
Efficient Influence Maximization in Social Networks

Wei Chen
Microsoft Research Asia

Beijing, China
weic@microsoft.com

Yajun Wang
Microsoft Research Asia

Beijing, China
yajunw@microsoft.com

Siyu Yang
Dept. of Computer Science

Tsinghua University
Beijing, China

siyu.yang@gmail.com

ABSTRACT
Influence maximization is the problem of finding a small subset
of nodes (seed nodes) in a social network that could maximize the
spread of influence. In this paper, we study the efficient influence
maximization from two complementary directions. One is to im-
prove the original greedy algorithm of [5] and its improvement [7]
to further reduce its running time, and the second is to propose new
degree discount heuristics that improves influence spread. We eval-
uate our algorithms by experiments on two large academic collabo-
ration graphs obtained from the online archival database arXiv.org.
Our experimental results show that (a) our improved greedy algo-
rithm achieves better running time comparing with the improve-
ment of [7] with matching influence spread, (b) our degree discount
heuristics achieve much better influence spread than classic degree
and centrality-based heuristics, and when tuned for a specific influ-
ence cascade model, it achieves almost matching influence thread
with the greedy algorithm, and more importantly (c) the degree dis-
count heuristics run only in milliseconds while even the improved
greedy algorithms run in hours in our experiment graphs with a few
tens of thousands of nodes.

Based on our results, we believe that fine-tuned heuristics may
provide truly scalable solutions to the influence maximization prob-
lem with satisfying influence spread and blazingly fast running
time. Therefore, contrary to what implied by the conclusion of [5]
that traditional heuristics are outperformed by the greedy approx-
imation algorithm, our results shed new lights on the research of
heuristic algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Experimentation, Performance

Keywords
social networks, influence maximization, heuristic algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$10.00.

1. INTRODUCTION
Recently many large-scale online social network sites, such as

Facebook and Friendster, become successful because they are very
effective tools in connecting people and bringing small and discon-
nected offline social networks together. Moreover, they are also
becoming a huge dissemination and marketing platform, allowing
information and ideas to influence a large population in a short pe-
riod of time. However, to fully utilize these social networks as mar-
keting and information dissemination platforms, many challenges
have to be met. In this paper, we present our work towards address-
ing one of the challenges, namely finding influential individuals
efficiently in a large-scale social network.

Consider the following hypothetical scenario as a motivating ex-
ample. A small company develops a cool online application for
an online social network and wants to market it through the same
network. It has a limited budget such that it can only select a small
number of initial users in the network to use it (by giving them gifts
or payments). The company wishes that these initial users would
love the application and start influencing their friends on the social
network to use it, and their friends would influence their friends’
friends and so on, and thus through the word-of-mouth effect a
large population in the social network would adopt the application.
The problem is whom to select as the initial users so that they even-
tually influence the largest number of people in the network, i.e.,
the problem of finding influential individuals in a social network.

This problem, referred to as influence maximization, would be
of interest to many companies as well as individuals that want to
promote their products, services, and innovative ideas through the
powerful word-of-mouth effect (or called viral marketing). Online
social networks provide good opportunities to address this prob-
lem, because they are connecting a huge number of people and
they collect a huge amount of information about the social net-
work structures and communication dynamics. However, they also
present challenges to solve the problem. The social networks are
large-scale, have complex connection structures, and are also very
dynamic, which means that the solution to the problem needs to be
very efficient and scalable.

Domingos and Richardson [3, 8] are the first to study influence
maximization as an algorithmic problem. Their methods are proba-
bilistic, however. Kempe, Kleinberg, and Tardos [5] are the first to
formulate the problem as the following discrete optimization prob-
lem. A social network is modeled as a graph with vertices rep-
resenting individuals and edges representing connections or rela-
tionship between two individuals. Influence are propagated in the
network according to a stochastic cascade model. Three cascade
models, namely the independent cascade model, the weight cas-
cade model, and the linear threshold model, are considered in [5].
Given a social network graph, a specific influence cascade model,



and a small number k, the influence maximization problem is to
find k vertices in the graph (refered to as seeds) such that under
the influence cascade model, the expected number of vertices in-
fluenced by the k seeds (referred to as the influence spread in the
paper) is the largest possible.

Kempe et al. prove that the optimization problem is NP-hard, and
present a greedy approximation algorithm applicable to all three
models, which guarantees that the influence spread is within (1 −
1/e) of the optimal influence spread. They also show through ex-
periments that their greedy algorithm significantly outperforms the
classic degree and centrality-based heuristics in influence spread.

However, their algorithm has a serious drawback, which is its ef-
ficiency. A key element of their greedy algorithm is to compute the
influence spread given a seed set, which turns out to be a difficult
task. Instead of finding an exact algorithm, they run Monte-Carlo
simulations of the influence cascade model for sufficiently many
times to obtain an accurate estimate of the influence spread. As a
result, even finding a small seed set in a moderately large network
(e.g. 15000 vertices) could take days to complete on a modern
server machine.

Several recent studies aimed at addressing this efficiency issue.
In [6], Kimura and Saito propose shortest-path based influence cas-
cade models and provide efficient algorithms of compute influence
spread under these models. However, since the influence cascade
models are different, they do not directly address the efficiency is-
sue of the greedy algorithms for the cascade models studied in [5].

In [7], Leskovec et al. present an optimization in selecting new
seeds, which is referred to as the “Cost-Effective Lazy Forward”
(CELF) scheme. The CELF optimization uses the submodular-
ity property of the influence maximization objective to greatly re-
duce the number of evaluations on the influence spread of ver-
tices. Their experimental results demonstrate that CELF optimiza-
tion could achieve as much as 700 times speedup in selecting seed
vertices, which is a very impressive result. However, our experi-
ments show that the improved algorithm still takes a few hours to
complete in a graph with a few tens of thousands of vertices, so it
is still not efficient for large-scale networks.

In this paper, we tackle the efficiency issue of influence maxi-
mization from two complementary directions. In one direction, we
design new schemes to further improve the greedy algorithm, and
combine our scheme together with the CELF optimization to obtain
faster greedy algorithms. In the other direction, we propose new
degree discount heuristics with influence spreads that are signifi-
cantly better than the classic degree and centrality-based heuristics
and are close to the influence spread of the greedy algorithm. The
biggest advantage of our heuristics is their speed, as they are many
orders of magnitude faster than all greedy algorithms.

Our new greedy algorithms and degree discount heuristics are
derived from the independent cascade model and weighted cas-
cade model. We conduct extensive experiments on two real-life
collaboration networks to compare our algorithms with the CELF
optimized algorithm as well as classic degree and centrality heuris-
tics. The two metrics we compare are influence spread and running
time. For our new greedy algorithms, their influence spread exactly
match with the original greedy algorithm, whereas their running
times are 15% to 34% shorter than the CELF optimization. For our
degree discount heuristics, their influence spread are close to that
of the greedy algorithm, and always outperforms the classic degree
and centrality-based heuristics. One particular heuristic tuned for
the independent cascade model with a small propagation probabil-
ity almost matches the influence spread of the greedy algorithm
(same as the greedy algorithm in one experimental graph and 3.4%
lower in another graph) in the independent cascade model. Their

biggest advantage is their blazingly fast speed — they complete the
task in only a few milliseconds, which is less than one-millionth of
time of the fastest greedy algorithm. Furthermore, we also run our
greedy and heuristic algorithms on the linear threshold model. Our
results demonstrate that our new algorithms still have good influ-
ence spread performance in the linear threshold model. Therefore,
they are robust across these models.

These results provide us a new perspective in the study of the
influence maximization problem. Instead of focusing our effort in
further improving the running time of the greedy algorithm, it per-
haps more promising to focus on improving heuristics that could
be a million times faster and making their influence spread close to
the greedy algorithm.

To summarize, our contributions are mainly twofold. First, we
provide further improvement to the greedy algorithm that has guar-
anteed approximate influence spread. Second, and more impor-
tantly, we propose new heuristics that have influence spreads close
to the greedy algorithm while running at more than six orders of
magnitude faster than the greedy algorithm. Encouraged by these
results, we suggest that the promising approach in solving the in-
fluence maximization problem for large-scale social networks is to
invest in heuristics to improve their influence spread, rather than
trying to improve the running time of the greedy algorithms, which
is the approach taken by most previous studies.

The rest of the paper is organized as follows. Section 2 presents
the greedy algorithm and our new improvements to the greedy algo-
rithm in the independent cascade model and the weighted cascade
model. Section 3 presents the degree discount heuristics. Section 4
show our experimental results. We conclude the paper in Section 5.

2. IMPROVING THE GREEDY
ALGORITHM

In this section, we discuss improvement of the greedy algorithm
proposed by Kempe, et al. [5] for the independent cascade model
as well as the weighted cascade model.

2.1 Problem definition and the greedy
algorithm

A social network is modeled as an undirected graph G = (V, E),
with vertices in V modeling the individuals in the network and
edges in E modeling the relationship between individuals. For ex-
ample, in our experiment section, we study coauthorship graphs
where vertices are authors of academic papers and two vertices
have an edge if the two corresponding authors have coauthored a
paper.1 We use n to denote the number of vertices and m to de-
note the number of edges throughout the paper. For convenience,
Table 1 lists important variables used throughout the paper.

Let S be the subset of vertices selected to initiate the influence
propagation, which we call the seed set. Let RanCas(S) denote
the random process of influence cascade from the seed set S, of
which the output is a random set of vertices influenced by S. Algo-
rithms in this paper take the graph G and a number k as input and
generate a seed set S of cardinality k, with the intention that the
expected number of vertices influenced by the seed set S, which
we call influence spread, is as large as possible.

1Our coauthorship graphs studied in the experiment section are ac-
tually multigraphs, with parallel edges between two vertices denot-
ing the number of papers coauthored by the two authors, same as
in [5]. For simplicity, however, in our explanation of the algorithms
and heuristics, we treat the graph as a simple graph. The results can
be generalized to multigraphs in a straightforward way.



Table 1: Important variables used in the paper.
Variables Descriptions
n number of vertices in G
m number of edges in G
k number of seeds to be selected

R
number of rounds of simulations in Algorithms 1,
2, and 3

T
number of iterations in the Cohen’s algorithm [1]
used in Algorithm 3.

p propagation probability in the IC model
dv degree of vertex v in G

tv
number of neighbors of vertex v already selected
as seeds

Algorithm 1 GeneralGreedy(G, k)

1: initialize S = ∅ and R = 20000
2: for i = 1 to k do
3: for each vertex v ∈ V \ S do
4: sv = 0.
5: for i = 1 to R do
6: sv += |RanCas(S ∪ {v})|
7: end for
8: sv = sv/R
9: end for

10: S = S ∪ {arg maxv∈V \S{sv}}
11: end for
12: output S.

Algorithm 1 describes the general greedy algorithm given a ran-
dom process RanCas(). In each round i, the algorithm adds one
vertex into the selected set S such that this vertex together with cur-
rent set S maximizes the influence spread (Line 10). Equivalently,
this means that the vertex selected in round i is the one that maxi-
mizes the incremental influence spread in this round. To do so, for
each vertex v /∈ S, the influence spread of S ∪ {v} is estimated
with R repeated simulations of RanCas(S ∪ {v}) (Lines 3–9).
Each calculation of RanCas(S) takes O(m) time, and thus Algo-
rithm 1 takes O(knRm) time to complete. Time complexity of all
algorithms in the paper are summarized in Table 2 for convenience
of comparison.

In [7], Leskovec et al. presents a CELF optimization to the orig-
inal greedy algorithm based on the the submodularity of the influ-
ence maximization objective. The submodularity property is that
when adding a vertex v into a seed set S, the incremental influence
spread as the result of adding v is larger if S is smaller. CELF
optimization utilizes submodularity such that in each round the in-
cremental influence spread of a large number of nodes do not need
to be re-evaluated because their values in the previous round are
already less than that of some other node evaluated in the current
round. CELF optimization has the same influence spread as the

Table 2: Time complexity of algorithms in this paper.
Algorithms Time complexity
Algorithm 1: GeneralGreedy O(knRm)
Algorithm 2: NewGreedyIC O(kRm)
Algorithm 3: NewGreedyWC O(kRTm)
Algorithm 4: DegreeDiscountIC O(k log n + m)

original greedy algorithm but is much faster, in fact 700 times faster
as reported in [7]. In this paper, we compare the running times of
our improved greedy algorithms with the CELF-optimized greedy
algorithm and show that we can further improve the greedy algo-
rithm.

The main difference between cascade models is the random cas-
cade process RanCas(S), which will be explained below.

2.2 Improvement for the independent cascade
model

In the independent cascade (IC) model, RanCas(S) works as
follows. Let Ai be the set of vertices that are activated in the i-
th round, and A0 = S. For any uv ∈ E such that u ∈ Ai and
v is not yet activated, v is activated by u in the (i + 1)-th round
with an independent probability p, which we call the propagation
probability. In other words, if there are ` neighbors of v that are
in Ai, v ∈ Ai+1 with probability 1 − (1 − p)`. This process is
repeated until Ai+1 is empty.

Notice that in the random process RanCas(S), each edge uv is
determined once, either from u to v or from v to u, on whether the
influence is propagated through this edge. Moreover, the probabil-
ity on either direction is the same propagation probability p. There-
fore, we may determine first whether uv is selected for propagation
or not, and remove all edges not for propagation from G to obtain
a new graph G′. With this treatment, the random set RanCas(S)
is simply the set of vertices reachable from S in G′. Let RG′(S)
denote the set of vertices reachable from S in graph G′. The advan-
tage of generating G′ first is that, with a linear scan of the graph G′

(by either DFS or BFS), we not only obtains RG′(S), but we can
also obtain the size of RG′({v}) for all vertices v ∈ V . Then, for
every v ∈ V \S, the additional number sv of vertices in G′ that are
influenced by selecting v into the seed set S is either |RG′({v})| if
v 6∈ RG′(S) or 0 if v ∈ RG′(S).

Therefore, by randomly generating G′ for R times, and each
time computing sv as stated above for all v ∈ V \ S by a linear
scan of graph G′, we can select the next best candidate vertex v
with the best average sv . Algorithm 2 gives the details of the above
improved algorithm. Since computing RG′(S) and RG′({v}) for
all vertices v ∈ V takes O(m) time, the running time of the algo-
rithm is O(kRm) where R is the number of simulations. There-
fore, our improvement in Algorithm 2 provides O(n) speedup to
the original greedy algorithm.2

In NewGreedyIC, each random graph is used to estimate the in-
fluence spread of all vertices, which may cause correlations among
influence spread estimates. However, we believe that these corre-
lations are insignificant, because (a) they do not affect the estimate
of each individual vertex, (b) correlations are mainly generated due
to vertices coexisting in the same connected component of some
random graphs, which are small comparing to the graph size, and
(c) the estimate is taken as an average from a large number of ran-
dom graphs (e.g. R = 20000), and thus for every pair of vertices
they coexist only in a small portion of random graphs sampled.
Our experiment results show that using the same number R New-
GreedyIC achieves the same influence spread as GeneralGreedy,
so there is no need to increase R to compensate the correlation ef-
fect.

Comparing our NewGreedyIC algorithm with the CELF opti-
mization, there is a tradeoff in running time. In the CELF opti-
mization, its first round is as slow as the original algorithm. How-
2In practice, the running time of RanCas(S) is dependent on
the size of the influenced vertices, which is much smaller than n.
Therefore, the actual improvement on the running time is not as
much as a factor of n, but is still significant.



Algorithm 2 NewGreedyIC(G, k)

1: initialize S = ∅ and R = 20000
2: for i = 1 to k do
3: set sv = 0 for all v ∈ V \ S
4: for i = 1 to R do
5: compute G′ by removing each edge from G with proba-

bility 1− p
6: compute RG′(S)
7: compute |RG′({v})| for all v ∈ V
8: for each vertex v ∈ V \ S do
9: if v /∈ RG′(S) then

10: sv += |RG′({v})|
11: end if
12: end for
13: end for
14: set sv = sv/R for all v ∈ V \ S
15: S = S ∪ {arg maxv∈V \S{sv}}
16: end for
17: output S

ever, starting from the second round, each round may only need
to explore a small number of vertices and the exploration of each
vertex is typically fast since RanCas(S) usually stops after ex-
ploring a small portion of the graph. In contrast, in every round of
our NewGreedyIC algorithm, we need to traverse the entire graph
R times to generate R random graphs G′. To combine the mer-
its of both improvements, we further consider the MixGreedyIC
algorithm, in which in the first round we use NewGreedyIC to se-
lect the first seed and compute influence spread estimates for all
vertices, and then in later rounds we use the CELF optimization to
select remaining seeds.

2.3 Improvement for the weighted cascade
model

Let dv be the degree of v in graph G, and let uv be an edge in G.
In the weighted cascade (WC) model, if u is activated in round i,
then with probability 1/dv , v is activated by u in round i+1. Sim-
ilar to the IC model, each neighbor can activate v independently.
Therefore, if a not-yet-activated vertex v has ` neighbors activated
during the i-th round, the probability that v is activated in round
i + 1 is 1− (1− 1/dv)`.

The major difference between RanCas(S) in the WC model
and the IC model is that the probability of u activating v is usually
not the same as the probability of v activating u. Because of this,
we build a directed graph Ĝ = (V, Ê), in which each edge uv ∈ E
is replaced by two directed edges ~uv and ~vu. We still use dv to
denote the degree of v in the original graph.

Consider the following random process: For each edge ~uv ∈ Ê,
we remove it from Ĝ with probability 1− 1/dv. Let RanWC(Ĝ)

denote this random process and G′ = RanWC(Ĝ) denote the re-
sulting directed graph. Therefore, the output of the random cascade
process RanCas(S) in the WC model is the same as RG′(S), the
set of vertices reachable in G′ from S.

Using the same idea from the IC model, in each round of the
greedy algorithm when selecting a new vertex to be added into the
existing seed set S, we generate R random directed graphs G′ =
RanWC(Ĝ). For each vertex v and each graph G′, we want to
compute |RG′(S ∪ {v})|, and then average among all G′ to obtain
the influence spread of S ∪ {v} and select v that maximizes this
value.

However, the algorithm differs from the IC model in its time
complexity of computing |RG′(S ∪ {v})| for all vertices v. In the
IC model, it takes O(m) time total since G′ is an undirected graph.
In the WC model, G′ is a directed graph, making the algorithm
non-trivial. A straightforward implementation using BFS from all
vertices take O(mn) time, or using fast binary matrix multiplica-
tion takes O(n2.38) [2], which is not as good as O(mn) for sparse
graphs such as social network graphs. To solve this problem, we
adapt the randomized algorithm of Cohen [1] for estimating the
number of all reachable vertices from every vertex.

We now briefly explain Cohen’s randomized algorithm in our
context of computing |RG′(S ∪ {v})| for all vertices v ∈ V \ S.
Given a directed graph G′, the first step is to traverse the graph
once, compute all strongly connected components of G′, and col-
lapse each strongly connected component into one vertex with the
weight being the size of the strongly connected component. Let
G′∗ denote the resulting directed acyclic graph (DAG), and let V ∗

denote the vertex set of G′∗. For any v ∈ V , let v∗ denote the corre-
sponding (collapsed) vertex in V ∗. Let S∗ = {v∗ ∈ V ∗ | v ∈ S}.
Let w(v∗) denote the weight of v∗ in G′∗. Thus, in O(m) time
we obtain a new directed acyclic graph (DAG) G′∗ such that ev-
ery vertex v∗ has a weight w(v∗). For S ⊆ V , Let w(S∗) =∑

v∗∈S∗ w(v∗). One important property of G′∗ with weights w()
is that w(RG′∗(S

∗ ∪ {v∗})) = |RG′(S ∪ {v})|.
Cohen’s algorithm estimates |RG′(S ∪ {v})| in T iterations. In

the i-th iteration, on every vertex v∗ ∈ V ∗ we take a random sam-
ple Xi

v∗ according to an exponential distribution with the proba-
bility density function w(v∗)e−w(v∗)x, x ≥ 0 (one way to ob-
tain the sample is to sample z uniformly from [0, 1] and output
−(ln z)/w(v∗)). Then we compute

Y i
v∗ = min

u∗∈RG′∗ (S∗∪{v∗})
Xi

u∗ .

Notice that each iteration only needs a constant number of traver-
sals of graph G′∗ and thus can be completed in O(m) time. After
the T iterations are completed, the unbiased estimator of Wv =
|RG′(S ∪ {v})| = w(RG′∗(S

∗ ∪ {v∗})) is given by

Ŵv =
T − 1∑

1≤i≤T Y i
v∗

.

The idea is based on the property of exponential distribution that
ensures Y i

v∗ follow an exponential distribution with the probability
density function e−λv∗x ∑

u∗∈RG′∗ (S∗∪{v∗}) w(u∗). Cohen pro-
vides the following concentration result on the estimate.

THEOREM 1 (COHEN [1]). For every vertex v in graph G′,

for 0 < ε < 1 , Prob[|Ŵv −Wv| ≥ εWv] = exp(−Ω(ε2T )),

for ε ≥ 1 , Prob[|Ŵv −Wv| ≥ εWv] = exp(−Ω(εT )).

We incorporate Cohen’s algorithm into our greedy algorithm such
that for each of the R generated graphs G′ in each of the k rounds,
Cohen’s algorithm is run with T iterations to estimate |RG′(S ∪
{v})| for all vertices v. The overall complexity is O(kRTm).
Comparing with the complexity O(kRnm) of the original greedy
algorithm, it is more efficient if T = o(n). Indeed, in our experi-
ments we show that a fairly small value of T = 5 already achieves
very good estimates of the influence spread. The reason is that in
the outer loop we will take R = 20000 of these estimates and aver-
age them, and thus the inaccuracy of each estimate due to small T is
canceled out. The details of the algorithm is given in Algorithm 3.

Similar to the case in the IC model, we also consider the Mixed-
GreedyWC algorithm where the first round uses NewGreedyWC



Algorithm 3 NewGreedyWC(G, k)

1: initialize S = ∅, R = 20000, T = 5.
2: for i = 0 to k do
3: initialize sv = 0 for all vertices.
4: for j = 1 to R do
5: obtain G′ = RanWC(G)
6: compute DAG G′∗ and weights w(v∗) for all v∗ ∈ V ∗

7: for ` = 1 to T do
8: for each v∗ ∈ V ∗, s`

v∗ = 0
9: for each v∗ ∈ V ∗, generate random value X`

v∗ from
the exponential distribution with mean 1/w(v∗)

10: for each v∗ ∈ V ∗, compute Y `
v∗ =

minu∗∈RG′∗ (S∗∪{v∗}) X`
u∗

11: for each v∗ ∈ V ∗, s`
v∗ += Y `

v∗
12: end for
13: for each v ∈ V \ S, sv +=(T − 1)/s`

v∗
14: end for
15: set sv = sv/R for all v ∈ V \ S
16: S = S ∪ {arg maxv∈V \S{sv}}
17: end for
18: output S

algorithm and the remaining rounds use the CELF optimization.
Since each round of NewGreedyWC needs O(TR) times of graph
traversals, the mixed strategy makes more sense. Indeed, our exper-
imental results show that it is the best in terms of the running time.

3. DEGREE DISCOUNT HEURISTICS
Even with the improved greedy algorithms we presented in Sec-

tion 2, their running time is still large and may not be suitable
for large social network graphs. A possible alternative is to use
heuristics. In sociology literature, degree and other centrality-based
heuristics are commonly used to estimate the influence of nodes in
social networks [10].

Degree is frequently used for selecting seeds in influence maxi-
mization. Experimental results in [5] showed that selecting vertices
with maximum degrees as seeds results in larger influence spread
than other heuristics, but is still not as large as the influence spread
produced by the greedy algorithms.

In this section, we propose degree discount heuristics, which
nearly match the performance of the greedy algorithms for the IC
model, while also improve upon the pure degree heuristic in other
cascade models.

The general idea is as follows. let v be a neighbor of vertex u.
If u has been selected as a seed, then when considering selecting v
as a new seed based on its degree, we should not count the edge vu
towards its degree. Thus we should discount v’s degree by one due
to the presence of u in the seed set, and we do the same discount
on v’s degree for every neighbor of v that is already in the seed set.
This is a basic degree discount heuristic applicable to all cascade
models, and is referred to as SingleDiscount in our experiment
section.

For the IC model with a small propagation probability p, we de-
rive a more accurate degree discount heuristic.3 Since v is a neigh-
bor of u that has been selected into the seed set, with probability at
least p, v will be influenced by u, in which case we do not need to
3For the IC model with relatively large propagation probability p,
the influence spread is not very sensitive to different algorithms and
heuristics, because a giant connected component exists even after
removing every edge with probability 1−p. This has been reported
in [5] with p = 0.1.

select v into the seed set. This is the reason why further discount is
more accurate. When p is small, we may ignore indirect influence
of v to multi-hop neighbors and focus on the direct influence of v to
its immediate neighbors, which makes degree discount calculation
manageable. This forms the guideline for us to compute the degree
discount amount.

Let N(v) = {v}∪{w ∈ V | vw ∈ E}, and call it the neighbor-
hood of v. Let Star(v) be the subgraph with N(v) as the vertices
and edges incident to v as the edges. We compute the additional
influence that v could make in the Star(v) subgraph in order to
derive a degree discount amount. Let tv be the number of neigh-
bors of vertex v that are already selected as seeds.

THEOREM 2. In the IC model with propagation probability p,
suppose that dv = O(1/p) and tv = o(1/p) for a vertex v. 4 The
expected number of additional vertices in Star(v) influenced by
selecting v into the seed set is:

1 + (dv − 2tv − (dv − tv)tvp + o(tv)) · p. (1)

PROOF. Let Sv be the set of tv neighbors of v that have been
selected as seeds. The probability that v is influenced by its imme-
diate neighbors is 1− (1− p)tv . In this case, selecting v as a seed
does not contribute additional influence in the graph.

If v is not influenced by any of the already selected seeds, which
occurs with probability (1 − p)tv , then the additional vertices in
Star(v) influenced by selecting v into the seed set include: (a)
v itself with probability 1; and (b) each u in the remaining dv −
tv neighbors with probability p. Thus the additional vertices in
Star(v) influenced by v is 1 + (dv − tv) · p. Hence the overall
expected number of additional vertices in Star(v) influenced by v
is

(1− p)tv · (1 + (dv − tv) · p)

= (1− tvp + o(tvp)) · (1 + (dv − tv) · p)

{since tvp = o(1)}
= 1 + (dv − 2tv)p− (dv − tv)tvp2 + o(tvp)

{since (dv − tv)p = O(dvp) = O(1)}
= 1 + (dv − 2tv − (dv − tv)tvp + o(tv))p.

With the above theorem, we can compare it with the case when
v has no neighbors selected yet as seeds (i.e., tv = 0). In the
latter case, the expected number of influenced vertices in Star(v)
is 1+dv ·p. Comparing this with Equation (1), we conclude that for
a vertex v with tv neighbors already selected as seeds, we should
discount v’s degree by 2tv +(dv− tv)tvp. For example, for a node
v with dv = 200, tv = 1, and p = 0.01 (parameters similar to our
experimental graphs), we should discount v’s degree to about 196.

Although our calculation is only based on the Star(v) graph and
we do not consider other factors, such as indirect influence effects
and selected seeds affecting the neighbors of v, we believe that the
difference of those effects between the case tv = 0 and tv > 0 is
negligible for small p. Our experimental results demonstrate that
the degree discount based on Equation (1) matches very closely in
influence spread to the best greedy algorithm.

The assumptions dv = O(1/p) and tv = o(1/p) are satisfied by
our experimental settings and we believe are reasonable for other
social networks. If we further have dv = o(1/p), we can show
that the discount should be 2 even when we consider multi-hop
neighborhoods as well as other influence effects. However, in the
4We assume that p is a variable tending to 0, and other quantities
such as dmax and tv are functions of p.



Algorithm 4 DegreeDiscountIC(G, k)

1: initialize S = ∅
2: for each vertex v do
3: compute its degree dv

4: ddv = dv

5: initialize tv to 0
6: end for
7: for i = 1 to k do
8: select u = arg maxv{ddv | v ∈ V \ S}
9: S = S ∪ {u}

10: for each neighbor v of u and v ∈ V \ S do
11: tv = tv + 1
12: ddv = dv − 2tv − (dv − tv)tvp
13: end for
14: end for
15: output S

real-life graphs we considered in our experiments, dv is typically
larger than 100 while p = 0.01. Therefore, we cannot ignore the
term (dv − tv)tvp in the discount.

Algorithm 4 implements the degree discount heuristic. Using Fi-
bonacci heap, the running time of Algorithm 4 is O(k log n + m).
Therefore, in theory we can already see that our degree discount
heuristic is much faster than the original greedy algorithm with
O(knNm) running time or our improvement with O(kNm) run-
ning time.

4. EXPERIMENTS
We conduct experiments for various algorithms on two real-life

networks. The goal of our experiments is to show that we further
improve the running time of the greedy algorithms with matching
influence spreads, while our heuristic algorithms are orders of mag-
nitude faster than all greedy algorithms with influence spread still
close to those of the greedy algorithms.

4.1 Experiment setup
We extract two read-life academic collaboration networks from

the paper lists in two different sections of the e-print arXiv5, which
is the same source used in the experimental study in [5]. Each
node in the network represents an author, and the number of edges
between a pair of nodes is equal to the number of papers the two
authors collaborated. The first network is from the "High Energy
Physics - Theory" section with papers form 1991 to 2003 and is
denoted as NetHEPT, which contains n1 = 15, 233 nodes and
m1 = 58, 891 edges. The second network is from the full paper list
of the "Physics" section, denoted as NetPHY, which contains n2 =
37, 154 nodes and m2 = 231, 584 edges. The two graphs are avail-
able for download on the web at http://research.microsoft.com/en-
us/people/weic/graphdata.zip. The experiments are run on a server
with 2.33GHz Quad-Core Intel Xeon E5410 and 32G memory.

The two basic influence cascade models reported are the IC model
and the WC model, as explained in Section 2. In the IC model, we
mainly report results on a small propagation probability of p =
0.01, the value used in the experiments of [5], but also consider
other values p = 0.02 and 0.05. Larger p values such as p = 0.1
are not considered due to its insensitivity to different algorithms
(see Footnote 3).

We run the following set of algorithms under both IC and WC
models on both networks.

5http://www.arXiv.org

• CELFGreedy: This is the original greedy algorithm (Algo-
rithm 1) with the CELF optimization of [7]. The results on
the original greedy algorithm are not reported since its influ-
ence is the same as the CELF optimization while its running
time is too slow. We take R = 20000 to obtain accurate
estimates.

• NewGreedyIC: The new greedy algorithm proposed for the
IC model (Algorithm 2), with R = 20000.

• MixedGreedyIC: The mixed greedy algorithm for the IC
model, in which the first round of the algorithm uses New-
GreedyIC and the rest rounds use CELFGreedy.

• NewGreedyWC: The new greedy algorithm proposed for
the WC model (Algorithm 3), with R = 20000 and T = 5.

• MixedGreedyWC: The mixed greedy algorithm for the WC
model, in which the first round of the algorithm uses New-
GreedyWC with R = 20000 and T = 5, and the rest rounds
use CELFGreedy.

• DegreeDiscountIC: The degree discount heuristic for the
IC model (Algorithm 4).

• SingleDiscount: A simple degree discount heuristic where
each neighbor of a newly selected seed discounts its degree
by one. This can be applied to all influence cascade models.

• Degree: As a comparison, a simple heuristic that selects the
k vertices with the largest degrees, which is also evaluated
in [5].

• Distance: As a comparison, a simple heuristic that selects
the k vertices with the smallest average shortest-path dis-
tances to all other vertices, which is also evaluated in [5]. The
distance of two disconnected vertices is set to n, the number
of vertices in the graph.

• Random: As a baseline comparison, simply select k random
vertices in the graph, which is also evaluated in [5].

To obtain the influence spread of the heuristic algorithms, for
each seed set, we run the simulation of the IC or WC model on the
networks 20000 times and take the average of the influence spread.
This matches the accuracy of the greedy algorithms.

For all these algorithms, we compare their influence spreads with
different seed set size ranging from 1 to 50. We also compare their
running time for selecting k = 50 seeds for influence maximiza-
tion.

To further evaluate the robustness of our proposed seed selection
algorithms under different cascade models, we run simulations us-
ing the seeds selected in our algorithms on another model called
the linear threshold model [5].

4.2 Experiment results
We summarize our experiment results for different influence cas-

cade models and discuss their implications.
Independent cascade model. Figure 1 and Figure 2 show the

influence spreads of various algorithms on the two collaboration
graphs in the IC model with p = 0.01, which are very consistent.
For ease of reading, in all influence spread figures, the legend ranks
the algorithms top-down in the same order as the influence spreads
of the algorithms when k = 50. All percentage difference reported
below on influence spreads are for the case of k = 50.

The influence spreads of Random, Distance and Degree are
in line with the results in [5]: Random as the baseline performs
very badly, and simple Distance and Degree heuristics are bet-
ter but are still significantly worse than the best algorithms such
as CELFGreedy (Distance is 20.9% and 46.3% lower, and De-
gree is 8.7% and 16.3% lower, on NetHEPT and NetPHY, respec-
tively). SingleDiscount heuristic, although just a simple adjust-
ment to the Degree heuristic, reduced approximately half of the



Figure 1: Influence spreads of different algorithms on the
collaboration graph NetHEPT under the independent cascade
model (n = 15, 233, m = 58, 891, and p = 0.01).

Figure 2: Influence spreads of different algorithms on the
collaboration graph NetPHY under the independent cascade
model (n = 37, 154, m = 231, 584, and p = 0.01).

gap between Greedy and Degree (3.6% and 8.6% lower than the
greedy algorithm, on NetHEPT and NetPHY, respectively). Our
NewGreedyIC and MixedGreedyIC essentially matches CELF-
Greedy on both graphs. The most interesting result is on our De-
greeDiscountIC heuristic. It performs extremely well, essentially
matching the influence spread of the CELFGreedy algorithm in
NetHEP, while in NetPHY, it is also very close to CELFGreedy
(only 3.4% lower for k = 50).

Figure 3 and Figure 4 report the running times of different algo-
rithms for selecting k = 50 seeds in the two graphs. All results are
measured on reasonably efficient implementation of the various al-
gorithms. Notice that the y-axis is in log scale. The running time of
our NewGreedyIC is 57.9% lower than CELFGreedy in NetPHY
but is 4.2% higher than CELFGreedy in NetHEPT. This indicates
that the benefit of our improvement verses CELF improvement may
depend on the actual graph structure. Our MixedGreedyIC, how-
ever, combines the benefit of the two improvement and is always
better than CELFGreedy: it saves 27% and 15% running times
of CELFGreedy in NetHEPT and NetPHY, respectively. The new
heuristics DegreeDiscountIC and SingleDiscount run extremely
fast, only take a few milliseconds to finish, and are more than six
orders of magnitude faster than all greedy algorithms. The Dis-
tance heuristic has running time in the range of the greedy algo-
rithm while its influence spread is much worse than the greedy al-
gorithm, indicating that it is not a suitable choice for the influence
maximization problem.

Figure 3: Running times of different algorithms on the collab-
oration graph NetHEPT under the independent cascade model
(n = 15, 233, m = 58, 891, p = 0.01, and k = 50).

Figure 4: Running times of different algorithms on the collab-
oration graph NetPHY under the independent cascade model
(n = 37, 154, m = 231, 584, p = 0.01, and k = 50).

We also run simulations with p = 0.02 and p = 0.05. For
influence spread, other than that its absolute scale multiplies, the
general trend and relative performance are similar to the case of
p = 0.01. More interestingly is the running time of different algo-
rithms. The running time of our NewGreedyIC and DegreeD-
iscountIC algorithms are not affected much by different p val-
ues, e.g. on NetHEPT NewGreedyIC always takes around 3000
seconds and DegreeDiscountIC always takes about 4 millisec-
onds. This is because both algorithms spend major portion of time
in graph traversal to determine edge removals, the running time
of which is independent of p. However, CELFGreedy becomes
slower and slower as p increases, e.g. on NetHEPT CELFGreedy
takes 9.28 × 103 seconds for p = 0.02 and 1.11 × 105 seconds
for p = 0.05. This means that CELF optimization is less effective
when p increases.

Weighted cascade model. Figure 5 and Figure 6 show the influ-
ence spreads of various algorithms on the two collaboration graphs
in the WC model. Our NewGreedyWC and MixedGreedyWC al-
gorithms always match the CELFGreedy algorithm in both graphs.
SingleDiscount again always performs better than Degree and
Distance, and is fairly close to the greedy algorithm in NetHEPT
(9.1%) but is not as well in NetPHY (28.7%). DiscountDegreeIC
is a heuristic specifically tuned for the IC model and is not included
here for the WC model.

Figure 7 and Figure 8 report the running times of different al-
gorithms for selecting k = 50 seeds in the two graphs. As ex-



Figure 5: Influence spreads of different algorithms on the col-
laboration graph NetHEPT under the weighted cascade model
(n = 15, 233 and m = 58, 891).

Figure 6: Influence spreads of different algorithms on the col-
laboration graph NetPHY under the weighted cascade model
(n = 37, 154 and m = 231, 584).

pected, due to its multiple traversals of every generate graph, New-
GreedyWC is slower than CELFGreedy. However, similar to the
case in the IC model, MixedGreedyWC always runs faster than
CELFGreedy, with 19.0% and 34.4% savings in running times
in NetHEPT and NetPHY, respectively. SingleDiscount does not
depend on the influence cascade model and thus have the same run-
ning time numbers as reported in the IC model — it is more than
six orders of magnitude faster than all greedy algorithms.

Linear threshold model. In the linear threshold (LT) model,
every vertex has a threshold uniformly and randomly chosen from
0 to 1, and a vertex is activated when the fraction of its activated
neighbors reaches its threshold [5]. Threshold models have been
proposed and studied in sociology as a reasonable model for influ-
ence in social networks (e.g. [4, 9]). Since our improved greedy
algorithms and heuristics are based either on the IC model or WC
model, a natural question to ask is whether they are still effective
in the LT model. To verify this, we take the seeds selected by our
algorithms, in particular the MixedGreedyWC, MixedGreedyIC,
DegreeDiscountIC, and SingleDiscount algorithms (p = 0.01
for the IC algorithms), and run simulations in the LT model on
both networks.

Figure 9 and Figure 10 report the results on influence spreads
of our algorithms as well as other algorithms for comparison. The
CELFGreedy algorithm is run on the LT model so it is not a sur-
prise that it generates the best influence spread. In both graphs,
MixedGreedyWC matches very well with CELFGreedy, suggest-

Figure 7: Running times of different algorithms on the col-
laboration graph NetHEPT under the weighted cascade model
(n = 15, 233, m = 58, 891, and k = 50).

Figure 8: Running times of different algorithms on the col-
laboration graph NetPHY under the weighted cascade model
(n = 37, 154, m = 231, 584, and k = 50).

ing that the dynamics of the WC model is similar to the LT model,
as also mentioned in [5]. Our other greedy and heuristics perform
reasonably well, especially in the NetHEPT graph. A surprise is
that DegreeDiscountIC performs quite well in both graphs, and
is even much better than MixedGreedyIC in the NetPHY graph.
This suggests that appropriate degree discounts may be applicable
to other influence cascade models and worth further study.

As for the running time, only CELFGreedy has different run-
ning time and all other algorithms have the same running time as
reported earlier, since they are either independent of cascade mod-
els or based on the IC or WC model rather than the LT model. The
running time of CELFGreedy is 9.03× 103 seconds on NetHEPT
graph and 4.47× 104 seconds on the NetPHY graph, which are at
about the same level as greedy algorithms in other cascade models.

4.3 Discussion on the results
Several conclusions can be drawn from the experimental results

reported above. First, by combining the advantage of our improve-
ment and CELF improvement to the greedy algorithm, our mixed
algorithms further improve the running time of the CELF optimized
algorithm (15% to 34%)6 while matching the influence spread to
the original algorithm. Second, and more importantly, the im-

6The numbers are based on the IC model with p = 0.01 and the
WC model. For IC model with larger p’s such as p = 0.02 and
0.05, our experiments show that we may achieve an order of mag-
nitude speedup with NewGreedyIC or MixedGreedyIC.



Figure 9: Influence spreads of different algorithms on the col-
laboration graph NetHEPT under the linear threshold model
(n = 15, 233 and m = 58, 891).

Figure 10: Influence spreads of different algorithms on the col-
laboration graph NetPHY under the linear threshold model
(n = 37, 154 and m = 231, 584).
proved heuristics we propose are able to reduce the running time
by more than six orders of magnitude (from hours to millisec-
onds) with little or mild compromise on the influence thread. In
particular, our DegreeDiscountIC heuristic shows very impres-
sive results in the independent cascade model: it only takes less
than one-millionth of time of any greedy algorithm but exhibits
no or less than 3.5% degrade in influence spread. The SingleDis-
count heuristic also performs reasonably well, and is always better
than the traditional Distance and Degree heuristics. Third, even
though our new algorithms and heuristics are developed for the in-
dependent cascade model and the weighted cascade model, they
are robust and can be applied to other influence models such as the
linear threshold model.

Based on these results, we suggest the following treatment to
the influence maximization problem. When short running time
is important, we should choose SingleDiscount and DegreeDis-
countIC. DegreeDiscountIC usually performs better in influence
spread, while SingleDiscount is potentially applicable to a wider
range of influence cascade models. When running time is not a ma-
jor concern but guaranteed influence spread is essential, we can use
MixedGreedyIC or MixedGreedyWC algorithms for seed selec-
tion.

5. CONCLUDING REMARKS
In this paper, we propose the efficient algorithms and heuristics

for the influence maximization problem. We both reduce the run-

ning time of existing best greedy algorithms while maintaining the
influence spread guarantee, and propose new heuristics that sig-
nificantly improve the influence spread while running more than
six orders of magnitude faster than all greedy algorithms. We be-
lieve that rather than trying to further reduce the running time of the
greedy algorithms, we should focus our research effort in searching
for more effective heuristics for different influence cascade mod-
els. With their influence spread getting close to that of the greedy
algorithm and their extremely fast speed, they are likely to be the
scalable solutions to the influence maximization problem for large-
scale real-life social networks.

There are several future directions for this research. First, our
current degree discount heuristic is derived from the independent
cascade model. We plan to look into appropriate degree discount
strategies for other cascade models. Second, the current influence
maximization problem is simplified, without considering other fea-
tures in the social networks. We plan to investigate how to extract
community structures and how to utilize these community struc-
tures to facilitate influence maximization in social networks.

6. REFERENCES
[1] E. Cohen. Size-estimation framework with applications to

transitive closure and reachability. J. Comput. Syst. Sci.,
55(3):441–453, 1997.

[2] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comput., 9(3):251–280,
1990.

[3] P. Domingos and M. Richardson. Mining the network value
of customers. In Proceedings of the 7th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pages 57–66, 2001.

[4] M. Granovetter. Threshold models of collective behavior.
American J. of Sociology, 83(6):1420–1443, 1978.

[5] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In Proceedings
of the 9th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 137–146, 2003.

[6] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In Proceedings of the 10th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 259–271, 2006.

[7] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 420–429, 2007.

[8] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the 8th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 61–70, 2002.

[9] T. C. Schelling. Micromotives and Macrobehavior. Norton,
1978.

[10] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University Press,
1994.


