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ABSTRACT
Popular online social networks (OSNs) like Facebook and Twitter
are changing the way users communicate and interact with the In-
ternet. A deep understanding of user interactions in OSNs can pro-
vide important insights into questions of human social behavior,
and into the design of social platforms and applications. However,
recent studies have shown that a majority of user interactions on
OSNs are latent interactions, passive actions such as profile brows-
ing that cannot be observed by traditional measurement techniques.
In this paper, we seek a deeper understanding of both visible

and latent user interactions in OSNs. For quantifiable data on la-
tent user interactions, we perform a detailed measurement study
on Renren, the largest OSN in China with more than 150 million
users to date. All friendship links in Renren are public, allowing us
to exhaustively crawl a connected graph component of 42 million
users and 1.66 billion social links in 2009. Renren also keeps de-
tailed visitor logs for each user profile, and counters for each photo
and diary/blog entry. We capture detailed histories of profile visits
over a period of 90 days for more than 61,000 users in the Peking
University Renren network, and use statistics of profile visits to
study issues of user profile popularity, reciprocity of profile vis-
its, and the impact of content updates on user popularity. We find
that latent interactions are much more prevalent and frequent than
visible events, non-reciprocal in nature, and that profile popularity
are uncorrelated with the frequency of content updates. Finally, we
construct latent interaction graphs as models of user browsing be-
havior, and compare their structural properties against those of both
visible interaction graphs and social graphs.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and behavioral sciences; H.3.5
[Information Storage and Retrieval]: Online Information Ser-
vices

General Terms
Human factors, Measurement, Performance
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1. INTRODUCTION
Not only are online social networks (OSNs) popular tools for in-

teraction and communication, but they have the potential to alter
the way users interact with the Internet. Today’s social networks
already count close to one billion members worldwide. Facebook,
the most popular OSN, has more than 500 million active users [26],
and has surpassed Google as the most visited site on the Inter-
net [30]. Increasingly, Facebook and Twitter are replacing email
and search engines as users’ primary interfaces to the Internet [9,
15]. This trend is likely to continue, as networks like Facebook seek
to personalize the web experience by giving sites access to infor-
mation about their visitors and their friends, through new platforms
such as OpenGraph [23].
A deep understanding of user interactions in social networks

can provide important insights into questions of human social be-
havior, as well as the design of social platforms and applications.
For example, gauging the level of reciprocity in social interac-
tions can shed light on the factors that motivate interactions. In
addition, understanding how interactions are distributed between
friends can assist in tracking information dissemination in social
networks, thus identifying “popular” or “influential” users to target
in branding and ad campaigns [6, 11, 14]. Finally, lessons from
studying how users interact through different communication tools
can guide the design of new, more engaging mechanisms for social
interaction.
Initial measurement studies [1, 22, 29] of OSNs focused on topo-

logical characteristics of the social graph, the underlying structures
of these services that capture explicit relationships between users.
To better understand the true nature of relationships between OSN
users, more recent work has shifted focus to measuring observable
social interactions [7, 19, 28, 29]. By examining records of interac-
tion events across different links, the studies distinguish close-knit,
active relationships from weak or dormant relationships, and derive
a more accurate predictive model for social behavior.
Recently, two significant studies [3, 25] used clickstream data

at the network level to capture the behavior of OSN users, and re-
vealed that passive or latent interactions such as profile browsing
often dominate user events in a social network [3].
Unfortunately, these studies have been constrained by several

limitations of clickstream data. First, the type of data captured in
a clickstream is highly dependent on the time range of the click-
stream. Captured events are also from the perspective of the ac-
tive user, making it challenging to correlate events across time and
users. Second, clickstream data is also highly dependent on the



structure of the OSN site, and can be extremely challenging to re-
duce large volumes of data to distinct user events. Finally, each
application-level user event generates a large volume of clickstream
data, and extremely large clickstreams are needed to capture a sig-
nificant number of user events. These properties of verboseness
and complexity mean that it is extremely difficult to gather enough
clickstream data to study user interactions comprehensively at scale.
However, a comprehensive and large study is necessary to answer
many of the deeper questions about user behavior and interactions,
such as: are user interactions reciprocal, do latent interactions such
as profile browsing reflect the same popularity distributions as visi-
ble actions like user comments, what can users do to become “pop-
ular” and draw more visitors to their pages?
In this paper, we seek to answer these and other questions in

our search for a deeper understanding of user interactions in OSNs.
To address the challenge of gathering data on latent interactions,
we perform a large-scale, crawl-based measurement of the Renren
social network [24], the largest and most popular OSN in China.
Functionally, it is essentially a clone of Facebook, with similar
structure, layout and features. Like Facebook, Renren also evolved
from a university-based social network (a predecessor called Xi-
aonei). Unlike Facebook, Renren has two unique features that make
it an attractive platform to study user interactions.
First, while Renren users have full privacy control over their pri-

vate profiles, their friend lists are public and unprotected by pri-
vacy mechanisms. This allowed us to crawl an exhaustive snapshot
of Renren’s largest connected component, producing an extremely
large social graph with 42.1 million nodes and 1.66 billion edges.
Second, and perhaps more importantly, Renren user profiles make
a variety of statistics visible to both the profile owner and her visi-
tors. Each user profile keeps a visible list of “recent visitors” who
browse the profile, sorted in order, and updated in real-time. Each
photo and diary entry also has its own page with a count of visits by
users other than the owner. These records are extremely valuable,
in that they expose latent browsing events to our crawlers, granting
us an unique opportunity to gather and analyze large scale statistics
on latent browsing events.

Our study. Our study of latent user interactions includes three
significant components. First, we begin by characterizing proper-
ties of the large Renren social graph, and compare them to known
statistics of other OSNs, including Facebook, Cyworld, Orkut and
Twitter. Our second component focuses on questions concerning
latent interactions, and constitutes the bulk of our study. We de-
scribe a log reconstruction algorithm that uses relative clocks to
merge visitor logs from repeated crawls into a single sequential
visitor stream. We repeatedly crawl users in the Peking University
Renren network over a period of 90 days, extract profile visit his-
tory for 61K users, and examine issues of popularity, visitor com-
position, reciprocity, and latency of reciprocation. We compare
user popularity distributions for latent and visible interactions, and
use per-object visit counters to quantify the level of user engage-
ment generated from user profiles, photos, and diary entries. We
also study correlation of different types of user-generated content
with a user’s profile popularity. Finally, in our third component, we
build latent interaction graphs from our visitor logs, and compare
their structure to those of social graphs and interaction graphs. We
also revisit the issue of experimental validation for social applica-
tions, and perform a case study of the impact of different social
graphs on evaluating information dissemination algorithms.
Our study provides a number of insights into user behavior on

online social networks, including:

• Users’ profile popularity varies significantly across the pop-
ulation, and closely follows a Zipf distribution.

• Profile visits have extremely low reciprocity, despite the fact
that Renren users have full access to the list of recent visitors
to their profile.

• Compared to visible interactions, latent profile browsing is
far more prevalent and more evenly distributed across a user’s
friends. Profile visits are less likely to be repeated than visi-
ble interactions, but are more likely to generate visible com-
ments than other content such as photos and diary entries.

• For all users, regardless of their number of friends, profile
popularity is not strongly correlated with frequency of new
profile content.

Finally, we use our data to construct latent interaction graphs
that capture browsing activity between OSN users. Our analysis
finds that latent interaction graphs exhibit general Power-law fea-
tures, fall between social and visible interaction graphs in terms of
connectivity, but show less local clustering properties than both.

2. METHODOLOGY AND INITIAL
ANALYSIS

Before diving into detailed analysis of user interaction events,
we begin by providing background information about the Renren
social network and our measurement methodology. We then give
more specifics on our techniques for reconstructing profile brows-
ing histories from periodic crawls. Using a random subset of user
profiles, we perform sampling experiments to quantify the expected
errors introduced by our approach. Finally, we analyze character-
istics of the Renren social graph, and compare it to known graph
properties of existing social graph measurements.

2.1 The Renren Social Network
Launched in 2005, Renren is the largest and oldest OSN in China.

Renren can be best characterized as Facebook’s Chinese twin, with
most or all of Facebook’s features, layout, and a similar user inter-
face. Users maintain personal profiles, upload photos, write diary
entries (blogs), and establish bidirectional social links with their
friends. Renren users inform their friends about recent events with
140 character status updates, much like tweets on Twitter. Similar
to the Facebook news feed, all user-generated updates and com-
ments are tagged with the sender’s name and a time stamp.
Renren organizes users into membership-based networks, much

like Facebook used to. Networks represent schools, companies,
or geographic regions. Membership in school and company net-
works require authentication. Students must offer an IP address,
email address, or student credential from the associated univer-
sity. Corporate email addresses are needed for users to join cor-
porate networks. Renren’s default privacy policy makes profiles of
users in geographic networks private. This makes them difficult
to crawl [29]. Fortunately, profiles of users in authenticated net-
works are public by default to other members of the same network.
This allowed us to access user profiles within the Peking Univer-
sity network, since we could create nearly unlimited authenticated
accounts using our own block of IP addresses.
Like Facebook, a Renren user’s homepage includes a number

of friend recommendations that encourage formation of new friend
relationships. Renren lists 3 users with the most number of mutual
friends in the top right corner of the page. In addition, Renren
shows a list of 8 “popular users” at the very bottom of the page.
These popular users are randomly selected from the 100 users with
the most friends in the university network.
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Figure 1: Daily distribution of comments across applications.
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Figure 2: Integrating multiple visitor lists captured by multiple
crawls of the same profile into a single history.

Unique features. Renren differs from Facebook in several sig-
nificant ways. First, each Renren user profile includes a box that
shows the total number of visitors to the profile, along with names
and links to the last 9 visitors ordered from most to least recent.
In addition, Renren also keeps on each individual photo and diary
page a visible counter of visitors (not including the user himself).
These lists and counters have the same privacy settings as the main
profile. They have the unique property of making previously invis-
ible events visible, and are the basis for our detailed measurements
on latent user interactions.
A second crucial feature is that friend lists in Renren are always

public. Users have no way to hide them. This allowed us to perform
an exhaustive crawl of the largest connected component in Renren
(42.1 million users). This contrasts with other OSNs, where full
social graph crawls are prevented by user privacy policies that hide
friendship links from the public. The exception is Twitter, which
behaves more like a public news medium than a traditional social
network [16].
In addition, comments in Renren are threaded, i.e. each new

comment is always in response to one single other event or com-
ment. For example, user A can respond to user B’s comment on
user C’s profile, and only B is notified of the new message. Thus
we can precisely distinguish the intended target of each comment.
One final difference between Renren and Facebook is that each
standard user is limited to a maximum of 1,000 friends. Users may
pay a subscription fee to increase this limit to 2,000. From our
measurements, we saw that very few users (0.3%) took advantage
of this feature.

2.2 Data Collection and General Statistics
Like Facebook, Renren evolved from a social network in a uni-

versity setting. Its predecessor was called Xiaonei, literally mean-
ing “inside school.” In September 2009, Renren merged with Kaixin,
the second largest OSN in China, and absorbed all of Kaixin’s user
accounts.

Crawling the Renren social graph. We crawled the entire
Renren network from April 2009 to June 2009, and again from
September to November of 2009. We seed crawlers with the 30
most popular users’ profiles, and proceeded to perform a breadth-
first traversal of the social graph. During the crawl, we collect
unique userIDs, network affiliations, and friendship links to other
users. For our study, we use data from our last crawl, which was an
exhaustive snapshot that included 42,115,509 users and 1,657,273,875
friendship links. While this is significantly smaller than the 70 mil-
lion users advertised by Renren in September 2009, we believe the

discrepancy is due to Kaixin users who were still organized as a
separate, disconnected subgraph. We describe properties of the so-
cial graph later in this section.

Crawling the PKU network. We performed smaller, more
detail oriented crawls of the PKU network between September and
November of 2009 (90 days) to collect information about user’s
profiles and interaction patterns. This methodology works because
the default privacy policy for authenticated networks is to make full
profiles accessible to other members of the same network. Since we
collected the network memberships of all users during our complete
crawl, we were able to isolate the 100,973 members of the PKU
network to seed our detailed crawl. Of these users, 61,405 users had
the default, permissive privacy policy, enabling us to collect their
detailed information. This covers the majority of users (60.8%) in
the PKU network, and provides overall network coverage similar
to other studies that crawled OSN regional networks [29].
As part of our PKU crawls, we gathered all comments generated

by users in message board posts, diary entries, photos, and status
updates. This data forms the basis of our experiments involving
visible interactions. Our dataset represents the complete record of
public visible interactions between users in the PKU network. In
total, 19,782,140 comments were collected, with 1,218,911 of them
originating in the September to November 2009 timeframe.
Figure 1 plots the percentage of comments in various applica-

tions each day. The most popular events to comment on are status
updates, which accounts for roughly 55% of all daily comments.
Message boards cover 25%, while diary and photo each account
for roughly 10%.

Privacy and data anonymization. Our study focuses on the
structure of social graphs and interaction events between users.
Since we do not need any actual content of comments, photos, or
user profiles, we waited for crawls to complete, then went through
our data to anonymize userIDs and strip any private data from our
dataset to protect user privacy. In addition, all user IDs were hashed
to random IDs, and all timestamps are replaced with relative se-
quence numbers. We note that our group has visited and held re-
search meetings with technical teams at Renren, and they are aware
of our ongoing research.

2.3 Measuring Latent User Interactions
In addition to visible interactions generated by users in the PKU

network, we also recorded the recent visitor records displayed on
each user’s profile. This data forms the basis of our study of latent
interactions.
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Figure 3: Average daily visit counts of user profiles.
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Figure 4: Number of visits missed when we lower crawler fre-
quency from a high of once every 15 minutes.

Reconstructing Visitor Histories. Crawling Renren for recent
visitor records is complicated by two things. First, each user’s pro-
file only lists the last 9 visitors. This means that our crawler must
be constantly revisiting users in order to glean representative data,
as new visitors will cause older visitors to fall off the list. Clearly
we could not crawl every user continuously. Frequent crawls leave
the ID of our crawler on the visitor log of profiles, which has gen-
erated unhappy feedback from profile owners. In addition, Ren-
ren imposes multiple per-account rate limits that slow our crawler
significantly despite our large number of crawler accounts. Thus,
we designed our crawler to be self-adapting. This means that we
track the popularity and level of dynamics in different user profiles,
and allocate most of our requests to heavily trafficked user profiles,
while guaranteeing a minimum crawl rate (1/day) for low traffic
users. The individual lists from each crawl contain overlapping re-
sults, which we integrate into a single history.
The second challenge to crawling recent visitor records is that

each visitor is only shown in the list once, even if they visit multiple
times. Repeat visits simply cause that user to return to the top of the
list, erasing their old position. This makes identifying overlapping
sets of visitors from the iterative crawls difficult.
To solve these two challenges, we use a log-integration algorithm

to concatenate the individual recent visitor lists observed during
each successive crawl. More specifically, some overlapping sets of
visitors exist in successive crawl data, and our main task is to find
new visitors and remove overlaps. There are two kinds of incom-
ing visitors: new users, who do not appear in the previous list, and
repeat users, who appear in the prior list at a different relative po-
sition. The first kind of incoming visitor is easily identified, since
his record is completely new to the recent visitor list. New visitors
provide a useful checkpoint for purposes of log-integration, since
other users behind them in the list are also necessarily new incom-
ing visitors. The second type of incoming visitor, repeat users, can
be detected by looking for changes in sequence of the recent visitor
list. If a user repeatedly visits the same profile in-between two visits
of other users, nothing changes in the recent visitor list. Therefore,
consecutive repeat visits are ignored by our crawler.
Figure 2 demonstrates our integration algorithm. We observe

that visitors ABCDEFGHI viewed a user’s profile at some time be-
fore our first crawl. New users view the profile and are added to the
recent visitor list by the second crawl at time 2. We re-observe the
old sequence CDEFGHI, and identify JK as new visitors, since JK
do not exist in the previous visitor list. Next, we compare recent
visitor lists at time 2 and 3. We find that E is before K in the recent
visitor list crawled at time 2, but this order is changed at time 3.

This means that at some time before the third crawl user E revisited
the target and changed positions in the list. Thus we identify E as
a new visitor. Since C is behind E at time 3, C is also identified
as a new visitor. Our integration algorithm also works correctly
at time 4. User L has not been observed before, and thus L, plus
subsequent visitors C and M, are all classified as new visitors.
Overall, from the 61,405 user profiles we continuously crawled,

we obtained a total of 8,034,664 total records of visits to user pro-
files in the PKU network. After integrating these raw results, we
are left with 1,863,168 unique profile visit events. This high reduc-
tion (77%) is because most profiles receive few page views, and
thus overlaps between successively crawled results are very high.
Although Renren does not show individual recent visitors of user
diaries and photos, it does display the total number of visits, which
we crawled as well.

Impact of Crawl Frequency. We are concerned that our crawls
might not be frequent enough to capture all visit events to a given
profile. To address this concern, we took a closer look at the im-
pact of crawler frequency on missing visits. First, we take all of the
profiles we crawled for visit histories, and computed their average
daily visit count between September and November 2009. We plot
this as a CDF in Figure 3. Most users (99.3%) receive <= 8 visits
per day on average. Since Renren shows 9 latest visitors, crawling
a profile once every day should be sufficient to capture all visits.
While our crawler adapts to allocate more crawl requests to pop-
ular, frequently visited profiles, we guarantee that every profile is
crawled at least once every 24 hours.
Next, we select 1,000 random PKU users and crawl their recent

visitors every 15 minutes for 2 days. We use the data collected
to simulate five frequencies for crawling process, namely 15 min-
utes, 30 minutes, 1 hour, 12 hours and 1 day. Then we use the
log-integration algorithm to concatenate the individual recent vis-
itor lists at different crawling frequencies. For every person, we
compute the number of visits missed by the crawler when we re-
duce the frequency, beginning with visits every 15 minutes. We plot
CDF of these deviations in Figure 4. As we see, for 88% of users,
there are no additional visits missed when we reduce the crawler
rate from once every 15 minutes to once per day. Only for a very
small group of users (0.7%) is the number of missing visits greater
than 10 when crawling at once per day. Figure 3 also shows that
less than 0.7% of all users receive more than 9 visits per day. Only
these users would require more than one crawl per day to collect a
full history of their visits. Since we allocate the bulk of our crawler
requests to these high popularity users (and crawl once per day for



Network Users Crawled Links Crawled Avg. Degree Cluster Coef. Assortativity Avg. Path Len.
Renren 42,115K 1,657,273K 78.70 0.063 0.15 5.38

Facebook [29] 10,697K 408,265K 76.33 0.164 0.17 4.8
Cyworld [1] 12,048K 190,589K 31.64 0.16 -0.13 3.2
Orkut [22] 3,072K 223,534K 145.53 0.171 0.072 4.25
Twitter [13] 88K 829K 18.84 0.106 0.59 N/A

Table 1: Topology properties of social networks
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the rest), we are relatively confident that very few visits are missed
by our crawls.

2.4 Social Graph Analysis
In this section, we analyze the topological properties of the en-

tire Renren social graph by focusing on salient graph measures.
Table 1 shows some general properties of Renren, such as average
degree, clustering coefficient, assortativity, and average path length
as compared to other social networks. Our Renren dataset is larger
than most previously studied OSN datasets, the exceptions being
recent measurements of the Twitter network [4, 16]. However, our
dataset shares similar properties with prior studies [7, 22, 29]. This
confirms that Renren is a representative social network, and the be-
havior of its users is likely to be indicative of users in other OSNs
like Facebook.
Figure 5 plots the complementary cumulative distribution func-

tion (CCDF) of user social degrees in the Renren network, and
shows that Renren’s network structure roughly follows a power-
law [2]. We compute that the power-law curve fitting the social
degree CCDF has an alpha value of 3.5, with fitting error of 0.02.
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This alpha value is significantly higher than that found for Face-
book (1.5), Orkut (1.5), and Twitter (2.4).
We also look at Renren’s clustering coefficient, which assesses

the level of local connectivity between nodes. In undirected graphs,
the clustering coefficient of a person is defined as the ratio of the
number of links over all possible connections between one’s friends.
The clustering coefficient of the entire network is defined by the
average of all individual clustering coefficients. Renren’s average
clustering coefficient is only 0.063, implying that Renren friend
relationships are more loosely connected than the other social net-
works studied in Table 1. Figure 6 displays the distribution of clus-
tering coefficient versus node degree. As expected for a social net-
work, users with lower social degrees have higher clustering coef-
ficients, thus demonstrating high levels of clustering at the edge of
the social graph.
The assortativity coefficient measures the probability for users to

establish links to other users of similar degree [29]. It is calculated
as the Pearson correlation coefficient of the degrees of node pairs
for all links in a graph. A positive assortativity coefficient indicates
that users tend to connect to other users of similar degree, and a
negative value indicates the opposite trend. Renren’s assortativity
is 0.15, implying that connections between like-degree users are
numerous. Figure 7 displays node degree correlation (knn) versus
node degree. knn is a closely related metric to assortativity. The
positive correlation starting around degree 100 demonstrates that
higher-degree users tend to establish links with other high-degree
users. These chains of well-connected super-users form the back-
bone of the social network.
Average path length is the average of all-pairs-shortest-paths in

the social network. It is simply not tractable to compute shortest
path for all node pairs, given the immense size of our social graph.
Instead, we choose 1000 random users in the network, perform Di-
jkstra to build a spanning tree for each user in the social graph,
and compute the length of their shortest paths to all other users
in the network. As shown in Table 1, the average path length in
Renren is 5.38, which agrees with the six-degrees of separation hy-
pothesis [20]. It is not surprising to see that average path length is
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longer in Renren than prior results from Facebook [29], since those
path lengths were computed over smaller subgraphs representing
regional networks. It is surprising, however, when we compare it
to results from Cyworld [7], since the two networks are similar in
size and completeness. One reasonable explanation is that con-
nectivity between Internet users in the Cyworld network is much
stronger than connectivity between users in the Renren network.

Strongly Connected Component Analysis. User’s online
friendship links often correspond closely with their offline relation-
ships [17]. Thus, it is natural to assume that college students would
have many online friends in the same campus network. This be-
havior should manifest itself as a single, large, strongly connected
component (SCC) that includes most users in the PKU network so-
cial graph. Surprising, we find that 23,430 (23.2%) of users in the
PKU network have no friends in the PKU campus network, and
are therefore disconnected from the SCC. We refer to these as iso-
lated users. To confirm these results, we measured the SCC of 9
other large university networks and discovered similar numbers of
isolated users.
Figure 8 shows social degrees and total number of profile vis-

its for these isolated users. 83% of isolated users have social de-
grees less than 10. In addition, 70% of isolated users have less than
20 total profile visits, meaning their profiles are rarely browsed by
others. These isolated users likely abandoned their accounts soon
after registration, and did not have enough time to establish links
with friends within the campus network. Further analysis into the
behavior and activities of these isolated users is the subject of on-
going work.
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3. PROPERTIESOF INTERACTIONEVENTS
Our work focuses on the analysis of latent interaction events and

the role they play in OSNs. In our measurement of the Renren
OSN, we use histories of visits to user profiles to capture latent
interactions. In this section, we take a closer look at latent interac-
tions and compare them with visible interactions from a variety of
perspectives.

3.1 Popularity and Consumption
We begin by analyzing the distribution of latent interactions across

the Renren user-base. We define popularity as the number of views
a user’s profile receives; this is equivalent to the user’s in-degree of
latent interactions. Figure 9 shows the distribution of user popular-
ity. As expected, popularity is not evenly spread across the popu-
lation: only 518 people (1%) are popular enough to receive more
than 10,000 views. Conversely, the majority of users (57%) exhibit
very low popularity with less than 100 total profile views.
Figure 10 shows the average number of visits users receive on a

daily basis. The distribution is fitted to a Zipf distribution of the
form βx−α where α = 0.71569687 and β = 697.4468225. Pop-
ular users receive many more views per day: 141 users (0.2%) are
viewed more than 20 times a day on average, with the most pop-
ular profile being viewed more than 600 times a day. Most users
(85.5%) receive less than one visit per day on average. This rein-
forces our finding that latent interactions are highly skewed towards
a very popular subset of the population.
Finally, we examine whether the popularity of users corresponds

to their profile viewing behavior. We define consumption as the
number of other profiles a user views; this is equivalent to the
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Figure 13: PDF of interval time between repeat visits

user’s out-degree of latent interactions. Figure 11 plots the over-
lap between the top users sorted by popularity, and top users sorted
by consumption. The graph shows that the top 1% most popular
users have 9% overlap with the top 1% biggest consumers. These
users represent a hard-core contingent of social network users who
are extremely active. For the most part however, users with high
numbers of incoming latent interactions do not overlap with the
people generating those interactions, e.g. profiles of celebrities
are viewed by many users, but they are inactive in viewing oth-
ers’ pages. This necessarily means that many (presumably average,
low-degree) users actively visit others, but are not visited in return.
We examine the reciprocity of latent interactions in more detail in
Section 3.3.

3.2 Composition of Visitors
Next, we want to figure out the composition of visitors to user

profiles. We pose two questions: first, what portion of profile vis-
itors are repeat visitors? Second, are visitors mostly friends of the
profile owner, or are they unrelated strangers?
We begin by addressing the first question. We calculate the per-

centage of repeated visitors for each profile, and report the distri-
bution in Figure 12. Roughly 70% of users have less than 50%
repeat visitors, meaning that the majority of visitors do not browse
the same profile twice. This seems to indicate the long tail of la-
tent interactions is generated by users randomly browsing the social
graph.
Next, we take a closer look at repeat profile visits. Figure 13

shows the probability density function (PDF) of the interval time
between repeat visits. The graph peaks on day 0, meaning that
users are most likely to return to a viewed profile on the same day.
We will examine the causes for this behavior more closely in Sec-

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 o

f U
se

rs
 (C

D
F)

% of Strangers in Visitors
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Figure 15: Breakdown of visitors by owner’s social degree

tion 4. The probability for repeated views decreases as the time
delta expands, except for a noticeable peak at day 7. Interestingly,
this shows that many users periodically check on their friends on a
weekly basis. We confirmed that this feature is not an artifact in-
troduced by our crawler or the use of RSS feeds by Renren users.
Instead, we believe it may be due to the tendency for many users to
browse their friends’ profiles over the weekend.
We now move on to our second question: what users are gener-

ating latent interactions, friends of the profile owner, or strangers.
We define a stranger as any user who is not a direct friend of the
target user. Like Facebook, Renren’s default privacy settings allow
users in the same campus network to browse each other’s profiles.
Renren automatically recommends popular profiles to other users
in the same network, which motivates people to view non-friends’
profiles. However, they only recommend the 100 users in the net-
work with the most users. Thus this feature should have minimal
impact on our analysis of visitors to the average Renren user.
In order to answer our question, we calculate the percentage of

visitors that are strangers and display the results in Figure 14. The
results are fairly evenly divided: roughly 45% of users receive less
than 50% of their profile visits from strangers. Or conversely, a
slight majority of the population does receive a majority of their
profile views from strangers.
We want to take a closer look at what component of a profile’s

visitors are strangers, and how far are they from the profile owner
in the social graph. In Figure 15, we group the owners of profiles
together by their social degree, and compute the average break-
down of their visitors into users who are friends (1-hop), friends-of-
friends (2-hop) and other visitors (2+ hops). We see that for users
with relatively few (< 100) friends, the large majority of their vis-
itors are complete strangers, with very few friends-of-friends visit-
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Figure 17: Ratio of reciprocated latent interactions over total
latent relationships

ing. For well-connected users with 100–1000 friends, the majority
of their visitors are direct friends, and also a significant number of
friends-of-friends. Finally, for extremely popular users with more
than 1000 friends, their notoriety is such that they start to attract
more strangers to visit their profiles. These results confirm those
from previous work that discovered many Orkut users browse pro-
files 2 or more hops away on the social graph [3].
Unlike friends, strangers do not build long-term relationships

with profile owners. Intuitively, this would seem to indicate that
repeat profile viewing behavior should favor friends over strangers.
To investigate this we compute the average number of visits for
strangers and friends for each profile and plot the distribution in
Figure 16. Surprisingly, our results indicate that the repeat pro-
file viewing behavior for friends and strangers is very similar, with
friends only edging out strangers by a small margin. This result
demonstrates that when considering information dissemination via
latent interactions, the significance of non-friend strangers should
not be overlooked.

3.3 Reciprocity
Social norms compel users to reply to one another when con-

tacted via visible interactions. Prior work has shown that these
interactions are largely reciprocal on OSNs [29]. However, is this
true of latent interactions? Since Renren users have full access to
the list of recent visitors to their profile, it is possible for people to
pay return visits to browse the profiles of their visitors. The ques-
tion is, does visiting other user profiles actually trigger reciprocal
visits?
As the first step towards looking at reciprocity of latent interac-

tions, we construct the set of visitors who view each user profile,
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Figure 19: Distribution of total interactions

and the set of people who are visited by each user. Then, we com-
pute the intersection and union of these two sets for every user.
Intuitively, intersections include people who view a given user pro-
file and are also visited by that user, i.e. the latent interactions are
reciprocated. Unions contain all latent relationships for a given
user, i.e. all users who viewed them, or they viewed. We calculate
the ratio of intersection size to union size for each user and then
plot the results in Figure 17. The ratio represents the number of
reciprocated latent interactions divided by the total number of la-
tent relationships. For more than 93% of users, less than 10% of
latent relationships are reciprocated. This demonstrates that incom-
ing profile views have little influence on user’s profile browsing be-
havior. This is surprising, especially considering the fact that users
know that their visits to a profile are visible to its owner through
the visitor history feature.
Next we examine the time-varying characteristics of reciprocal

profile visits for both strangers and friends. We compute the num-
ber of reciprocal visits that take place within t days after the initial
visit. Figure 18 shows the results for threshold t values of 1 and
5 days plus the entire 90 days. As we look at increasingly larger
window sizes, we see more profile visits being reciprocated. How-
ever, reciprocity remains low overall. Even across the entire mea-
surement period, 73% of users receive no reciprocal page views
from strangers, and 45% of users obtain no reciprocal page views
from friends. This demonstrates that even with Renren’s visitor his-
tory feature, visiting other user profiles is not sufficient to generate
reciprocal visits. Compared to strangers, friends have relatively
higher probability of reciprocal visits.
We take a further step and quantify the lack of reciprocity for la-

tent interactions. For a data set of n users, if user i visits user j, then
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Figure 20: Distribution of interactions among each user’s
friends

vij = 1, otherwise vij = 0. The reciprocity coefficient [7] is de-
fined as

P

i!=j(vij−v̄)(vji−v̄)
P

i!=j(vij−v̄)2
, where v̄ =

P

i!=j vij

n(n−1) . The reciprocity
coefficient is measured between -1 and 1, where positive values
indicate reciprocity, and negative values anti-reciprocity. The reci-
procity coefficient of profile visits on Renren is only 0.23. In con-
trast, reciprocity of visible comments on Renren is 0.49, and the
reciprocity of visible interactions on Cyworld [7] is 0.78. Com-
pared to these visible interactions, latent interactions show much
less reciprocity.

3.4 Latent vs. Visible Interactions
In this section, we compare the characteristics of latent and visi-

ble interactions. To understand the level of participation of different
users in both latent and visible interactions, Figure 19 plots the con-
tribution of different users to both kinds of interactions. The bulk of
all visible interactions can be attributed to a very small, highly in-
teractive portion of the user-base: the top 28% of users account for
all such interactions. In contrast, latent interactions are quite preva-
lent across the entire population, with more than 93% of all users
contributing to latent interaction events. This confirms our origi-
nal hypothesis that users are more active in viewing profiles than
leaving comments, potentially because of a sense of anonymity in
profile browsing. Given its widespread nature, this result also un-
derscores the importance of understanding latent interactions as a
way of propagating information across OSNs.
Next, we compare latent and visible interactions in coverage of

friends. We compute for each user a distribution of their latent
and visible interactions across their social links. We then aggregate
across all users the percentage of friends involved in these events
and plot the results in Figure 20. We see that roughly 80% of users
only interact visibly with 5% of their friends, and no users interact
with more than 40% of their friends. In contrast, about 80% of users
view 20% or more of their friends’ profiles, and a small portion of
the population views all of their friends’ profiles regularly. Thus,
although not all social links are equally active, latent interactions
cover a wider range of friends than visible interactions.
To get a sense of how many visible comments are generated by

latent interactions, we examine the average number of comments
per page view for a variety of pages on Renren, including profiles,
diary entries, and photos. Figure 21 plots the results. Recall that
along with visible comments, Renren keeps a visitor counter for
each photo and diary entry. For diary entries and photos, the con-
version rate is very low: 99% of users have less than 0.2 com-
ments for every photo view, and 85% people have less than 0.2
comments for every diary view. This indicates that most users
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ferent types of pages
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Figure 22: Average number of interactions per profile

are passive information consumers: they view/read content and
then move on without commenting themselves. In contrast, profile
views have a higher conversion rate. Interestingly, 13% of users
have a view/comment ratio greater than 1. This is because these
users use profile comments as a form of instant messaging chat,
leaving multiple responses and replies upon each visit.
Finally, we analyze the repeat activity frequency for latent and

visible interactions on Renren. In particular, we want to exam-
ine the likelihood that users will repeatedly interact with the same
page once they have viewed or commented on it once. Figure 22
plots the average number of interactions each user has with profile
pages. 80% of users view a given profile <2 times. However, 80%
of users leave 3.4 comments, almost twice the number of latent in-
teractions. This result makes sense intuitively: for most types of
data users only need to view them once to consume the data. How-
ever, comments can stimulate flurries of dialog on a given page,
resulting in many consecutive interactions.

4. FACTORS INFLUENCING LATENT
INTERACTIONS

As shown in Section 3.1, not all users in Renren are the target
of equal numbers of latent interactions. In this section, we ana-
lyze factors that may impact latent interactions in order to quantify
their effect on the popularity of individual users. We examine the
following factors:

Friends. Does social degree directly correlate with popularity?

Lifetime. Are long lived accounts more likely to be popular
than newer, less active accounts? We measure the number of days



Popularity Friends Lifetime Diary Photo Status Share Comment
0-100 16 (0.15) 35 (0.55) 1 (0.51) 3 (0.47) 1 (0.5) 1 (0.5) 2 (0.54)

100-1000 131 (0.56) 423 (0.41) 11 (0.33) 41 (0.24) 27 (0.36) 43 (0.41) 96 (0.45)
1000-10000 401 (0.43) 792 (0.24) 50 (0.18) 125 (0.1) 115 (0.18) 155 (0.23) 596 (0.28)

>10000 708 (0.02) 869 (0.02) 117 (0.02) 251 (-0.03) 236 (0.01) 273 (-0.05) 1581 (0.01)
all users 112 (0.73) 263 (0.75) 12 (0.70) 34 (0.61) 28 (0.69) 39 (0.72) 134 (0.76)

Table 2: Average value of factors affecting user popularity. Spearman’s rank correlation coefficient for each value is shown in
parentheses.

in between a user joining and leaving Renren. Neither of these
pieces of information is provided by Renren, and thus must be esti-
mated. Join date can be approximated by the timestamp of the first
comment received by a user, since the comment is likely to be a
“welcome message” from a friend greeting the new user [29]. Be-
cause abandoned and inactive accounts can still receive comments,
the best estimate of departure time is the timestamp of the last com-
ment left by a user.

User-generated content. Do users who frequently update their
profiles and upload new content attract the most visitors? This in-
cludes user’s status updates, diary entries, photos, and shared links
to content on the web.

Comments. Do users who comment frequently attract more
users? Comments are snippets of text that user’s can attach to other
pieces of user-generated content.
We divide users into 4 groups based on their popularity, calculate

the average value of these factors in each group, and display the
results in Table 2. All factors increase along with popularity, i.e. the
most popular users also have the most friends, the oldest accounts,
and generate the largest amounts of content/visible interactions.
Given the drastic differences in size of each popularity group,

and the average nature of the values in Table 2, it is difficult to
infer definite correlations between any one factor and popularity.
To analyze these correlations more specifically, we leverage a tech-
nique from prior work [4] called Spearman’s rank correlation co-
efficient (Spearman’s ρ). Spearman’s ρ is a non-parametric mea-
sure of the correlation between two variables that is closely re-
lated to Pearson’s correlation coefficient [18]. It is defined as ρ =

1−
6

P

(xi−yi)
2

n(n2−1)
, where xi and yi are the ranks of two different fea-

tures in a data set of n users. ρ >0 indicates positive correlation,
while <0 indicates negative correlation.
Table 2 shows Spearman’s ρ in parenthesis beside the average

value for each factor. Although all factors exhibit high correlation
with the low popularity and “all users” categories, this is an artifact
of the tied ranks among the (numerous) low activity users. All of
these users exhibit very low interactivity and social degree, thus
leading to high levels of correlation. Previous work has observed
similar artifacts when analyzing all users in a large OSN dataset [4].
For the two median popularity groups (100-1000 and 1000-10000),

number of friends has the highest correlation with popularity. Users
in these categories can be broadly defined as normal social net-
work users. They are not celebrities; they simply use the OSN for
its intended purpose of sharing information with friends. This is
reflected in the fact that users in these categories show relatively
high levels of correlation across all user-generated content cate-
gories. Account lifetime is a less important factor for users in the
1000-10000 popularity range, given the ease with which users can
quickly amass hundreds of friends on OSNs.
No factor has strong correlation with popularity for users in the

high popularity group. Spearman’s ρ for photos and shared links
are even negative. This is an important finding, as it shows pop-

ularity is not trivially gained simply by having lots of friends, or
producing copious amounts of user-generated content. Therefore,
there must be other factors outside the scope of our measurements
that contribute to determine user popularity. One possibility is that
quality, rather than quantity, of content may be a significant draw to
attract visitors. Another possibility is that real-world celebrity sta-
tus is the most important determining factor of online popularity.
Unfortunately, we cannot quantify these factors at present.
Recall that 100 of the most popular users in the university net-

work are recommended to users by Renren. These 100 users ac-
count for less than 19.3% of the total users in the high popularity
group, so the recommendation mechanism has limited impact on
the high popularity group results.

5. LATENT INTERACTION GRAPHS
Previous studies have demonstrated that taking visible interac-

tions into account has important implications for applications that
leverage social graphs [29]. These changes can be modeled by in-
teraction graphs, which are constructed by connecting users from
the social graph who have visibly interacted one or more times.
We have already demonstrated significant differences between

latent and visible interaction patterns on Renren. To summarize
these key differences briefly, latent interactions are more numer-
ous, non-reciprocal, and often connect non-friend strangers. These
results are also likely to have profound implications on applications
that leverage social graphs, and thus warrant the construction of a
new model to capture the properties of latent interactions. We call
this new model a latent interaction graph. In this section we for-
mally define latent interaction graphs, analyze their salient proper-
ties, and compare them to the Renren social and visible interaction
graphs.

5.1 Building Latent Interaction Graphs
A latent interaction graph is defined as a set of users (nodes) that

are connected via edges representing latent interaction events be-
tween them. Unlike the social graph and visible interaction graph,
we have shown that latent interaction is non-reciprocal (Section 3.3).
Thus, we use directed edges to represent user’s page views, unlike
the social and visible interaction graphs, which are both undirected.
The set of users (61,405 total) remains unchanged between the so-
cial and interaction graphs. We define latent interaction in-degree
of a node as the number of visitors who have visited that user’s pro-
file; while out-degree is the number of profiles that user has visited.
We construct latent interaction graphs from our Renren data us-

ing profile views as the latent interactions. We use user comments
as the visible interaction data to construct visible interaction graphs
for Renren. In this paper we restrict our social, latent, and visible
interaction graphs to only contain users from the PKU network,
since these are the only users for which we have complete inter-
action records. Note that we only consider interactions that occur
between users in the PKU network, as it is possible for interac-
tions to originate from or target users outside the network for whom
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Figure 23: CCDF of node degree for latent interaction graph,
visible interaction graph and social graph.

we have limited information. Also note that because non-friend
strangers can view user’s profiles, the latent interaction graph will
contain edges between users who are not friends in the social graph.
Our formulation of interaction graphs uses an unweighted graph.

We do not attempt to derive a weight scheme for interaction graphs
analyzed in this paper, but leave exploration of this facet of latent
interaction graphs to future work.

5.2 Comparing Social, Visible Interaction and
Latent Interaction Graphs

In this section we compare the salient characteristics of the Ren-
ren social, visible, and latent interaction graphs using common graph
metrics.

Degree distribution. Figure 23 plots the CCDFs of node de-
gree for the three types of graphs. Since the latent interaction graph
is directed, we plot both in-degree and out-degree. In Section 3.4
we show that latent interactions are more prevalent than visible in-
teractions. This is reflected in the relative number of edges in the
two interaction graphs, as shown in Table 3. This also leads to
nodes in the latent graph having a noticeably higher degree distribu-
tion in Figure 23. However, neither of the interaction graphs have
as many edges as the raw social graph, which leads to the social
graph having the highest degree distribution. Interestingly, because
a small number of Renren users are frequent profile browsers, i.e.
they like to visit a large number of profiles (far greater than their
circle of friends), the distribution of latent out-degrees flattens out
at the tail-end and never approaches 0%.
Despite these differences, latent interaction graphs still exhibit

power-law scaling. Table 3 shows similar in- and out-degree power-
law fit alpha values for latent interaction graphs compared to the
visible interaction graph and the social graph. Renren limits users
to of 1,000 friends (2,000 for paying users), so all power-law curves
decline quickly to zero, and alpha values are high.

Clustering coefficient. Table 3 shows that the average cluster-
ing coefficient is 0.03 for the latent interaction graph, and 0.05 for
the visible interaction graph, which are both much less than that
of the social graph. This is because not all social links are accu-
rate indicators of active social relationships, and these links with
no interactions are removed in interaction graphs. This produces
loose connections between neighbors, and low clustering coeffi-
cients in these graphs. A portion of the latent interactions to a pro-
file is from non-friend strangers who randomly browse the network.
Thus, links between visitors in the latent interaction graph are less

intensive than friends exchanging messages, which further lowers
the clustering coefficients in latent interaction graphs.

Assortativity. Table 3 shows that the Renren latent interac-
tion graph is slightly disassortative. This makes sense intuitively,
as latent interactions are highly skewed towards a small subset of
extremely popular users. In contrast, the other two graphs are both
assortative, with the social graph being more so. This result con-
trasts with previous studies in which the interaction graph was more
assortative than the social graph [29].

Average path length. The average path length of the latent
interaction graph is between that of the visible interaction graph
and the social graph. As the average number of links per node
and the number of high-degree “super-nodes” decreases, the overall
level of connectivity in the graph drops. This causes average path
lengths to rise, especially in the visible interaction graph.

6. IMPACT ON SOCIAL APPLICATIONS
In the previous section, we analyzed salient properties of the

Renren social, visible interaction, and latent interaction graphs.
However, it remains unknown how different graph metrics impact
the performance of real-world social applications. Social appli-
cation tests present new perspectives since their performance on
a particular graph cannot be easily correlated with a single graph
metric.
Changes in user connectivity patterns can produce significantly

different results for social network applications. In order to vali-
date how much impact the choice of graphs can make on socially
enhanced applications, we implement techniques from the paper
“Efficient influence maximization” [6]. This work leverages graph
properties in social networks to address information dissemination
problems. We compare the effectiveness of these algorithms on the
raw social graph, visible interaction graph, and latent interaction
graph that are derived from our Renren measurements of the PKU
network. These results allow us to validate whether socially en-
hanced applications require a model that takes latent interactions
into account.

6.1 Efficient Influence Maximization
As OSNs become increasingly popular worldwide, they also be-

come more critical platforms for information dissemination and
marketing. Understanding how to fully utilize OSNs as marketing
and information dissemination platforms is a significant challenge.
The influence maximization problem seeks to determine the most
influential individuals who will maximum the spread of informa-
tion in an OSN.
Given the lack of publicly available social influence datasets,

previous work [6, 14] builds statistical models based on raw so-
cial graph topologies, and designs algorithms to address influence
maximization problems within these models.

Weighted cascade model. The weighted cascade model relies
on social links for information propagation [14]. After receiving
information, a user has a single chance of activating each currently
inactive neighbor. In this model, the activation probability is related
to node’s degree: if a person w has dw neighbors, it is activated by
neighbors with probability 1/dw . Chen et al. propose instantiating
theMixedGreedyWC algorithm to implement the weighted cascade
model [6].

Latent cascade model. The weighted cascade model is based
on social graphs, and relies on social relationships plus the activa-
tion probability to simulate the information dissemination process.



Network Edges Power-Law Fit Alpha Cluster Coef. Assortativity Avg. Path Len.
Social Graph 753,297 3.5 0.18 0.23 3.64

Visible Interaction Graph 27,347 3.5 0.05 0.05 5.43
Latent Interaction Graph 240,408 3.5(in) 3.39(out) 0.03 -0.06 4.02

Table 3: Topology measurements for latent interaction, visible interaction and social graphs.
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Figure 24: Influence spread using the MixedGreedyWC algo-
rithm on different graphs.

However, we observe that information is not disseminated equally
through social links. User profiles are usually only viewed by a
small portion of friends, thus not all social links are active in in-
formation propagation. Moreover, a portion of the visits to profiles
can be attributed to people not connected to the user, i.e. strangers.
When a user browses a profile, information in the web page is

naturally propagated to that user. It is more accurate to represent
information dissemination by links in latent interaction graphs than
by passive friendship links in the social graph. Thus, to take latent
interaction graphs into account we define the latent cascade model.
When a person receives information, they have a single chance
to activate inactive neighbors, who have directed links pointing to
that person in the latent interaction graph. To transform the visitor
counts from our month-long measurement into activation proba-
bilities, we calculate the number of unique visitors for every user
and determine the most popular user. We then compute the acti-
vation probability of every user by normalizing that user’s number
of unique visitors by the maximum value. This approximates an
activation probability using the “visit rate” normalized to the most
popular profile. We use visits from unique users and exclude re-
peated visits here, because the first visit contributes the most to
the information propagation, and repeated follow-up visits are less
likely to propagate information.

Visible cascade model. The visible cascade model is built
atop visible interaction graphs, in a similar fashion to the latent
cascade model. The information dissemination path is decided by
visible interaction events, and the per node activation probability is
determined using the same method as in the latent cascade model.

6.2 Experimental Results
For our experiments, we use the MixedGreedyWC algorithm [6]

to find the most influential individuals in each of our three models,
and then compute the number of people influenced. We vary the
set of seed users to the MixedGreedyWC algorithm from 1 to 100
in our tests and observe the effects on influence spread.
Figure 24 shows influence spread versus seed set size for our

three models. Influence in the weighted and latent cascade model

both increase quickly in the beginning. Eventually, as more seeds
are selected, the number of people influenced in latent cascade
model surpasses the weighted model. The reason for this is that
although social graphs have a large amount of links, the activation
probability is generally low. This limits the spread of information to
well connected components of the graph. Conversely, latent inter-
action graphs are constructed by page viewings, which correspond
to higher activation probability. This is in accordance with real sit-
uations: people are likely to receive information when they browse
profiles, while information cannot be disseminated through inactive
social links. These high probabilities guarantee that information is
progressively disseminated through the limited number of links in
the latent interaction graph. Previous sections show that visible in-
teraction graphs have the least number of links. Thus, although ac-
tivation probabilities are relatively high, the visible cascade model
reaches the smallest influence spread due to the dearth of links.

7. RELATED WORK
Much effort has been put into understanding the structure of

large-scale online social networks [8]. Ahn et al. analyze topo-
logical characteristics of Cyworld, MySpace and Orkut [1]. Mis-
love et al. measure the structure of Flickr, YouTube, LiveJour-
nal, and Orkut [22], and observe the growth of the Flickr social
network [21]. Java et al. study the topological and geographical
properties of Twitter [13]. Huang et al. measure user prestige
and visible interaction preference in Renren [12]. To the best of
our knowledge, our measurement of the Renren network provides
the largest non-Twitter social graph to date, with 42,115,509 users
and 1,657,273,875 friendship links. Most of Renren’s topological
properties are similar to those of other OSNs, including power-law
degree distribution and small world properties.
Researchers have also studied the visible interaction network.

Leskovec et al. analyze the instant messaging network, which con-
tains the largest amount of user conversations ever published [19].
Valafar et al. characterize indirect fan-owner interactions via pho-
tos among users in Flickr [27]. Chun et al. observe that visible
interactions are almost bidirectional in Cyworld [7]. Wilson et al.
show the structure of the interaction graph differs significantly from
the social network in Facebook [29]. Viswanath et al. observe that
social links in the activity network tend to come and go quickly
over time [28]. Finally, a recent study from Northwestern and UC
Santa Barbara quantified the role of spam and phishing attacks in
Facebook wall posts [10].
Benevenuto et al. collect detailed click-stream data from a Brazil-

ian social network aggregator, and measure silent activities like
browsing [3]. Schneider et al. extract click-streams from passively
monitored network traffic and make similar measurements [25].
We analyze latent interactions from a different perspective than
these existing works by leveraging data that is intrinsic to the OSN
and not inferred from a third-party. Ideally, we would like to per-
form a detailed comparison between our dataset and prior studies
using click-stream datasets. Unfortunately, the sensitive nature of
these datasets make their distribution challenging. At publication
time, we are currently unaware of any publicly available click-
stream dataset.



Some researchers have performed initial studies on information
propagation and user influence in OSNs. Cha et al. present a de-
tailed analysis of popularity and dissemination of photographs on
Flickr [5]. They find that popular users with high in-degree are not
necessarily influential in terms of spawning subsequent, viral in-
teractions in the form of retweets or mentions on Twitter [4]. Our
Renren data confirms these results, as we show that factors like
number of friends and amount of user-generated content produced
are not strongly correlated with popularity.

8. CONCLUSIONS
Latent user interactions make up the large majority of user ac-

tivity events on OSNs. In this paper, we present a comprehen-
sive study of both visible and latent user interactions in the Ren-
ren OSN. Our data includes detailed visit histories to the profiles of
61,405 Renren users over a 90-day period (September to November
2009). We compute a single visitor history for each profile by using
a novel technique to merge visitor logs from multiple consecutive
crawls. We analyze profile visit histories to study questions of user
popularity and reciprocity for profile browsing behavior, and the
link between passive profile browsing and active comments.
Our analysis reveals interesting insights into the nature of user

popularity in OSNs. We observe that user behavior changes for la-
tent interactions: more users participate, users do not feel the need
to reciprocate visits, and visits by non-friends make up a signifi-
cant portion of views to most user profiles. We also see that visits
to user profiles generate more active interactions (comments) than
visits to photos or diary pages. Using profile browsing events, we
construct latent interaction graphs as a more accurate representa-
tion of meaningful peer interactions. Analysis of latent interaction
graphs derived from our Renren data reveal characteristics that fall
between visible interaction graphs and social graphs. This confirms
the intuition that latent interactions are less limited by constraints
such as time and energy, but more meaningful (and thus sparser)
than the social graph.
Finally, our measurement study also includes an exhaustive crawl

of the largest connected component in the Renren social graph. The
resulting graph is one of the biggest of its kind, with more than 42
million nodes and 1.6 billion edges. Other than the proprietary Cy-
world dataset, this is the only social graph we know of that covers
100% of a large social graph component. Given its size and com-
prehensiveness, we are currently investigating different options for
sharing this dataset with the research community.
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