo-

cales, sections, “little theories”, and the functors of ML-like systems. Unlike other theorem

provers, ACL2 does not support higher-order abstractions. We have to synthesize a method

for expressing, verifying, and instantiating abstract proofs within a first-order logic.

Refined ACL2 shares with Coq the power to provide concrete specifications to express

induction schemes at module boundaries. These specifications play a greater pragmatic role

in ACL2 than in Coq; in our system, they are the only way to express induction schemes,

while in Coq induction schemes can be constructed manually in explicit proofs.

Chapter 6

Finale

I set out to establish the following thesis:

The language of ACL2 can be extended to express robust modular and syntactic

abstractions without changing ACL2’s logic or theorem prover.

Specifically, it is my intention to address several absent features of ACL2 that facilitate

large-scale, expressive proof development.

Top-down reasoning is a natural way to develop a proof, but not one that ACL2 di-

rectly supports. In ACL2, a top-down proof requires a combination of axioms, stubs, and

“skipped” proofs as placeholders for low-level details. These artifacts must be replaced with

a fully implemented and verified version to complete the proof, which in turn invalidates the

certification of the main theorem. In Refined ACL2, individual components can be verified

and certified separately, then linked together in arbitrary order later without recertification.

Second-order abstraction—universal quantification—over proofs and functions is a pow-

erful tool for developing multiple proofs with common elements. Writing and verifying key

parts once avoids extra time spent on compilation, verification, and development, as well

as reducing the chance for errors. ACL2’s existing methods of abstracting over proofs and

functions include encapsulation, which requires an initial witness and sacrifices execution,

and macros, which only abstract syntactically and must be verified at each application site.

Refined ACL2 provides a method to build and verify second-order abstractions in advance,

then instantiate them later for execution and instance-specific reasoning.

For any kind of abstraction, a language of specifications for inputs and outputs can

improve both conciseness and expressiveness. ACL2’s encapsulated abstractions do not

separate their specification from their implementation; producing two similar abstractions

or two uses of one abstraction involves repeated effort. Instance types in Refined ACL2 can

be defined, nested, reused, and refined as needed for a given application.

Being able to execute the logical model used to verify a program is an important capa-

bility. Execution permits the developer to compare a model to the original program and

101

102 CHAPTER 6. FINALE

to find counterexamples to failed theorems. ACL2 abstracts details away from parts of

a program with encapsulation, which excludes execution.1 Sealed components in Refined

ACL2 expose none of their internal details, yet the overall program remains executable.

Managing names in ACL2 can be tricky at best. At the file level, the package system

provides only weak guarantees about namespace separation, and little ability to import

names. ACL2’s unhygienic macros can also lead to problems with unintended name clashes.

Refined ACL2 has a component system based on lexical scope, with imports based on

explicit specifications. Overall, the language inherits Racket’s expressive module and macro

systems.

Using only the theorem proving capabilities already present in ACL2, Refined ACL2

provides all the development features we identify as missing in the original language. Our

soundness proof establishes a trusted relationship between source programs and the theo-

rems proved about them; long-standing experience and the reputations of Racket and ML

establish the usefulness of their macro and module facilities, respectively.

In addition to satisfying our thesis, Refined ACL2 provides an ACL2 model for a limited

subset of Racket programs. The extensible set of axiomatized primitives opens the door

for modeling more of Racket as needed. With further research it may be possible to model

more of Racket in ACL2, such as certain kinds of side effects, higher order programming, or

perhaps more modest additions such as functional hash tables and regular expressions.

1Concurrently with this work, the ACL2 maintainers have added a feature called defattach which can
restore executability to encapsulated code.

Appendix A

Modular ACL2: First Model

This appendix presents a model used in Modular ACL2’s early design stages1. Section A.1

describes the language and section A.2 presents an overview of our two-part model. Sec-

tion A.3 discusses the part of our model concerned with local reasoning about modules.

Section A.4 explains the other half of our model, concerned with the execution of whole

programs. Section A.5 evaluates the current design, addressing alternate options and im-

plementation concerns.

A.1 Design of Modular ACL2

Our goal is to create a coherent linguistic construct for modular programming in ACL2. To

that end we have designed the Modular ACL2 language using PLT Redex models. Programs

in Modular ACL2 consist of interfaces and modules. Modules are program fragments with

their own namespaces and logical theories; interfaces determine how the program and proof

fragments from different modules interact.

In the current design of Modular ACL2, modules and interfaces are defined at the top

level. Interfaces contain a set of function signatures and logical statements about them.

Modules may be primitive or compound. Primitive modules import and export definitions

via interfaces and contain internal definitions. Compound modules link other modules

together, filling in the exports of one module as the implementation for the matching imports

of another module. From the logical perspective, a module may be viewed as an implication,

with the theorems of its imported interfaces as hypotheses and the theorems of its exported

interfaces as conclusions. Linking a compound module discharges some of the hypotheses.

Figure A.1 demonstrates a sample Modular ACL2 program representing one possible

translation of SQR-ALL. The program consists of two interfaces, three modules, and an

entry point. The original functions are split into separate modules. The function sqr is

1This work has been published in Felleisen et al. [2009].

103

104 APPENDIX A. MODULAR ACL2: FIRST MODEL

(interface INT-IFC

(function int-fn (n) t)

(theorem int-fn-type

(implies (integerp n)

(integerp (int-fn n)))))

(interface LIST-IFC

(function list-fn (ns) t)

(theorem list-fn-type

(implies (integer-listp ns)

(integer-listp (list-fn ns)))))

(module SQR-MOD

(defun sqr (n) (* n n))

(export INT-IFC (sqr as int-fn)))

(module MAP-MOD

(import INT-IFC)

(defun map-int-fn (ns)

(cond ((endp ns) nil)

((consp ns) (cons (int-fn (car ns))

(map-int-fn (cdr ns))))))

(export LIST-IFC (map-int-fn as list-fn)))

(compound SQR-ALL-MOD = MAP-MOD (SQR-MOD : INT-IFC))

(invoke LIST-IFC (list-fn (list 1 2 3)))

Figure A.1: The Modular ACL2 program SQR-ALL.

in the module SQR-MOD, which exports it as int-fn via interface INT-IFC. The theorem

int-fn-type in the interface requires int-fn to be closed on the integers; when applied to

sqr, it essentially restates the original conjecture sqr-type.

The other function, sqr-all, is split across multiple modules. The module MAP-MOD con-

tains a generalized implementation which maps an arbitrary integer function (int-fn im-

ported from INT-IFC) over a list. This function is exported as list-fn via LIST-IFC, which

requires it to be closed on integer lists, as in sqr-all-type. The last module SQR-ALL-MOD

links MAP-MOD to SQR-MOD, essentially reconstituting sqr-all by attaching the imported

int-fn in MAP-MOD to sqr in SQR-MOD.

The program’s entry point invokes the function list-fn exported by SQR-ALL-MOD on

(list 1 2 3).

The modular version of SQR-ALL splits the program into several reusable pieces, and

protects each piece from interfering with the others. For instance, SQR-MOD does not have

imports and does not export the name sqr, so the internal function cannot clash with

another sqr. Also, the imported interface INT-IFC in MAP-MOD serves as an abstraction

A.2. MODELING MODULAR ACL2 105

program ::= (def ... expr ...)

def ::= (defun fvar (var ...) expr)

 | (defthm fvar expr)

 | (defstub fvar (var ...) t)

 | (defaxiom fvar expr)

expr ::= const | var

 | (cond (expr expr) ...)

 | (let ((var expr) ...) expr)

 | (fvar expr ...)

sig ::= (fvar (var ...) t)

const ::= t | nil | number

Figure A.2: A subset of ACL2 syntax.

P ::= (I ... M ... C ... E)

I ::= (interface Ivar Fun ... Thm ...)

M ::= (module Mvar Imp ... def ... Exp ...)

C ::= (compound Mvar = Mvar (Mvar : Ivar))

E ::= (invoke Ivar expr)

Fun ::= (function fvar (var ...) t)

Thm ::= (theorem fvar expr)

Imp ::= (import Ivar)

Exp ::= (export Ivar (fvar as fvar) ...)

Figure A.3: The grammar of Modular ACL2.

barrier. Any attempt to reason about int-fn when verifying map-int-fn must be in terms

of the guarantees in INT-IFC; there is no concrete implementation to “confuse” the theorem

prover.

See figure A.3 for the full grammar of Modular ACL2, based on the ACL2 syntax from

figure A.2. Modular ACL2 assumes two additional sets of variable names: Mvar for modules

and Ivar for interfaces. To simplify the model, we restrict each compound module to link

only two modules across a single interface, and require a program to define all interfaces

first, followed by primitive modules, and then compound modules. Each program ends with

an entry point expression, which may invoke functions from a specified interface provided

by the module immediately preceding it.

A.2 Modeling Modular ACL2

Our model defines the meaning of Modular ACL2 in terms of ACL2. We have two separate

interpretations of programs: one for logical reasoning and one for execution. The logical

form of a program consists of a set of conjectures about individual modules. They represent

the claim that each module satisfies its exported interfaces for any valid implementation of

its imported interfaces. Programmers can use this form to verify each module of a program

in isolation.

The executable form is a concrete implementation of the full program, including a fully

106 APPENDIX A. MODULAR ACL2: FIRST MODEL

get-def-names : (def . . .) → (fvar . . .) Extracts defined names.
join-imports : (imp . . .) → (imp . . .) Removes duplicate imports.

prefix : Var, Var → Var Adds a prefix to a variable.
prefix-names : Var, (Var . . .) → (Var . . .) Prefixes multiple variables.

rename-[term]* : (fvar . . .), (fvar . . .), [term] Renames identifiers in a
→ [term] given kind of term.

Figure A.4: Signatures of metafunctions used in the model.

linked form of the final module and an entry point expression that invokes the module.

Programmers can execute this form of the program, relying on the properties of modules

verified in the logical form without having to reprove them each time they are linked.

In our presentation of the PLT Redex model, some common or simple functionality

is defined in separate metafunctions, summarized in figure A.4. The figure describes the

general form of term(s) supplied to and produced by the metafunctions. Note that prefix

and prefix-names operate on any kind of variable (written Var); specific applications use

specific kinds of variables (such as fvar).

The various rename- functions perform a series of substitutions on function and theorem

names, replacing all occurrences (bound and binding) of names from the first list with the

corresponding name from the second list. The rules shown here use rename-var*, rename-

expr*, rename-def*, and rename-export* for terms belonging to fvar, expr, def, and Exp,

respectively.

We make several assumptions about variable names in Modular ACL2 programs so our

translations can create new names that are both unique and readable. First, module and

interface names must all be unique, as must function and theorem names in a given module.

Second, wherever new names are needed, we concatenate the name of the source module

or interface with the name of the definition, e.g. PREFIX.name. For these names to be

available, the initial program must not contain such “dotted” names, and modules must

only import or export a given interface once.

A.3 Logical meaning of modules

The first half of our model establishes the logical meaning of Modular ACL2 programs

on a per-module basis. We translate each primitive module into a conjecture that if its

imported functions satisfy the theorems in their respective interfaces, then its exported

functions satisfy their properties as well. If ACL2 admits the correctness of this conjecture

for abstract imports, then the module may be safely linked with concrete implementations

and executed. The correctness of compound modules follows from the correctness of their

A.3. LOGICAL MEANING OF MODULES 107

(I ... Mpre ... M Mpost ... C ... E) (I ... M) [choose module]

(Ipre ... I Ipost ...

(module Mvar

Imp ...

(import Ivar)

def ...

Exp ...))

(Ipre ... I Ipost ...

(module Mvar

Imp ...

(defstub fvarfun (var ...) t) ...

(defaxiom fvarthm expr) ...

def ...

Exp ...))

 [import interface]

 where I = (interface Ivar (function fvarfun (var ...) t) ... (theorem fvarthm expr) ...)

(Ipre ... I Ipost ...

(module Mvar

def ...

(export Ivar (fvarint as fvarext) ...)

Exp ...))

(Ipre ... I Ipost ...

(module Mvar

def ...

(defthm prefix[[Ivar, fvar]]

rename-expr*[[(fvarext ...), (fvarint ...), expr]])

...

Exp ...))

 [export interface]

 where I = (interface Ivar Fun ... (theorem fvar expr) ...)

(I ... (module Mvar def ...)) (def ...) [finish]

Figure A.5: Rules for computing the logical meaning of modules.

primitive constituents.

We define the logical meaning of each module in three parts: a set of assumptions

about its imports, a copy of its definitions, and a set of guarantees about its exports. We

construct these parts by a translation from the original module into ACL2. The translation

is formulated as a reduction relation with intermediate steps so that we can inspect the

process.

Figure A.5 shows the reduction relation. The reduction rules choose a module, gradually

replace its interface imports and exports with definitions, and extract the definitions at the

end. The first rule chooses a primitive module nondeterministically and drops the remaining

modules and the program entry point.

The second rule replaces a single import in a module with the contents of the imported

interface, converted to stubs and axioms. This gives the module a self-contained, abstract

definition of the imports. The new definitions use their original names, which were already

reserved in the module’s namespace by the import declaration.

The third rule replaces an export declaration in a module with the theorems of the

exported interface as conjectures. The rule updates their bodies to refer to the module’s

implementation of the interface’s functions, and assigns the theorems names in the module’s

namespace. These names are provably unique because of our name conventions, as described

above.

The fourth rule completes the translation to ACL2 once a module contains no import or

export declarations by producing the definitions inside the module. Note that the resulting

ACL2 program may introduce unverified or unsound axioms from imported interfaces. Each

108 APPENDIX A. MODULAR ACL2: FIRST MODEL

finish

fin
ish

export interface

export interface

import interface

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type

 (implies (integerp n)

 (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns)

 (integer-listp (list-fn ns)))))

 (module MAP-MOD

 (import INT-IFC)

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns)

 (cons

 (int-fn (car ns))

 (map-int-fn (cdr ns))))))

 (export LIST-IFC (map-int-fn as list-fn))))

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type

 (implies (integerp n)

 (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns)

 (integer-listp (list-fn ns)))))

 (module SQR-MOD

 (defun sqr (n) (* n n))

 (export INT-IFC (sqr as int-fn))))

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type

 (implies (integerp n)

 (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns)

 (integer-listp (list-fn ns)))))

 (module MAP-MOD

 (defstub int-fn (n) t)

 (defaxiom int-fn-type

 (implies (integerp n)

 (integerp (int-fn n))))

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns)

 (cons

 (int-fn (car ns))

 (map-int-fn (cdr ns))))))

 (export LIST-IFC (map-int-fn as list-fn))))

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type

 (implies (integerp n)

 (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns)

 (integer-listp (list-fn ns)))))

 (module SQR-MOD

 (defun sqr (n) (* n n))

 (defthm INT-IFC.int-fn-type

 (implies (integerp n)

 (integerp (sqr n))))))

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type

 (implies (integerp n)

 (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns)

 (integer-listp (list-fn ns)))))

 (module MAP-MOD

 (defstub int-fn (n) t)

 (defaxiom int-fn-type

 (implies (integerp n)

 (integerp (int-fn n))))

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns)

 (cons

 (int-fn (car ns))

 (map-int-fn (cdr ns))))))

 (defthm LIST-IFC.list-fn-type

 (implies (integer-listp ns)

 (integer-listp

 (map-int-fn ns))))))

((defun sqr (n) (* n n))

 (defthm INT-IFC.int-fn-type

 (implies (integerp n)

 (integerp (sqr n)))))

((defstub int-fn (n) t)

 (defaxiom int-fn-type

 (implies (integerp n)

 (integerp (int-fn n))))

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns)

 (cons

 (int-fn (car ns))

 (map-int-fn (cdr ns))))))

 (defthm LIST-IFC.list-fn-type

 (implies (integer-listp ns)

 (integer-listp (map-int-fn ns)))))

Figure A.6: Transforming SQR-ALL to its logical form.

module should be verified in a separate ACL2 session so that no other proofs may rely on

these assumptions.

Figure A.6 shows steps in the transformation from SQR-ALL’s modules to their logical

meaning in ACL2. We omit the first step in which the module nondeterministically chooses

either SQR-MOD or MAP-MOD; the two reduction paths begin with the program’s interfaces

followed by the respective chosen module. The top three boxes depict the transformation

of SQR-MOD; the bottom four correspond to MAP-MOD.

The first step for SQR-MOD replaces the exported interface INT-IFC with its theorems.

The “export interface” rule inserts int-fn-type as a conjecture with a new name and

replaces the reference to the exported function int-fn with its implementation, sqr. In

the second step there are no more interfaces to import or export; the “finish” rule produces

A.4. EXECUTABLE SEMANTICS OF PROGRAMS 109

(Ipre ... I Ipost ...

Mpre ... Mone

Mmid ... Mtwo

Mpost ...

(compound Mvarname =

Mvarimp (Mvarexp : Ivar))

Cpost ...

Eentry)

(Ipre ... I Ipost ...

Mpre ... Mone Mmid ... Mtwo Mpost ...

(module Mvarname

join-imports[[(Imppre ... Imppost ... Impexp ...)]]

rename-def*[[old-fvarsexp, new-fvarsexp, defexp]]

...

rename-def*[[old-fvarsimp, new-fvarsimp,

rename-def*[[(fvarfun ...), new-fvarsfun,

defimp]]]]

...

rename-export*[[old-fvarsimp, new-fvarsimp,

rename-export*[[(fvarfun ...), new-fvarsfun,

Expimp]]]]

...)

Cpost ...

Eentry)

 [link (export first)]

 where I = (interface Ivar Fun ... Thm ...),

Mone = (module Mvarexp

Impexp ... defexp ...

Exp ... (export Ivar (fvarimpl as fvarfun) ...) Exp ...)

,

Mtwo = (module Mvarimp

Imppre ... (import Ivar) Imppost ...

defimp ... Expimp ...)

, old-fvarsexp = get-def-names[[defexp, ...]],

old-fvarsimp = get-def-names[[defimp, ...]],

new-fvarsexp = prefix-names[[Mvarexp, old-fvarsexp]],

new-fvarsimp = prefix-names[[Mvarimp, old-fvarsimp]],

new-fvarsfun = (rename-var*[[old-fvarsexp, new-fvarsexp, fvarimpl]] ...)

Figure A.7: A rule for computing the executable semantics of a program.

the definitions inside the module.

The MAP-MOD module has both an imported interface and an exported interface. In its

first step, the “import interface” rule replaces the import of INT-IFC with a stub for int-fn

and an axiom for int-fn-type, representing the minimum logical properties guaranteed by

any implementation of INT-IFC. The “export interface” rule takes effect in the second step,

this time filling in a conjecture about map-int-fn based on list-fn-type from LIST-IFC.

The “finish” rule produces the final list of definitions.

The model does not construct a logical form for SQR-ALL-MOD. As section A.4 shows,

its correctness follows from the verification of SQR-MOD and MAP-MOD and its logical form is

redundant.

A.4 Executable semantics of programs

The second half of our model defines the executable semantics of Modular ACL2 programs

by translation to an executable ACL2 program. We iteratively link each compound module,

constructing a new, equivalent primitive module from its primitive constituents. When the

last module has been linked, we link the program entry point to the module’s concrete

functions. Those functions and the entry point become the ACL2 program. We show

a representative reduction rule in figure A.7; the three others are variations of the same

110 APPENDIX A. MODULAR ACL2: FIRST MODEL

process.

The reduction rule in the figure links a single compound module, producing an equivalent

primitive module. It matches the interface for linking, the exporting module, the importing

module, and the compound module.

The rule constructs the resulting primitive module by concatenation and substitution of

the parts of the constituent modules. It extracts the internally defined names of each module

with get-def-names, constructs unique names for them with prefix-names for use in the new

module, and uses rename-var* to construct the updated names for functions implementing

the given interface. The new primitive module contains the union of the original modules’

unresolved imports, the internal definitions of each original module, and the exports of the

importing module, all with the new function and theorem names substituted for the old.

The full reduction relation for the executable semantics consists of three other rules.

Two are permutations of the first. The last rule links the program entry point to the final

module; the process is similar to the rule shown here.

Figure A.8 shows the transformation from SQR-ALL to an executable ACL2 program.

This takes place in two steps. First, the model produces an implementation for the com-

pound module SQR-ALL-MOD by linking MAP-MOD to SQR-MOD across the interface INT-IFC.

The result includes the internal functions of both constituent modules, each given a new,

unique name. The reference to int-fn in map-int-fn is replaced with a reference to its

concrete implementation, SQR-MOD.sqr, in MAP-MOD.map-int-fn. Like MAP-MOD, the new

module exports LIST-IFC.

The second step links SQR-ALL-MOD, the last module in the program, to the program’s

entry point. The final ACL2 program contains the function definitions from SQR-ALL-MOD

followed by the converted entry point, which refers directly to MAP-MOD.map-int-fn.

Note that the middle form of SQR-ALL contains SQR-ALL-MOD as a primitive mod-

ule that can be translated to a logical form and verified. The resulting program, shown

in figure A.9, is nearly identical to the logical form of SQR-MOD. Both conjecture that (a

form of) map-int-fn from MAP-MOD satisfies list-fn-type from LIST-IFC. The only differ-

ence is that SQR-MOD refers to the stub int-fn where SQR-ALL-MOD refers to SQR-MOD.sqr,

both of which satisfy int-fn-type from INT-IFC. The correctness of SQR-ALL-MOD follows

straightforwardly from the more general result verified for SQR-MOD. Thus it is not necessary

to verify the compound module separately.

A.5. SUMMARY AND EVALUATION 111

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type (implies (integerp n) (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns) (integer-listp (list-fn ns)))))

 (module SQR-MOD (defun sqr (n) (* n n)) (export INT-IFC (sqr as int-fn)))

 (module MAP-MOD

 (import INT-IFC)

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns) (cons (int-fn (car ns)) (map-int-fn (cdr ns))))))

 (export LIST-IFC (map-int-fn as list-fn)))

 (compound SQR-ALL-MOD = MAP-MOD (SQR-MOD : INT-IFC))

 (invoke LIST-IFC (list-fn (list 1 2 3))))

((interface INT-IFC

 (function int-fn (n) t)

 (theorem int-fn-type (implies (integerp n) (integerp (int-fn n)))))

 (interface LIST-IFC

 (function list-fn (ns) t)

 (theorem list-fn-type

 (implies (integer-listp ns) (integer-listp (list-fn ns)))))

 (module SQR-MOD (defun sqr (n) (* n n)) (export INT-IFC (sqr as int-fn)))

 (module MAP-MOD

 (import INT-IFC)

 (defun map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns) (cons (int-fn (car ns)) (map-int-fn (cdr ns))))))

 (export LIST-IFC (map-int-fn as list-fn)))

 (module SQR-ALL-MOD

 (defun SQR-MOD.sqr (n) (* n n))

 (defun MAP-MOD.map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns)

 (cons (SQR-MOD.sqr (car ns)) (MAP-MOD.map-int-fn (cdr ns))))))

 (export LIST-IFC (MAP-MOD.map-int-fn as list-fn)))

 (invoke LIST-IFC (list-fn (list 1 2 3))))

((defun SQR-MOD.sqr (n) (* n n))

 (defun MAP-MOD.map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns) (cons (SQR-MOD.sqr (car ns)) (MAP-MOD.map-int-fn (cdr ns))))))

 (MAP-MOD.map-int-fn (list 1 2 3)))

Figure A.8: Transforming SQR-ALL to its executable form.

A.5 Summary and evaluation

In this chapter, we have demonstrated a PLT Redex model for Modular ACL2, a language for

developing ACL2 programs and proofs in composable, reusable components. Components

contain arbitrary combinations of functions and conjectures. Aside from those exposed

via interfaces, elements of one module may not interfere with another. Because primitive

modules are translated to verifiable ACL2 conjectures separately, a proof attempt for one

module will not interfere with another; since compound modules are linked for execution

using unique renaming of internal definitions, internal names from one module will not clash

with another.

112 APPENDIX A. MODULAR ACL2: FIRST MODEL

((defun SQR-MOD.sqr (n) (* n n))

 (defun MAP-MOD.map-int-fn (ns)

 (cond

 ((endp ns) nil)

 ((consp ns) (cons (SQR-MOD.sqr (car ns)) (MAP-MOD.map-int-fn (cdr ns))))))

 (defthm LIST-IFC.list-fn-type

 (implies (integer-listp ns) (integer-listp (MAP-MOD.map-int-fn ns)))))

Figure A.9: The logical form of linked compound module SQR-ALL-MOD.

The language presented here includes a number of simplifications for the sake of the

model which can be removed in a full implementation. For instance, ACL2 includes numer-

ous elements not included in our grammar, including hints and other annotations for the

theorem prover, packages, books, macros, and so on. Some of these features, including most

of the basic tools for programming and theorem proving, can be added with straightforward

extensions. Others pose more of a problem. User-defined macros complicate the renam-

ing step of our model; Modular ACL2 can only support them by duplicating the macro

expansion process.

ACL2’s existing mechanisms for separating program components, such as packages,

books, encapsulation blocks, and local definitions, are largely subsumed by Modular ACL2’s

module system. For compatibility with existing ACL2 programs, we may investigate a mech-

anism for converting a book to a module and vice versa. We have not yet explored how

modules would interact with the other mechanisms in the same program.

Programs need not be restricted in order, nor in number of entry points. Conceptually,

a Modular ACL2 program can interleave interface definitions, module definitions, and top-

level expressions. This restriction simplifies the model but does not alter its expressiveness;

any program can be reordered to fit the current grammar.

Compound modules in our language link two other modules across a single interface.

They can be expanded to link together an arbitrary number of modules. This feature is

a convenience, but can be expressed in our model by decomposing any compound module

into a sequence of smaller compound modules that link incrementally.

The naming conventions in our language allow our model to create readable, unique

names for new definitions. A full implementation must enforce the restrictions on names

or find a more permissive mechanism for combining components. An implementation that

hands off ACL2 code to the standard ACL2 implementation must generate unique names

that are at least readable enough that ACL2’s output can be correlated back to the original

source code.

For the logical meaning of Modular ACL2, only a module’s exported theorems are re-

named. An implementation could remove the naming restrictions by analyzing the full

A.5. SUMMARY AND EVALUATION 113

module to generate unique names, or by requiring programmers to explicitly declare names

for exported theorems as well.

The executable semantics of Modular ACL2 renames every definition, possibly several

times. However, the executable behavior of ACL2 can be simulated in other languages such

as Lisp or Scheme, as has been done in PLT Scheme with DrACuLa Vaillancourt et al.

[2006]. These languages can implement modules and linking without renaming, for instance

by implementing modules as closures and passing imported functions as values.

The current design of Modular ACL2 borrows many elements from PLT Scheme’s unit

system Flatt and Felleisen [1998b]; Owens and Flatt [2006a] and is reminiscent of early

module systems Wirth [1977, 1979, 1983a]. Module implementations and specifications are

separate entities. Like units, each component has a number of inputs and outputs described

by named specifications. We maintain the principle of external connections Flatt [2000]:

modules do not refer to an implementation for their imports; instead, components may be

combined by linking any import and export that share a specification. Unlike units, our

system does not allow cyclic links; this potentially introduces new recursion and interferes

with ACL2 termination proofs.

Our module system does not have some of the features demonstrated by the ML module

system MacQueen [1984]. We do not support a type system for Modular ACL2, nor do

we have a subsumption relation on interfaces. Modular ACL2 also does not have sharing

constraints or any other way to declare a relationship between two interfaces. This is an

important feature which we will explore as we expand our implementation.

Separate compilation is an important consideration for a module system. The executable

form of Modular ACL2 does not support separate compilation directly in ACL2, as the code

changes each time it is linked. Implementations in other languages, however, can support

separate compilation; for instance, PLT Scheme’s unit system supports separate compilation

and all of the module features of Modular ACL2’s executable semantics.

The logical form supports separate verification. As shown in sections A.3 and A.4, once

a module’s proof obligations are discharged it may be linked safely and without further

proofs. Modular ACL2 modules can be verified by ACL2 but not certified as books, because

books may not contain defaxiom. We hope to find a logical form for modules that can be

certified; for now, we verify modules at the top level, outside of any book, where axioms

are permitted.

Bibliography

Jacek Chrzaszcz. Implementing modules in the Coq system. In Proc. 16th International

Conference on Theorem Proving in Higher Order Logics, pages 270–286. Springer, 2003.

William Clinger and Jonathan Rees. Macros that work. In Proceedings of the 18th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

155–162. ACM Press, 1991.

Judicaël Courant. MC2: a module calculus for pure type systems. Journal of Functional

Programming, 17(3):287–352, 2007.

Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic abstraction in component

interfaces. In Proceedings of the Fourth International Conference on Generative Program-

ming and Component Engineering, pages 373–388. Springer, 2005.

Derek Dreyer and Andreas Rossberg. Mixin’ up the ML module system. In Proc. 13th ACM

SIGPLAN International Conference on Functional Programming, pages 307–320. ACM

Press, 2008.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp

and Symbolic Computation, 5(4):295–326, 1992.

Carl Eastlund and Matthias Felleisen. Making induction manifest in modular ACL2.

In Proc. 11th International ACM SIGPLAN Symposium on Principles and Practice of

Declarative Programming, pages 105–116. ACM Press, 2009a.

Carl Eastlund and Matthias Felleisen. Toward a practical module system for ACL2. In

Proceedings of the 11th International Symposium on Practical Aspects of Declarative Lan-

guages, pages 46–60. Springer, 2009b.

Carl Eastlund and Matthias Felleisen. Hygienic macros for ACL2. In Trends in Functional

Programming, 11th International Symposium, TFP 2010, pages 84–101. Springer, 2010.

William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactive

mathematical proof system. Journal of Automated Reasoning, 11(2):213–248, 1993.

115

116 BIBLIOGRAPHY

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with

PLT Redex. MIT Press, 2009.

Matthew Flatt. Composable and compilable macros: You want it when? In Proceedings

of the 7th ACM SIGPLAN International Conference on Functional Programming, pages

72–83. ACM Press, 2002.

Matthew Flatt and Matthias Felleisen. Units: cool modules for HOT languages. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, pages 236–248. ACM Press, 1998a.

Matthew Flatt and Matthias Felleisen. Units: cool modules for hot languages. In PLDI ’98:

Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and

implementation, pages 236–248, New York, NY, USA, 1998b. ACM Press. ISBN 0-89791-

987-4. doi: http://doi.acm.org/10.1145/277650.277730.

Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.,

2010. http://racket-lang.org/tr1/.

Matthew Raymond Flatt. Programming Languages for Reusable Software Components. PhD

thesis, 2000. Adviser-Matthias Felleisen.

Timothy G. Griffin. Notational definition—a formal account. In Proc. 3rd Annual Sympo-

sium on Logic in Computer Science, pages 372–383. IEEE Press, 1988.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules

with sharing. In Proceedings of the 21st Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 123–137. ACM Press, 1994.

Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales: a sectioning con-

cept for Isabelle. In Proceedings of the 12th International Conference on Theorem Proving

in Higher Order Logics, pages 149–166. Springer, 1999.

Matt Kaufmann and J Strother Moore. Design goals of ACL2. In Proceedings of the

3rd International School and Symposium on Formal Techniques in Real Time and Fault

Tolerant Systems, pages 92–117. Christian-Albrechts-Universität, 1994.

Matt Kaufmann and J Strother Moore. A precise description of the ACL2 logic. Technical

report, University of Texas at Austin, 1998.

Matt Kaufmann and J Strother Moore. Structured theory development for a mechanized

logic. Journal of Automated Reasoning, 26(2):161–203, 2001.

http://racket-lang.org/tr1/

BIBLIOGRAPHY 117

Matt Kaufmann and J Strother Moore. ACL2 Documentation, 2009. http://userweb.cs.

utexas.edu/users/moore/acl2/current/acl2-doc.html.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers, 2000.

Casey Klein. Experience with randomized testing in programming language metatheory.

Master’s thesis, University of Chicago, 2009.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic

macro expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional

Programming, pages 151–161. ACM Press, 1986.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of the 21st

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 109–122. ACM Press, 1994.

David MacQueen. Modules for Standard ML. In LFP ’84: Proceedings of the 1984 ACM

Symposium on LISP and functional programming, pages 198–207, New York, NY, USA,

1984. ACM Press. ISBN 0-89791-142-3. doi: http://doi.acm.org/10.1145/800055.802036.

F. J. Mart́ın-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A generic instantia-

tion tool and a case study: a generic multiset theory. In Proc. 3rd International Workshop

on the ACL2 Theorem Prover and its Applications, pages 188–201. ACM Press, 2002.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,

1990.

Scott Owens and Matthew Flatt. From structures and functors to modules and units.

SIGPLAN Not., 41(9):87–98, 2006a. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/

1160074.1159815.

Scott Owens and Matthew Flatt. From structures and functors to modules and units. In

Proceedings of the 11th ACM SIGPLAN International Conference on Functional Pro-

gramming, pages 87–98. ACM Press, 2006b.

Padget, J. et al. Desiderata for the standardisation of LISP. In Proc. 1986 ACM Conference

on LISP and Functional Programming, pages 54–66. ACM Press, 1986.

Donald Sannella. Formal program development in Extended ML for the working program-

mer. In Proceedings of the 3rd BCS/FACS Workshop on Refinement, pages 99–130.

Springer, 1991.

http://userweb.cs.utexas.edu/users/moore/acl2/current/acl2-doc.html
http://userweb.cs.utexas.edu/users/moore/acl2/current/acl2-doc.html

118 BIBLIOGRAPHY

The Coq Development Team. The Coq Proof Assistant Reference Manual, 2006. http:

//coq.inria.fr/V8.1pl3/refman/index.html.

Dale Vaillancourt, Rex Page, and Matthias Felleisen. ACL2 in DrScheme. In ACL2 ’06:

Proceedings of the sixth international workshop on the ACL2 theorem prover and its

applications, pages 107–116, New York, NY, USA, 2006. ACM Press. ISBN 0-9788493-0-

2. doi: http://doi.acm.org/10.1145/1217975.1217999.

Niklaus Wirth. Modula: a language for modular multiprogramming. Softw., Pract. Exper.,

7(1):3–35, 1977.

Niklaus Wirth. The module: A system structuring facility in high-level programming lan-

guages. In Jeffrey M. Tobias, editor, Language Design and Programming Methodology,

volume 79 of Lecture Notes in Computer Science, pages 1–24. Springer, 1979. ISBN

3-540-09745-7.

Niklaus Wirth. Programming in Modula-2. Springer-Verlag, Berlin, Germany, second edi-

tion, 1983a. ISBN 0-387-12206-0.

Niklaus Wirth. Programming in Modula-2. Springer, 1983b.

http://coq.inria.fr/V8.1pl3/refman/index.html
http://coq.inria.fr/V8.1pl3/refman/index.html

All that is gold does not glitter,

Not all those who wander are lost.

— J. R. R. Tolkein, The Lord of the Rings

	Contents
	List of Figures
	Introduction
	History
	Roadmap

	Modules
	Motivation
	Design
	Execution
	Verification
	Soundness

	Hygienic Macros
	Motivation
	Design
	Semantics
	Evaluation

	Extended Case Study
	The Racket Virtual Machine
	Verifying the Verifier
	Experience and Conclusions

	Refining Modules and Macros
	Example
	Core Language
	Static Semantics
	Verification Semantics
	Executable Semantics
	Soundness of Refined ACL2
	Implementation Details
	Related Work

	Finale
	Modular ACL2: First Model
	Design of Modular ACL2
	Modeling Modular ACL2
	Logical meaning of modules
	Executable semantics of programs
	Summary and evaluation

	Bibliography

