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Beyond Social Graphs: User Interactions in Online Social Networks
and their Implications

CHRISTO WILSON, ALESSANDRA SALA, KRISHNA P. N. PUTTASWAMY,
and BEN Y. ZHAO, University of California Santa Barbara

Social networks are popular platforms for interaction, communication, and collaboration between friends.
Researchers have recently proposed an emerging class of applications that leverage relationships from social
networks to improve security and performance in applications such as email, Web browsing, and overlay
routing. While these applications often cite social network connectivity statistics to support their designs,
researchers in psychology and sociology have repeatedly cast doubt on the practice of inferring meaningful
relationships from social network connections alone. This leads to the question: “Are social links valid
indicators of real user interaction? If not, then how can we quantify these factors to form a more accurate
model for evaluating socially enhanced applications?” In this article, we address this question through a
detailed study of user interactions in the Facebook social network. We propose the use of “interaction graphs”
to impart meaning to online social links by quantifying user interactions. We analyze interaction graphs
derived from Facebook user traces and show that they exhibit significantly lower levels of the “small-world”
properties present in their social graph counterparts. This means that these graphs have fewer “supernodes”
with extremely high degree, and overall graph diameter increases significantly as a result. To quantify
the impact of our observations, we use both types of graphs to validate several well-known social-based
applications that rely on graph properties to infuse new functionality into Internet applications, including
Reliable Email (RE), SybilGuard, and the weighted cascade influence maximization algorithm. The results
reveal new insights into each of these systems, and confirm our hypothesis that to obtain realistic and
accurate results, ongoing research on social network applications studies of social applications should use
real indicators of user interactions in lieu of social graphs.
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1. INTRODUCTION

Online Social Networks (OSNs) are popular tools for communication, interaction, and
information sharing on the Internet. Social networks such as MySpace and Facebook
provide communication, storage, and social applications for hundreds of millions of
users. Users join, establish social links to friends, and leverage their social links to
share content, organize events, and search for specific users or shared resources. These
social networks provide platforms for organizing events, user-to-user communication,
and are among the Internet’s most popular destinations.

Recent work has seen the emergence of a class of socially enhanced applications
that leverage relationships from social networks to improve security and perfor-
mance of applications, including spam email mitigation [Garriss et al. 2006], Internet
search [Mislove et al. 2006], and defense against Sybil attacks [Yu et al. 2006]. In each
case, meaningful, interactive relationships with friends are critical to improving trust
and reliability in the system.

Unfortunately, these applications assume that all online social links denote a uni-
form level of real-world interpersonal association, an assumption disproven by social
science. Specifically, social psychologists have long observed the prevalence of low in-
teraction social relationships such as Milgram’s “Familiar Stranger” [Milgram 1977].
Recent research on social computing shows that users of social networks often use
public display of connections to represent status and identity [Donath and Boyd 2004],
further supporting the hypothesis that social links often connect acquaintances with
no level of mutual trust or shared interests.

This leads to the question: Are social links valid indicators of real user interaction?
If not, then what can we use to form a more accurate model for evaluating socially
enhanced applications? In this article, we address this question through a detailed
study of user interaction events in Facebook, the most popular social network in the
world with over 800 million active users. We download more than 10 million user
profiles from Facebook, and examine records of user interactions to analyze interaction
patterns across large user groups. Our results show that user interactions do in fact
deviate significantly from social link patterns, in terms of factors such as time in the
social network, method of interaction, and types of users involved.

We make four key contributions through our study. First, at the original time of
publication this article presented the first large-scale study of the Facebook social net-
work [Wilson et al. 2009]. Unlike Orkut, YouTube, or Flickr, Facebook’s strong focus on
user privacy has generally prevented researchers from “crawling” their social network
for user profiles. We present detailed analysis of our dataset with particular emphasis
on user interactions (Section 4), and show that users tend to interact mostly with a
small subset of friends, often having no interactions with up to 50% of their Facebook
friends. This casts doubt on the practice of extracting meaningful relationships from
social graphs, and suggests an alternative model for validating user relationships in
social networks.

Second, we propose the interaction graph (Section 5), a model for representing so-
cial relationships based on interactions between users. An interaction graph contains
all nodes from its social graph counterpart, but only a subset of the links. A social
link exists in an interaction graph if and only if its connected users have interacted
directly through communication or an application. We construct interaction graphs
from our Facebook data and compare their salient properties, such as clustering coef-
ficient and average path lengths, to their social graph counterparts. We observe that
interaction graphs demonstrate significantly different properties from those in stan-
dard social graphs, including larger graph diameters, lower clustering coefficients, and
higher assortativity.
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Third, in Section 6 we examine the impact of using different graph models in eval-
uating socially enhanced applications. We conduct simulated experiments of the Reli-
able Email [Garriss et al. 2006] and SybilGuard [Yu et al. 2006] systems on both social
and interaction graphs derived from our Facebook data. We also evaluate the efficacy
of the weighted cascade influence maximization algorithm [Chen et al. 2009] on our
two graph models. Our results demonstrate that differences in the two graph models
translate into significantly different application performance results.

Lastly, in Section 7 we compare and contrast data from two separate Facebook
crawls conducted in 2008 and 2009. Our results show how the Facebook user base has
grown since our initial Facebook study was published, and the effect this has on the
social graph. We also use interaction data from 2009 to validate our conclusions that
were originally derived from 2008 data. We show that although Facebook continues to
evolve, the overall trends in user interactions do not vary with time.

2. THE FACEBOOK SOCIAL NETWORK

Before describing our dataset and the results of our analysis, we first provide back-
ground information on Facebook’s social network. With over 800 million active users
(as of winter 2011), Facebook is the largest social network in the world, and the num-
ber one photo sharing site on the Internet [Facebook 2008]. Facebook allows users to
set up personal profiles that include basic information such as name, birthday, marital
status, and personal interests. Users establish undirected social links by “friending”
other users. Each user is limited to a maximum of 5,000 total friends.

Each profile includes a message board called the “Wall” that serves as the primary
asynchronous messaging mechanism between friends. Users can upload photos, which
must be grouped into albums, and can mark or “tag” their friends in them. Comments
can also be left on photos. All Wall posts and photo comments are labeled with the
name of the user who performed the action and the date/time of submission. Another
useful feature is the Mini-Feed (which now exists in an evolved form as the News-
Feed), a detailed log of each user’s actions on Facebook over time. It allows each user’s
friends to see at a glance what he or she has been doing on Facebook, including activity
in applications and interactions with friends. Other events include new Wall posts,
photo uploads and comments, profile updates, and status changes. The Mini-Feed is
ordered chronologically, and only displays (at most) the user’s 100 most recent actions.

Originally, Facebook was designed around the concept of “networks” that organized
users into membership-based groups. Although Facebook ceased being structured this
way in the summer of 2009, this was the model during 2008 when our crawls were
conducted. Each network represents an educational institution (university or high
school), a company or organization (called work networks), or a geographic (regional
network) location. Facebook authenticated membership in college and work networks
by verifying that users had a valid email address from the associated educational or
corporate domain. Users authenticated membership in high school networks through
confirmation by an existing member. In contrast, no authentication was required for
regional networks. Users could belong to multiple school and work networks, but only
one regional network, which they could change twice every sixty days.

A user’s network membership determined what information they could access and
how their information was accessed by others. By default, a user’s profile, including
birthday, address, contact information, Mini-Feed, Wall posts, photos, and photo com-
ments were viewable by anyone in a shared network. Users could modify privacy set-
tings to restrict access to only friends, friends-of-friends, lists of friends, no one, or
all. Although membership in networks was not required, Facebook’s default privacy
settings encouraged membership by making it very difficult for nonmembers to access
information inside a network.
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3. DATASET AND COLLECTION METHODOLOGY

In this section, we briefly describe key definitions and our methodology for collecting
Facebook data. We also present experimental validation of the completeness of our
graph crawl and describe the types of user interaction data that form the basis for our
later examination of interaction graphs.

3.1. Definitions

In this article, we model each social network as an undirected graph G = (V, E). The
set of nodes V corresponds to users on the social network. We use the term “node” and
“user” interchangeably in this article. The set of edges E corresponds to social links
between users on the social graph. On Facebook, users explicitly create undirected
social links by “friending” each other. We say that two users have a relationship if they
are connected by an edge.

Much of the analysis in this article focuses on user interactions. We define an in-
teraction as an explicit message iu,v that is generated by one user u and directed at
a second user v where u, v ∈ V. The set of interactions I is a multiset, for example,
interactions between pairs of users can occur multiple times. I ⊆ E, meaning each
interaction iu,v ∈ I can exist if and only if edge eu,v ∈ E.

On social networks like Facebook, interactions correspond to explicit events like
writing on a friend’s wall, or commenting on a friend’s photo. For the remainder of this
article, we will refer to Wall posts and photo comments collectively as “interactions.”
For example, a user who writes on a friend’s wall and comments on one of that friend’s
photos has just interacted with that friend twice. In this article, we only consider
explicit interactions, as opposed to latent interactions, which refers to profile browsing
behavior.

3.2. Data Collection Process

As we mentioned, Facebook used to be divided into networks that represented schools,
institutions, and geographic regions. Membership in regional networks was unauthen-
ticated and open to all users. Since the majority of Facebook users belonged to at least
one regional network, and most users do not modify their default privacy settings, a
large portion of Facebook’s user profiles could be accessed by crawling regional net-
works. As of spring 2008, Facebook hosted 67 million user profiles, 66.3% of whom
(44.3 million) belonged to a regional network. Networks and their size statistics have
since been removed from Facebook.

While other studies of social networks rely on statistical sampling techniques
[Mislove et al. 2007] to approximate graph coverage of large social networks, Face-
book’s partitioning of the user population into networks means that subsets of the
social graph can be completely crawled in an iterative fashion. Our primary dataset
is composed of profile, Wall, and photo data crawled from the 22 largest regional net-
works on Facebook between March and May of 2008. We list a subset of these networks
and their key characteristics in Table I. For user interaction activity at finer time
granularities, we also performed daily crawls of the San Francisco regional network in
October of 2008 to gather data specifically on the Mini-Feed.

To crawl Facebook, we implemented a distributed, multithreaded crawler using
Python with support for Remote Method Invocation (RMI) [Boe and Wilson 2008].
Facebook provides a feature to show 10 randomly selected users from a given regional
network; we performed repeated queries to this service to gather 50 user IDs to “seed”
our breadth-first searches of social links on each regional network. Two dual-core Xeon
servers were generally able to complete each crawl in under 24 hours, while averaging
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Table I. Statistics for the Ten Largest and Two Smallest Regional
Networks in Our Dataset

Network Users Crawled (%) Links (%)
London, UK 1,241K (50.8) 30,743K (26.5)
Australia 1,215K (61.3) 27,261K (36.0)
Turkey 1,030K (55.5) 17,739K (35.2)
France 728K (59.3) 11,227K (34.6)
Toronto, ON 483K (41.9) 11,829K (21.9)
Sweden 575K (68.3) 17,290K (44.8)
New York, NY 378K (45.0) 7,233K (15.7)
Colombia 565K (71.7) 10,242K (31.7)
Manchester, UK 395K (55.5) 11,124K (35.2)
Vancouver, BC 314K (45.1) 8,240K (25.3)
Egypt 246K (57.8) 3,236K (25.5)
San Francisco 172K 2,911K
Total: 10,697K (56.3) 240,265K (29.4)

Orkut [Mislove et al. 2007] 3,072K (11.3) 223,534K
Flickr [Mislove et al. 2007] 1,846K (26.9) 22,613K

roughly 10MB/s of download traffic. Our completed dataset is approximately 500GB
in size, and includes full profiles of more than 10 million Facebook users.

3.3. Dataset Completeness and Limitations

Prior research on online social networks indicates that the majority of user ac-
counts in the social graph are part of a single, large, Weakly Connected Component
(WCC) [Mislove et al. 2007]. Since social links on Facebook are undirected, breadth-
first crawling of social links should be able to generate complete coverage of the large
connected component, assuming that at least one of the initial seeds of the crawl is
linked to the connected component. The only inaccessible user accounts should be
ones that lie outside the regional network of the crawl, have changed their default
privacy settings, or are not part of the connected component.

To validate our data collection procedure and ensure that our crawls are reach-
ing every available user in the connected component, we performed five simultaneous
crawls of the San Fransisco regional network. Each crawl was seeded with a different
number of user IDs, starting with 50 and going up to 5000. The difference in the num-
ber of users discovered by the most and least revealing crawls was only 242 users out
of ∼169K total (a difference of only 0.1%). The 242 variable users display uniformly
low node degrees of 2 or less, indicating that they are either new accounts that were
added during our crawl, or outliers to the connected component that were only discov-
ered due to the addition of more seeds to the crawl. This experiment verifies that our
methodology effectively reaches all nodes in the large connected component in each
regional network within a negligibly small margin of error. This testing procedure is
the same one used in Mislove et al. [2007] to verify their crawling methodology.

In this study we are limited by Facebook’s privacy settings. Our dataset only in-
cludes users with public profiles, and we only collect public interactions. On Facebook
public interactions include Wall posts and photo comments, while private interactions
are direct messages between users and “pokes.” As discussed in Section 4.1, our crawl
covers the majority of users in each regional network, and therefore we believe it
is representative of the overall Facebook population. Our results from the crawled
Facebook graph are extremely similar to those calculated using the entire Facebook
graph (see Section 7) [Ugander et al. 2011]. Similarly, other studies of interactions on
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Facebook that have had access to private interactions have reached similar conclusions
to our study [Backstrom et al. 2011; Golder et al. 2007].

3.4. Description of Collected Data

We collected the full user profile of each user visited during our crawls. In addition to
this, we also collected full transcripts of Wall posts and photo comments for each user.

Although Facebook profiles do not include a “Date Joined” field, we can estimate
this join date by examining each user’s earliest Wall post. The Wall is both ubiquitous
and the most popular application on Facebook, and a user’s first Wall post is generally
a welcome message from a Facebook friend. Thus we believe a user’s earliest Wall post
corresponds closely with his/her join date. We also collected photo tags and comments
associated with each user’s photo albums, since this is another prevalent form of Face-
book interaction, and gives us insight into users who share physical proximity as well
as online friendships.

While the Wall and photo comments are in no way a complete record of user interac-
tions, they are the oldest and most prevalent publicly viewable Facebook applications.
Our datasets from crawls of user Mini-Feeds show that they are also the two most
popular of the built-in suite of Facebook applications by a large margin. Most of the
other applications are recent additions to Facebook, and cannot shed light on user
interactions from Facebook’s earlier history. For example, the Wall was added to Face-
book profiles in September 2004, while the Notes application was not introduced until
August 2006.

To obtain interaction data on Facebook at a more fine-grained level, we performed
crawls of Mini-Feed data from the San Francisco regional network. Unlike Wall posts
and photo comments, which are stored indefinitely, the Mini-Feed only reports the last
100 actions taken by each user. Thus, we repeated our crawl of San Francisco daily
in October 2008 to ensure that we built up a complete record of each user’s actions on
a day-to-day basis. Given time and manpower constraints, performing daily crawls of
all our sampled regional networks for Mini-Feed data was not feasible, so we focused
solely on the relatively small San Francisco network (172K users). We use a log in-
tegration algorithm similar to the one used by Jiang et al. [2010] to reconstruct each
user’s month-long interaction record from our daily crawl results.

4. ANALYSIS OF SOCIAL GRAPHS

In this section, we present high-level measurement and analysis results on our Face-
book dataset. First, we analyze general properties of our Facebook population, includ-
ing user connectivity in the social graph and growth characteristics over time. We
use these results to compare the Facebook user population to that of other known so-
cial networks, as well as accepted models such as small-world and scale-free graphs.
Second, we take a closer look at the different types of user interactions on Facebook,
including how interactions vary across time, applications, and different segments of
the user population. Finally, we present an analysis of detailed user activities through
crawls of user Mini-Feed from the San Francisco network, paying special attention to
social interactions over fine-grained time scales.

4.1. Social Network Analysis

Through our measurements, we were able to crawl roughly 10 million users from the
22 largest regional networks on Facebook, which represents 56% of the total user
population of those networks. The remaining 44% of users could not be crawled due
to restrictive privacy policies or disconnection from the connected component of the
graph. Our complete dataset includes about 818 million social links and 24 million
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Fig. 1. Comparing the degree distribution of Facebook to Orkut, YouTube, and LiveJournal [Mislove et al.
2007]. Both CDF and CCDF distributions are shown.

interaction events. Table I lists statistics on the ten largest and the two smallest re-
gional networks that we crawled, as well as the totals for our entire dataset.

4.1.1. Social Degree Analysis. In Figure 1, we compare the social degree (i.e., number
of friends) of Facebook users against prior results obtained for three other social net-
works: Orkut, YouTube, and LiveJournal [Mislove et al. 2007]. Connectivity among
Facebook users most closely resembles those of users in Orkut, likely because both are
sites primarily focused on social networking. In contrast, YouTube and LiveJournal
are content distribution sites with social components, and exhibit much lower social
connectivity. Facebook users are more connected than Orkut users: 37% of Facebook
users have more than 100 friends, compared to 20% for Orkut.

Figure 1 shows the Cumulative Distribution Function (CDF) and Complementary
Cumulative Distribution Function (CCDF) of social degrees for four social networks.
Prior work has shown that many measured large graphs, including social networks,
exhibit a power-law degree distribution [Barabasi and Albert 1999]. However, Face-
book does not follow a pure power law: as shown in the CCDF of Figure 1, the degree
distribution is not a straight line in a log-log plot. Facebook’s degree distribution is
most similar to Orkut, which is also not pure power law [Mislove et al. 2007]. We
use the method from Mislove et al. [2007] (which is a modification of the method
from Clauset et al. [2009]) to find the power-law exponent for the body of the Facebook
degree distribution. We calculate that Facebook has an alpha value of 1.25, with fit-
ting error of 0.31. This is significantly lower than the alpha value derived for YouTube
(alpha = 1.63, fitting error = 0.13), which does demonstrate a very clear power-law
degree distribution.

4.1.2. Graph Distances. To evaluate graph distance properties such as radius, diam-
eter, and average path length, we construct a social graph for each crawled regional
network. Some of the social links in our dataset were not crawled, because they point
to users that are either not members of the specified regional network, or have mod-
ified their default privacy settings. Since we do not have complete social linkage in-
formation on these users, we limit our social graphs to only include links for which
users at both endpoints were fully visible during our crawls. This prevents incomplete
information on some users from biasing our results. As shown in Table I, 29% of all
social links observed during our crawl remained in our social graphs after applying
this limiting operation.

For each regional social graph, we display the radius, diameter, and average path
length in Table II. Radius and diameter are calculated using the eccentricity of each
node in the social graph. Eccentricity is defined as the maximum distance between a
node and any other node in the graph. Radius is defined as the minimum of all eccen-
tricities, while diameter is the maximum. Average path length is simply the average
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Table II. Social Graph Measurements for the Ten Largest and Two Smallest Regional Networks
in our Dataset

Network Rad. Diam. PathLen. C. Coef. Assort.
London, UK 11 15 5.09 0.170 0.25
Australia 10 14 5.13 0.175 0.17
Turkey 13 17 5.10 0.133 0.06
France 10 13 5.21 0.172 0.12
Toronto, ON 10 13 4.53 0.158 0.23
Sweden 8 11 4.55 0.158 0.19
New York, NY 11 14 4.80 0.146 0.19
Colombia 9 12 4.94 0.136 0.09
Manchester, UK 11 15 4.79 0.195 0.21
Vancouver, BC 9 14 4.71 0.170 0.23
Egypt 9 12 4.88 0.167 0.01
San Francisco 9 14 4.8 0.194 0.18
Average [Std. Dev.]: 9.8 [1.34] 13.4 [1.84] 4.8 [0.41] 0.164 0.17 [0.07]

Orkut [Mislove et al. 2007] 6 9 4.25 0.171 0.072
Flickr [Mislove et al. 2007] 13 27 5.67 0.313 0.202

of all-pairs-shortest-paths on the social graph. Note that given the size of our social
graphs, calculating all-pairs-shortest-paths is computationally infeasible. Our radius,
diameter, and average path lengths are estimates based on determining the eccentric-
ity of 1000 random nodes in each graph. The radius should be viewed as an upper
bound and the diameter as a lower bound.

The average path length is 6 or lower for all 22 regional networks, lending credence
to the six degrees of separation hypothesis for social networks [Milgram 1967]. The
radius and diameter of each graph is low when compared to other large graphs, such
as the World Wide Web [Broder et al. 2000], but similar to the values presented for
other social networks [Mislove et al. 2007].

4.1.3. Clustering Coefficient. Clustering coefficient is a measure to determine whether
social graphs conform to the small-world principle [Watts and Strogatz 1998]. It is
defined on an undirected graph as the ratio of the number of links that exist between
a node’s immediate neighborhood and the maximum number of links that could exist.
For a node with N neighbors and E edges between those neighbors, the clustering
coefficient is (2E)/(N(N−1)). Intuitively, a high clustering coefficient means that nodes
tend to form tightly connected, localized cliques with their immediate neighbors. The
clustering coefficient for an entire graph is the mean of all clustering coefficients for
individual nodes.

Table II shows that Facebook social graphs have average clustering coefficients (col-
umn label C. Coef) between 0.133 and 0.211, with the average over all 22 regional
networks being 0.167. This compares favorably with the average clustering coeffi-
cient of 0.171 for Orkut. Graphs with average clustering coefficients in this range
exhibit higher levels of local clustering than either random graphs or random power-
law graphs, which indicates a tightly clustered fringe that is characteristic of social
networks [Mislove et al. 2007].

Figure 2 shows how average clustering coefficient varies with social degree on Face-
book. Users with lower social degrees have high clustering coefficients, again providing
evidence for high levels of clustering at the edge of the social graph. This fact, com-
bined with the relatively low average path lengths and graph diameters in our data, is
a strong indication that Facebook is a small-world graph [Watts and Strogatz 1998].
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Fig. 2. Clustering coefficient of Facebook users as
a function of social degree.

Fig. 3. knn of Facebook users as a function of social
degree.

4.1.4. Joint Degree Distribution and Assortativity. The Joint Degree Distribution (JDD) of
a graph describes the likelihood of nodes of different degrees connecting to one another.
JDD is approximated on large graphs by the degree correlation function knn. For undi-
rected graphs knn is defined as the average degree of all nodes connected to nodes of a
given degree. Figure 3 shows how average knn varies with social degree on Facebook.
Low-degree nodes tend to connect to other low-degree nodes, while the reverse is true
for high-degree nodes.

Closely related to JDD, the assortativity coefficient, r, of a graph measures the prob-
ability for nodes in a graph to link to other nodes of similar degree. It is calculated as
the Pearson correlation coefficient of the degrees of node pairs for all edges in a graph,
and returns results in the range −1 ≤ r ≤ 1. Assortativity greater than zero indicates
that nodes tend to connect with other nodes of similar degree, while assortativity less
than zero indicates that nodes connect to others with dissimilar degrees. The assorta-
tivity coefficients for our Facebook graphs, shown in Table II, are uniformly positive,
implying that connections between high-degree nodes in our graphs are numerous.
Our assortativity coefficient values closely resemble those for other large social net-
works [Mislove et al. 2007; Newman 2003].

Our knn and assortativity results both indicate the presence of a well-connected
“core” of high-degree nodes in our Facebook graphs. These nodes form the backbone of
small-world graphs, enabling the highly clustered nodes at the edge of the graph (see
Figure 2) to achieve low average path lengths to all other nodes.

4.1.5. Network Core Analysis. Previous studies of large power-law graphs have shown
that the densely connected core of high-degree nodes are necessary to hold the graph
together [Mislove et al. 2007]. When these nodes are removed the graph fractures,
that is, the nodes no longer form a single, large, connected component [Broder et al.
2000].

We analyze the core of our Facebook regional networks by ordering all nodes by
degree, iteratively removing the highest-degree nodes, and measuring the size of the
resulting connected component. The percentage of nodes remaining in the connected
component at a given iteration are measured relative to the current size of the graph
(i.e., with supernodes removed), not the size of the original, unmodified graph. Figure 4
depicts the results. Flickr quickly breaks apart as the core is removed. As shown in
Table II, the radius and diameter of Flickr are significantly larger than Facebook and
Orkut, but the average path length is essentially equal. This indicates that the core of
the Flickr graph is systemically important: as it gets removed, the outlier nodes that
are responsible for the large graph diameter quickly disconnect from the connected
component.
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Fig. 4. Percentage of nodes remaining in the con-
nected component as supernodes are removed from
various social graphs.

Fig. 5. The growth of users in our sample set, start-
ing in September 2004.

Conversely, Facebook networks are highly resilient to supernode removal. Even
when 20% of supernodes are removed, the graph still retains 96% of nodes for Facebook
London (our largest region), and 85% for Egypt (our smallest). The rest of our Face-
book regions display characteristics in-between these two. These results remain the
same even if nodes are ordered using different importance metrics, such as distance-
centrality or clustering coefficient.

Figure 4 demonstrates the importance of graph density in social networks. In denser
graphs like Facebook and Orkut, the systemic importance of supernodes decreases.
There exist so many connections between disparate, low-to-average-degree users that
even in the total absence of high-degree nodes, the graph does not partition.

4.1.6. Growth of Facebook over Time. Since users typically receive a Wall message
shortly after joining Facebook, we use the earliest Wall post from each profile as a
conservative estimate of each profile’s creation date. From this data, we plot the his-
torical growth of the user population in our sample set. The results plotted in Figure 5
confirm prior measurements of Facebook growth [Sweney 2008]. Note that Facebook
opened its services to the general public in September 2006 (month 24), which explains
the observed subsequent exponential growth in network size. We can also derive from
this graph the distribution of Facebook users’ “profile age,” the time they have been
on Facebook. We see that an overwhelming majority ( >80%) of profiles are “young
profiles” that joined Facebook after it went public in 2006.

4.2. User Interaction Analysis

The goal of our analysis of Facebook user interactions is to understand how many social
links are actually indicative of active interactions between the connected users. Delv-
ing into this issue raises several specific questions that we will address here. First,
is the level of interactions even across the user population, or is it heavily skewed to-
wards a few highly active users? Second, is the distribution of a user’s interactions
across its friends affected by how active the user is? And finally, how does the in-
teraction of users change over their lifetime, and do interactions exhibit any periodic
patterns over time?

4.2.1. Interaction Distribution among Friends. We first examine the difference in size be-
tween each user’s entire friend list and the subset they actually interact with. We
compute for each user a distribution of the user’s interaction events across the user’s
social links. We then select several points from each distribution (70%, 90%, 100%)
and aggregate across all users the percentage of friends these events involved. The
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Fig. 6. The distribution of users’ interaction among their friends, for different % of users’ interactions.

Fig. 7. Normalized Wall post distribution of the
users with top total Wall interaction.

Fig. 8. Normalized photo comments distribution of
the users with top total photo interaction.

result is a cumulative fraction function plotted in Figure 6. This is essentially a CDF
showing corresponding points from each user’s CDF. We see that for the vast majority
of users (∼ 90%), 20% of their friends account for 70% of all interactions. The 100%
fraction line shows that nearly all users can attribute all of their interactions to only
60% of their friends. This proves that for most users, the large majority of interactions
occur only across a small subset of their social links. This result allows us to answer
our original question: are social links valid indicators of real user interaction? The
answer is no, only a subset of social links actually represent interactive relationships.

We also want to understand if user interaction patterns are dependent on specific
applications, and how interaction patterns vary between power users and less active
users. Figures 7 and 8 organize users into user groups of top 50%, top 10%, and top
1% by their total level of activity, and show the distribution of incoming Wall posts
and photo comments among friends for users within each group. The distribution
of Wall posts in Figure 7 shows that the same distribution holds across all Wall users
regardless of their overall activity level. In contrast, distribution of photo comments in
Figure 8 varies significantly. The most active users only receive photo comments from
a small segment (<15%) of their friends, while the majority of users receive comments
from a third as many (∼5%) of their friends.

The low percentage of friends that comment on photos is notable because photo
comments generally occur when friends are tagged in the same picture, implying a
level of physical proximity in addition to social closeness. In our dataset, 57% of users
self-identify with the photo albums they upload by tagging themselves in one or more
photos. This fact lends credence to our argument that photo tags accurately capture
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Fig. 9. The contribution of different users to total
interactions in Facebook.

Fig. 10. Plot of top % of users ordered by social de-
gree and the interaction contributed by them.

real-life social situations. The photo comment results indicate that users, even highly
social ones, show significant skew towards interacting with, and sharing physical prox-
imity with, a small subset of their friends. Recent studies that focus on location-based
OSNs (e.g., Foursquare, Gowalla, etc.) further examine the correlations between on-
line friendship and geographic proximity [Chang and Sun 2011; Scellato et al. 2010].

4.2.2. Distribution of Total Interactions. Next, we wanted to look at how interaction activ-
ity was spread out across different kinds of Facebook users. We plot Figure 9 to further
understand the contribution of highly interactive users to the overall interaction in the
social network. For both Wall posts and photo comments, we plot the contribution of
different users sorted by each user’s interaction in that application. We see that the
top 1% of the most active Wall post users account for 20% of all Wall posts and the
top 1% of photo comment users account for nearly 40% of all photo comments. Clearly,
the bulk of all Facebook interactive events are generated by a small, highly active
subset of users, while a majority of users are significantly less active. This result lends
credence to our assertion that not all social links are equally useful when analyzing
social networks, since only a small fraction of users are actively engaged with the so-
cial network. This also identifies a core set of “power users” of Facebook, who could be
identified to leverage their active opinions, ad-clicks, and Web usage patterns.

Our next step is to quantify the correlation between users with high social degree
and user activity. Figure 10 shows that there is a strong correlation between the two:
half of all interactions are generated by the 10% most well-connected users. Nearly all
interactions can be attributed to only the top 50% of users. This result confirms that
a correlation between social degree and interactivity does exist, which is an important
first step to validating our formulation of interaction graphs in Section 5.

4.2.3. Interaction Distribution across User Lifetime. There is recent speculation that the
popularity of social networks is in decline [Sweney 2008; Worthen 2008], perhaps due
to the initial novelty of these sites wearing off. This potentially impacts our proposed
use of interaction data to augment social graphs: if user activity wanes, then its rele-
vance for assessing social link quality may drop as the information becomes less timely
and relevant. Using our records of user interactions over time, we study the gradual
growth or decline in interaction events after users join Facebook.

Figure 11 shows users’ average number of interactions at different points in their
lifetime. We divide the users in the 22 regional networks into 2 groups: the 10% oldest
and the 10% newest users. Both user groups show very high average interaction rates
in their first days in Facebook, supporting the hypothesis that users are most active
when they first join. For the 10% oldest users (average lifetime of 20 months), we see a
net increase in interaction rates over time, which we attribute to the “network effect”
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Fig. 11. Average number of interactions per day for
old and new Facebook users.

Fig. 12. Distribution of user actions in October
from the Mini-Feed.

caused by more friends joining the social network over time (see Figure 5). Newer
users (average lifetime of 3 weeks) show a different trend, where interactions drop
to nearly nothing as the initial novelty of the site wears off. There are two possible
interpretations of this. One view is that the oldest users were the original users who
participated in Facebook’s growth, and therefore are self-selected to users highly inter-
ested in social networks (and Facebook in particular). An alternative interpretation is
that many of those users who lose interest in Facebook over time closed their accounts,
leaving only active Facebook users from that time period.

4.3. Mini-Feed Analysis

Two perspectives are missing from our Wall and photo user interaction data. First,
these application events do not tell us about the formation of new friend links, one of
the dominant activities for Facebook users. Additionally, our dataset does not capture
user interactions in other applications outside of Wall and photos. To rectify this,
we perform crawls of user Mini-Feeds, a continually refreshed list of all1 user events,
including “friend add” events and activity in other applications.

Figure 12 shows the percentage of user Mini-Feed actions each day broken down by
category. The most numerous event type is the formation of new social links (adding
friends), which accounts for ∼45% of daily events. Comment activity, which encom-
passes both Wall posts and photo comments, only accounts for ∼10% of daily activity.
Application platform events, which include events generated from all other applica-
tions, account for slightly more than 10%. Clearly, the majority of Facebook events are
formation of new friend links, which seems to indicate that the social graph is grow-
ing at a faster rate than users are able to communicate with one another. This lends
further credence to our argument that average users do not interact with most of the
their “Facebook friends.”

5. INTERACTION GRAPHS

Using data from our Facebook crawls, we show in Section 4 that not all social links rep-
resent active social relationships. The distribution of each user’s interactions is skewed
heavily towards a fraction of his or her friends. In addition, interactions across the
entirety of Facebook are themselves concentrated within a subset of Facebook users.
These results imply that social links, and the social graphs they form, are not accurate
indicators of social relationships between users. This has profound implications on the
emerging class of applications that leverage social graphs.

1Events can be manually deleted by the owner, or suppressed through explicit changes to privacy settings.
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We propose a new model that more accurately represents social relationships be-
tween users by taking into account real user interactions. We call this new model an
interaction graph. We begin this section by formally defining interaction graphs. Next,
we implement them on our Facebook dataset and explore how the time-variant nature
of user interactions affects the composition of interaction graphs. Finally, we analyze
the salient properties of interaction graphs and compare them to those of the Facebook
social graph.

5.1. Definition of Interaction Graphs

To better differentiate between users’ active friends and those they merely associate
with by name, we introduce the concept of an interaction graph. We define an inter-
action graph as an undirected graph G′(n, t) = (V, I). A social graph G = (V, E) and
interaction graph G′ share the same set of vertices V. However, G uses edge set E (the
social links between users) while G′ uses edge set I (the interactions between users).
Recall that I ⊆ E. Although I is a multiset, G′ is not a multigraph: duplicate edges
are simply filtered out.

An interaction graph is parameterized by two constants n and t. These constants
filter out edges from the set of interactions I. n defines a minimum number of inter-
action events for admitting each edge iu,v, such that |iu,v| ≥ n. For example, if n = 2,
then an edge between users u and v will only exist in the interaction graph if there
are 2 or more total Wall posts and photo comments between u and v. t stipulates a
window of time during which interactions must have occurred. Taken together, n and t
delineate an interaction rate threshold. Intuitively, an interaction graph is the subset
of the social graph where for each edge, interactivity between the edge’s endpoints is
greater than or equal to the rate stipulated by n and t. A user’s interaction degree is
the number of nodes adjacent to u in G′. The equivalent metric on G is a node’s degree,
or deg(u).

Interaction graphs differ from inference graphs because interactions between users
are explicit. Recall that, in this article, the interactions we are analyzing come from
Wall posts and photo comments on Facebook. These interactions record actual events
(with a source, a destination, and a timestamp) generated by users, without any ambi-
guity. In contrast, inference graphs model the edge relationships between nodes using
the concept of “similarity,” for example, nodes that share similar metadata attributes
should be connected via an edge [Vert and Yamanishi 2004].

We define interaction graphs as undirected for two reasons. First, making interac-
tion graphs undirected allows us to directly compare them to social graphs using the
same graph metrics. Second, in Section 6, we compare the performance of social appli-
cations on social graphs and interaction graphs. Social applications are designed for
undirected graphs, and hence we must define interaction graphs the same way.

Although interactions are inherently directed, it is reasonable to represent them as
undirected if it can be shown that, for a given dataset, per-user interaction in- and
out-degrees are similar in value. We discuss this issue in greater detail as it applies to
our Facebook data in Section 5.2.

Our formulation of interaction graphs use an unweighted graph. It is feasible to
reparameterize the interaction graph such that the interaction thresholds n and t no
longer cull links, but instead impart a weight to each edge. We do not attempt to derive
a weight scheme for interaction graphs analyzed in this article, but leave exploration
of this facet of interaction graphs to future work.

An implicit assumption underlying our formulation of interaction graphs is that the
majority of user interaction events occur across social links, that is, I ⊆ E. Facebook
only allows friends to post Wall and photo comments, thus this assumption holds true
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Fig. 13. Deviations in pairwise interaction pat-
terns on Facebook.

Fig. 14. Percentage of nodes remaining in interac-
tion graph connected components as n and t vary.

for our dataset. However, it is conceivable to envision other social networks that do
not share these restrictions. In this case it may be beneficial not to define interaction
graphs as a subset of the social graph, but instead a wholly new graph based solely on
interaction data.

5.2. Interaction Graphs on Facebook

To reasonably model directed Facebook interaction events as an undirected interaction
graph, we must first demonstrate that pairwise sets of social friends perform reciprocal
interactions with each other. Intuitively, this means that if a writes on b ’s Wall, b will
respond in kind, thus satisfying our conditions for an undirected link. Evaluating each
user’s incoming and outgoing interactions is challenging, because Facebook data only
records incoming events for a specific user, that is, the event a writes on b ’s Wall is
only recorded on b ’s Wall, not a. Since we are limited to users within specific regional
networks who have not modified their default privacy settings, we do not have access to
100% of the user population. This means we cannot match up all directed interaction
events across users. A simple alternative is to examine only users whose friends are
also completely contained in our user population. Unfortunately, the high degree of
social connectivity in Facebook meant this applied to only about 400K users (4%) in
our dataset.

A more reasonable way to study interaction reciprocation on Facebook is to only
sample interactions that occur over social links that connect two users in our user
population, that is, ignore interactions with users outside our dataset. Rather than
filtering on users as in the previous approach, this performs filtering on individual
social links. Assuming that user interactions do not change significantly due to user
privacy settings and geolocation, these sampled results should be representative.

After this sampling, Figure 13 shows the length of the set resulting from the sym-
metric set difference of each user’s incoming and outgoing interaction partners plotted
as a CDF. We refer to this metric as deviation. Intuitively, the deviation for each user
counts the number of directed interactions that were not reciprocated with a direct
reply, thus forming a solely directed interaction link. For 65% of the users, all in-
teractions are reciprocated, meaning that all of these interactions can be modeled as
undirected links.

Based on these results, we believe it is acceptable to model interaction graphs on
Facebook using undirected edges, since this model suits the interactivity patterns of
the majority of users. Unfortunately, this model overestimates the number of edges
supernodes will have in the interaction graph, since the deviation for celebrities is
high due to practical constraints. However, these high-degree nodes account for < 1%
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Fig. 15. Comparison of the Facebook social graph degree and interaction graph degree.

of the Facebook population, and they are limited to 5,000 friends maximum, so the
effects of this overestimation are minimal.

We now discuss the interaction rate parameters n and t. The simplest formulation
of these parameters is to consider all interactions over the entire lifetime of Facebook
(t =2004 to the present, n = 1). We will refer to the interaction graph corresponding
to this parameterization as the full interaction graph. We also consider additional in-
teraction graphs that restrict t and increase n beyond 1. This allows time and rate
thresholds to be applied to generate interaction graphs appropriate for specific appli-
cations that have heterogeneous definitions of interactivity.

Figure 14 shows the size of the connected components for interaction graphs as t
and n change. Intuitively, higher n filters out more edges since user pairs need to
have a greater number of pairwise interactions. Similarly, smaller t also results in
fewer edges, since the span of time during which interactions must occur is tighter.
This figure is based on data for the year 2007, that is, 2 months refers to interactions
occurring between November 1 and December 31, 2007.

As expected, lower n and larger t are less restrictive on links, therefore allowing for
more nodes to remain connected. Based on Figure 14, we choose several key interac-
tion graphs for further study, including those with n ≥ 1 at the 1 year, 6 months, and
2 months time periods. These three graphs each include connected components that
contain a majority of all nodes, and are amenable to graph analysis. For the remainder
of this article we will only consider interaction graphs for which n ≥ 1.

5.3. Comparison of Social and Interaction Graphs

We now take a closer look at interaction graphs and compare them to full social graphs.
We look at graph connectivity and examine properties for power-law graphs, small-
world clustering, and scale-free graphs.

5.3.1. Social vs. Interaction Degree. Figure 15 displays the correlation between social
degree and interaction degree for the full interaction graph. The error bars indicate the
standard deviation for each plotted point. Even with this “least-restricted” interaction
graph, it is clear that interaction degree does not scale equally with social degree. If
all Facebook users interacted with each of their friends at least once then this plot
would follow a 45-degree line. This is not the case, confirming once again the disparity
between friend relationships and active, social relationships.

5.3.2. Interaction Degree Analysis. Figure 16 plots the degree CDFs of the four inter-
action graphs and the Facebook social graph. The interaction graphs exhibit a larger
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Fig. 16. Comparison of degree distributions for interaction graphs and the full social graph. Both CDF and
CCDF distributions are shown.

Fig. 17. Graph measurements for four interaction graphs compared to the entire Facebook social network.

percentage of users with zero friends, and reach 100% degree coverage more rapidly
than the social graph. This is explained by the uneven distribution of interactions
between users’ friends. Referring back to Figure 6, we showed that interactions are
skewed towards a fraction of each user’s friends. This means many links are removed
from the social graph during conversion into an interaction graph. This means many
weakly connected users in the social graph have zero interaction degree, while highly
connected users in the social graph are significantly less connected in the interaction
graph.

Despite these differences, the interaction graphs still exhibit power-law scaling.
Figure 17(a) shows the alpha values for the four interaction graphs compared to the
social network. The error bars above the histogram are the fitting error of the estima-
tor [Clauset et al. 2009]. The fitting error for the interaction graphs is lower than that
for the social graph, indicating that the interaction graphs exhibit more precise power-
law scaling. As the link structure of the interaction graphs gets restricted, alpha rises,
corresponding to an increased slope in the fitting line. This property is visualized in
Figure 16 as a lower number of high-degree nodes in the most constrained interaction
graphs. These results are further validated by studies on LiveJournal that have un-
covered degree distribution and power-law scaling characteristics very similar to those
depicted here for Facebook interaction graphs [Mislove et al. 2007].
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Fig. 18. Clustering coefficient of interaction graphs
as a function of interaction degree.

Fig. 19. Percent of edges cut in different interac-
tion graphs versus the original social graph.

5.3.3. Interaction Graph Analysis. Figure 17(d) shows the average radius, diameter, and
path lengths for all of the interaction graphs, as well as for the social network. These
measures all display the same upward trend as the interaction graphs become more
restricted. This makes intuitive sense: as the average number of links per node and
the number of high-degree “supernodes” decreases (see Figure 16) the overall level of
connectivity in the graph drops. This causes average path lengths to rise, affecting all
three of the measures presented in Figure 17(d).

5.3.4. Clustering Coefficient Measurements. Besides average path length, another met-
ric intrinsically linked to node connectivity is the clustering coefficient. Figure 17(b)
shows that average clustering coefficient drops as interaction graphs become more re-
stricted. Figure 18 depicts average clustering coefficients as a function of interaction
degree. As with the Facebook social graph, there is more clustering among nodes with
lower degrees. However, the overall amount of clustering is reduced by over 50% across
all interaction graphs.

To understand why clustering coefficient drops in the interaction graphs, we exam-
ine which edges are removed from the social graph. Figure 19 depicts the percent of
edges removed from different interaction graphs. Edges are grouped together based on
how many triangles they are part of in the original social graph. For example, edges
that are not part of any triangles fall into the 0 bucket. In contrast, an edge that forms
one side of twenty unique triangles will fall into the 20 bucket. Edges that complete
many triangles are more systemically important for increasing average clustering. The
“Random Edge Removal” line acts as an experimental control: in this scenario, x edges
are randomly removed from the social graph, where x is the difference in edges be-
tween the social graph and the full interaction graph.

Figure 19 reveals that edge importance (in terms of triangles) does correlate with
how likely that edge is to be retained in the interaction graphs. Low importance edges
(e.g., 0 or 1 triangles) are about 20% more likely to be removed than high importance
edges. This contrasts with random removal, where edges of all types are equally likely
to be removed (all lines are jagged when the number of triangles >60 because such
high importance edges are rare). This result indicates that edges which complete many
triangles are more likely to correspond to active social relationships.

However, in absolute terms, all edges are >50% likely to be removed in the inter-
action graphs, irrespective of importance. Thus, although interaction graphs retain a
higher percentage of important edges than random chance predicts, a large number of
triangles are still being severed. This problem is particularly acute for edges that com-
plete many triangles, since these edges are more vital for high clustering coefficients,
and much more rare.
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Taken together, the reduced clustering coefficients and the higher path lengths that
characterize Facebook interaction graphs indicates that they exhibit significantly less
small-world clustering. In order for the interaction graphs to cease being small world,
the average clustering coefficient would have to approach levels exhibited by a ran-
dom graph with an equal number of nodes and edges. This number can be estimated
by calculating K/N, where K is average node degree and N is the total number of
nodes [Watts and Strogatz 1998]. For the Facebook social graph, K = 76.54. We can
estimate from this that an equivalent random graph would have an average cluster-
ing coefficient of 7.15 ∗ 10−6. K is smaller for our interaction graphs, therefore the
estimated clustering coefficient for equivalent random graphs will be smaller as well.
These estimated figures are orders of magnitude smaller than the actual clustering
coefficients observed in our social and interaction graphs, thus confirming that they
both remain small world.

The conclusion that Facebook interaction graphs exhibit less small-world behavior
than the Facebook social graph has important implications for all social applications
that rely on this property of social networks in order to function, as we will show in
Section 6.

5.3.5. Assortativity Measurements . Figure 17(c) shows the relative assortativity coeffi-
cients for all social and interaction graphs. Assortativity measures the likelihood of
nodes to link to other nodes of similar degree. Since interaction graphs restrict the
number of links high-degree nodes have, this causes the degree distribution of inter-
action graphs to become more homogeneous. This is reflected by the assortativity co-
efficient, which rises commensurately as the interaction graphs grow more restricted.

6. APPLYING INTERACTION GRAPHS

When social graphs are used to drive simulations of socially enhanced applications,
changes in user connectivity patterns can produce significantly different results for the
evaluated application. Given the lack of publicly available social network topological
datasets, many current proposals either use statistical models of social networks based
on prior measurement studies [Marti et al. 2004; Watts and Strogatz 1998; Yu et al.
2006], or bootstrap social networks using traces of emails [Garriss et al. 2006].

The hypothesis of our work is that validation of socially enhanced applications
requires a model that takes interactions between users into account. To validate
how much impact the choice of user model can make on socially enhanced applica-
tions, we implement simulations of three well-known socially enhanced distributed
systems [Chen et al. 2009; Garriss et al. 2006; Yu et al. 2006], and compare the effec-
tiveness of each system on real social graphs, and real interaction graphs derived from
our Facebook measurements.

6.1. RE: Reliable Email

“RE” [Garriss et al. 2006] is a white-listing system for email based on social links
that allows emails between friends and Friends-of-Friends (FoFs) to bypass standard
spam filters. Socially connected users provide secure attestations for each others’ email
messages while keeping users’ contacts private. The key advantage of RE is that it
works automatically based on social connectivity data: users do not have to take the
time to manually create white-lists of authorized senders.

6.1.1. Expected Impact. The presence of small-world clustering and scale-free behavior
in social graphs translates directly into short average path lengths between nodes. For
RE, this means that the set of friends and FoFs that will be white-listed for each given

ACM Transactions on the Web, Vol. 6, No. 4, Article 17, Publication date: November 2012.



17:20 C. Wilson et al.

Fig. 20. Friends-of-friends per user in the Facebook
New York social and full interaction graphs.

Fig. 21. Spam penetration as the number of spam-
mers is varied for the Reliable Email system.

user is very large. In this situation, a single user who sends out spam email is likely
to be able to successfully target a very large group of recipients via the social network.

In contrast, RE that leverages interaction graphs should not experience as high
a proliferation of spam, given an equal number of spammers. Figure 20 shows the
number of friends-of-friends per user in the Facebook New York social graph and full
interaction graph. The size of each user’s friend-of-friend set is reduced by about an
order of magnitude in the interaction graph. Similar results are present in the other
Facebook regional graphs. The reduced size of the friend-of-friend set should limit the
dissemination potential for spam, while still maintaining the key advantage of RE,
that is, users do not need to manually enumerate white-lists of senders.

6.1.2. Results. We present experimental evaluation of RE here. For social graph and
interaction graphs, we randomly choose a percentage of nodes to act as spammers. In
the RE system, all friends and FoFs of the spammer will automatically receive the
spam due to white-listing. All experiments were repeated ten times and the results
averaged.

This experiment leads to Figure 21, which plots the percentage of users in each
graph receiving spam versus the percentage of users who are spamming. On the social
network spam penetration quickly reaches 90% of the users in the connected com-
ponent. In contrast, spam penetration when RE is run on the interaction graph is
reduced by 40% over the social graph when the number of spammers is low, and 20%
when the number of spammers is high.

The secondary benefit of using RE on interaction graphs is that spammers are
naturally excluded from the graph. Intuitively, honest users are unlikely to inter-
act with spammers. Hence the interaction graph should have few edges connec-
tion spammers and honest users, which prevents spammers from being white-listed
by RE. This phenomena has been observed by prior work that examined social e-
commerce marketplaces: scammers were almost totally excluded from the interaction
graph [Swamynathan et al. 2008].

Unfortunately, the Achilles’ heel of RE is that friend’s accounts can be compromised
by attackers. Spam sent from compromised accounts will successfully disseminate due
to RE’s white-listing of friendly accounts. This shortcoming is equally damaging when
using RE on social and interaction graphs.

6.2. SybilGuard

A Sybil attack [Douceur 2002] occurs when a single attacker creates a large number of
online identities that can collude together and grant the attacker significant advantage
in a distributed system. Sybil identities can work together to distort reputation values,
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out-vote legitimate nodes in consensus systems, or corrupt data in distributed storage
systems.

SybilGuard [Yu et al. 2006, 2008]2 proposes using social network structure to detect
Sybil identities in an online community to protect distributed applications. It relies on
the fact that it is difficult to make multiple social connections between Sybil identities
and legitimate users. The result is that Sybil identities form a well-connected sub-
graph that has only a limited number of connections (called attack edges) to the honest
nodes in the graph.

Each node in the social network creates a persistent routing table that maps each
incoming edge to an outgoing edge in an unique one-to-one mapping. To determine
whether to accept a “suspect” node v as a real user, a “verifier” node u initiates n
random walks of length w on the social graph. Node v also initiates n random walks
of length w. u accepts v if some predefined percentage of the random walks intersect.
w is the most important parameter in SybilGuard: as w grows, the number of Sybils
that will be erroneously accepted grows. Thus, it is beneficial for w to be small.

6.2.1. Expected Impact. The success of SybilGuard relies on the premise that Sybil
identities cannot easily establish trusted social relationships with legitimate users,
and hence have few “attack edges” in the social network. In particular, SybilGuard
requires connected users to exchange encryption keys. We believe that typical social
connections in social graphs do not represent this level of trust. Given our results that
demonstrate most Facebook friend pairs do not even interact, it seems unreasonable
to assume that most friend pairs have the requisite level of trust to exchange secure
keys.

Instead, we expect that the interaction graph is a closer approximation to the rep-
resentation of trusted links that SybilGuard would observe in reality. Unfortunately,
under these conditions, we expect the effectiveness of SybilGuard to decrease. Sybil-
Guard’s functionality is dependent on the fast mixing behavior of graphs. Mohaisen
et al. [2010] provide an overview of the mixing behavior of “trusted” social networks
(e.g., physics coauthorship, Enron emails), “untrusted” social networks (e.g., Face-
book), and interaction graphs. Their results confirm that the mixing properties of
interaction graphs closely resemble trusted social networks, and that both are slow
mixing.

6.2.2. Results. For our experiments, we implement the SybilGuard algorithm on both
our social graph and interaction graphs and measure the percentage of random walks
that successfully intersect as w increases. For each graph and each value of w we chose
25000 random pairs of nodes to perform intersection tests on.

The reduction of highly connected supernodes in the interaction graph means that
random walks are less likely to connect. Figure 22 shows that for the Facebook social
graph, the probability for all paths to intersect approaches 100% at w = 1200. For
interaction graphs, the percentage of intersecting paths never reaches 100% since a
large fraction of random walks never intersect. SybilGuard, as a result, is less effective
on a graph that models user trust (interaction graph) than on a normal social graph.

A major factor affecting the performance of the SybilGuard algorithm is the preva-
lence of self-loops in the random walks. Any walk that returns to the origin point
before going w steps is useless for the purposes of performing intersection tests.
Table III shows the total number of self-loops encountered during all experimental
runs on each graph. The drop in efficacy observed in Figure 22 is directly correlated

2Although SybilLimit is an advanced proposal, SybilGuard is a simple version that we believe is sufficient
for our purpose.
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Fig. 22. Percentage of path intersections for SybilGuard as random walk length increases.

Table III. Self-Looping Statistics for SybilGuard

Graph Total Loops (%)
Social 951 (3.8)
Full Interaction 3196 (12.8)
1 Year I.Graph 4726 (18.9)
6 Month I.Graph 4953 (19.8)
2 Month I.Graph 5782 (23.1)

to the increase in self-looping from 3.8% on the social graph to an upwards of 20% on
interactions graphs.

6.3. Influence Maximization

The capability to model and predict the spread of information through social networks
has many real-world applications. These range from combating the spread of disease
to generating effective word-of-mouth marketing campaigns. An important problem
in this area is influence maximization: locating the most influential users who will
maximize the spread of information through the social network.

Previous works have designed algorithms that use statistical methods to model in-
formation dissemination over social links [Chen et al. 2009; Kempe et al. 2003]. One
such model is the weighted cascade model. In this model, each user u that is “activated”
by receiving or producing some new information has a chance to activate his/her friend
v with probability 1/deg(v). This process is repeated for all of u’s friends. The Mixed-
GreedyWC algorithm implements the weighted cascade model and calculates, for a
given social network topology, the most influential users (called “seeds”) and the set of
nodes influenced by them [Chen et al. 2009].

6.3.1. Expected Impact. The weighted cascade model assumes that, for a given node,
the probability of activating each neighbor is proportional to their degree. However, as
we have demonstrated in this work, not all social links are equally important. A node is
more likely to be influenced by users it interacts with, as opposed to familiar strangers.
Thus, we propose running the weighted cascade model on interaction graphs, as the
interaction graph prunes out edges that are unlikely to ever be activated in reality.
The reduction in average node degrees will increase the activation probability of the
remaining links in the graph. However, the overall reach of each node will be reduced,
thus constraining the spread of information as compared to the full social graph.

ACM Transactions on the Web, Vol. 6, No. 4, Article 17, Publication date: November 2012.



Beyond Social Graphs: User Interactions in Online Social Networks 17:23

Fig. 23. Number of users influenced by a given number of seed nodes across social and interaction graphs.
Seed nodes are sorted from most to least influential.

6.3.2. Results. Figure 23 shows the results of running the MixedGreedyWC algo-
rithm on our social and interaction graphs. Each line is an average over 12 of our
Facebook regional graphs, since the largest regions are too big to be processed by the
software. For all graph types, the total number of influenced users grows as the num-
ber of highly influential seed nodes is increased. However, the relative number of users
reached is an order of magnitude lower for the interaction graphs, as compared to the
full social graph. This is due to a combination of factors. Firstly, there are fewer total
nodes in the interaction graphs, since nodes that do not interact at all have zero links.
This shrinks the pool of potential targets. More importantly, the interaction graphs
also have drastically fewer edges than the full social graph (average node degree drops
from ∼77 on the full graph to 1 for the time-constrained interaction graphs). This
has the effect of limiting the potential reach of seed nodes. These results agree with
other published comparisons of the weighted cascade model on social and interaction
graphs [Jiang et al. 2010].

We compared the 50 seed nodes chosen by the MixedGreedyWC algorithm on the
12 social graphs versus the corresponding full (i.e., nontime constrained) interaction
graphs. Only 11% of the seeds from the social graphs are also selected on the full inter-
action graphs. This demonstrates that the optimal seed selection changes depending
on the type of graph being examined. This result agrees with Figure 10, which shows
that the highest-degree nodes on the social graph are not necessarily the most inter-
active.

In terms of practical impact, these results indicate that researchers examining in-
formation dissemination and influence maximization should take care when perform-
ing experiments. Assuming uniform information spread along all social links can lead
to overestimation of information dissemination, as well as leading to the selection of
influential seeds that may not be optimal on more constrained graph topologies.

7. FACEBOOK OVER TIME

Since our initial work in this area, Facebook has continued to grow and mature. The
user base has grown exponentially since our original data was collected in 2008, re-
cently reaching the 800 million user milestone. The site itself has also gone through
significant architectural changes, such as the shift towards a Twitter-like, News-Feed-
centric interface. All of these changes beget the question: do the social graph and
interaction characteristics observed in Facebook 2008 continue to hold true?

In this section, we address this question by performing a comparative analysis be-
tween data gathered from Facebook in 2008 and 2009. We also compare our results
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Table IV. Statistics for 2009 Facebook Regional Networks Compared to 2008

Network Nodes (%) Links (%) Rad. Diam. Avg.PathLen.
London 1,690K (36) 46,169K (50) 11/10 15/15 5.09/4.99
New York 905K (139) 21,230K (194) 11/11 14/15 4.80/4.77
Sweden 651K (13) 23,213K (34) 8/8 11/12 4.55/4.36
Los Angeles 603K (119) 15,352K (263) 12/10 16/15 5.14/4.54
Mexico 598K (90) 9,104K (39) 9/9 13/15 4.89/5.22
Egypt 298K (21) 5,047K (56) 9/8 12/13 4.88/4.58
Total 4,745K (57) 120,115K (73) 10/9 13/13 4.8/4.74
Facebook 2011∗ 721M 68.7B N/A ≥11 4.7

(%) are percent increases from 2008 to 2009. Other values are presented as 2008/2009.
The final row (∗) shows the values for the entire Facebook social graph in 2011 from
Ugander et al. [2011].

to those from a recent study of the Facebook social graph conducted in 2011 [Ugander
et al. 2011]. Our results show that while the rapid growth of Facebook’s user population
has added weight to the long tail of the social graph, the overall trends of interactions
on Facebook remain the same.

7.1. Description of Collected Data and Methodology

In order to validate our conclusions drawn from Facebook 2008 data, we crawled ad-
ditional data from Facebook in 2009. We crawled 6 regional networks between April
and June of 2009, just over one year after our original crawls. This resulted in data
on 4.7 million users with 120 million friend links (see Table IV), at a time when Face-
book’s total population was ∼200 million [Zuckerberg 2009]. Our crawl methodology
remained the same as for the 2008 crawls: 50 random users were chosen to seed the
crawlers BFS of each region. These crawls were conducted before Facebook deprecated
the networks feature in summer of 2009.

Between 2008 and 2009, the Facebook site went through significant architectural
and usability changes, the most significant of which was the move to a News-Feed-
centric profile layout. These changes impact the type and amount of per-user infor-
mation accessible to our crawlers. In 2008, each user’s profile page was composed of
different applications such as photos, Wall, and events, each of which inhabited a sep-
arate area of the page. The data contained in each application domain was completely
separate from the data in other applications. This partitioning made it straightfor-
ward to completely crawl application-specific data. In 2009, Facebook began moving
towards its current architecture, which is centered around the News-Feed. Each users’
News-Feed aggregates all of their status updates, as well as all incoming interactions
from friends.

We gathered interaction data from each crawled user by downloading their News-
Feed histories going back to January 1st, 2008. This gives us a complete 1.5 year
record of incoming interactions and status updates for each user. Limitations stem-
ming from Facebook’s back-end architecture made it impractical to crawl older Feed
data. However, because Facebook’s population more than doubled between 2008 and
2009, this 1.5 year history encompasses the full lifetime of the majority of Facebook
accounts. In total, we gathered 244 million interactions between Facebook users.

Each Feed item is characterized by a sender and receiver, a timestamp, an applica-
tion descriptor, and an application-specific data payload. The application descriptor ei-
ther refers to one of the built-in Facebook applications, such as Wall, photos, or events,
or to a third-party application (referenced by a unique application ID). Although Face-
book supported “likes” and comments on Feed items during the time of our crawls,
security measures prevented us from reliably gathering these interactions. Thus, our
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Fig. 24. Comparing social degree in Facebook 2008
to 2009.

Fig. 25. Clustering coefficient of Facebook users in
2008 and 2009.

2009 interaction data should be viewed as a lower bound on the total number of inter-
actions on Facebook at the time.

To maintain compatibility with our 2008 study, our 2009 interaction analysis focuses
on Feed items from the Wall application. Facebook lumps all text comments into this
umbrella category, meaning the Wall application includes users’ traditional Wall posts,
as well as comments left on photos, events, videos, notes, etc. Items from the Wall
application account for over 85% of all interactions in our 2009 dataset.

7.2. Social Graph Analysis

We begin our comparison between Facebook 2008 and 2009 by focusing on the over-
all social graph. Table IV shows the number of nodes and edges in each of our 2009
regional networks, as well as the percent increase in size of each compared to 2008.
Overall, the user base of the regions grew by over 57%. More significantly, the number
of edges grew by 73%, outstripping the growth of the user population. This results
in higher average social degrees for users in 2009, which in turn causes the radius
and average path lengths for 2009 social graphs to decrease slightly. Between 2009
and 2011 Facebook’s user population grew by an additional order of magnitude to 721
million, but the average path length and diameter of the graph stayed relatively con-
stant. This indicates that the Facebook graph may have reached an equilibrium point
by 2009.

Figure 24 depicts the social degree CDF for Facebook 2008 and 2009. The 2009
graph shifts to the right of 2008, reflecting the increase in average social degree during
this time period. The two lines reconverge around the 900 friend mark, indicating that
the additional links fueling this growth are not concentrated among supernodes. On
the contrary, Facebook’s hard limit of 5000 friends ensures that additional edges are
formed between lower-degree users. The power-law coefficient for Facebook 2009 is
1.21 with a fitting error of 0.34157, which is slightly lower than the alpha value of 1.25
observed for 2008.

As a node’s degree increases, its clustering coefficient usually drops commensu-
rately, since the likelihood of forming complete three-person friend cliques is reduced.
However, as shown in Figure 25, even users of the same degree have lower cluster-
ing coefficients in 2009 than users in 2008. Although the overall trend remains the
same, that is, lower-degree nodes demonstrate more local clustering, the drop in 2009
reflects changing dynamics in Facebook. As the overall population of Facebook grows,
user’s friend bases are diversifying such that the likelihood of sharing mutual acquain-
tances with your friends is reduced. The average clustering coefficient for users with
degree = 100 is 0.14 in Facebook 2011 [Ugander et al. 2011], which is in-between the
values for 2007 and 2009.
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Fig. 26. knn of Facebook users in 2008 and 2009. Fig. 27. The distribution of users’ interaction
among their friends, for users in 2008 and 2009.

As Figure 26 demonstrates, knn values in Facebook 2009 are generally higher than
in 2008, with the peak values for supernodes being almost twice as high. In this case,
the higher average node degrees for 2009 shown in Figure 24 translate to increased
knn values: higher node degrees on average cause the average degree of all friends for
each given node to also increase commensurately. The large increases for high-degree
nodes indicates increasing homogeneity for this class of users, that is, supernodes in
2009 are more likely to be friends with other supernodes than 2008.

The assortativity for Facebook in 2007, 2009, and 2011 is 0.17, 0.21, and 0.22, re-
spectively [Ugander et al. 2011]. Once again, it appears that Facebook reached an
equilibrium point in the structure of the social graph around 2009.

7.3. Interaction Analysis

At this point we have examined how the social graph of Facebook changed in the one-
year period between spring of 2008 and 2009. The next set of comparative tests exam-
ines how visible interactions between users have changed during this period.

The first question we revisit is how interactions are distributed among each user’s
friends. Figure 27 depicts the results when considering 70% and 100% of total interac-
tions. The trends for each range are similar for 2008 and 2009, and thus the high-level
conclusion of this figure remains the same as our original discussion in Section 4: users
do not interact with the majority of their friends. The 100% lines are slightly diver-
gent, indicating that users in 2009 interact with less of their friends than in 2008.
This result is consistent with our observation of increased average node degrees: even
though each user’s friend base keeps accumulating, the amount of time he/she has to
dedicate towards social interactions remains limited and fixed.

Figure 28 demonstrates that the top interactive users on Facebook contribute
less towards total interactions in 2009 than in 2008. This can be attributed to the
exponential growth in the Facebook user population during this time, which results in
many more users interacting overall. Even though these casual users may only inter-
act seldomly, taken in aggregate their numbers are large enough to dwarf the output of
the most interactive users. This observation also holds true in Figure 29, which plots
the contributions of the highest-degree nodes to total interactions.

In summation, we observe that the high-level conclusions we have drawn about in-
teractions on Facebook in 2008 also hold true in 2009. Specifically, we observe that:
(1) interactions are confined to a subset of each user’s friends (Figure 27), (2) inter-
actions are skewed towards a highly active subset of the population (Figure 28), and
(3) supernodes are not necessarily the most interactive users on Facebook (Figure 29).
However, the massive population growth on Facebook between 2008 and 2009 does
have an effect on interaction patterns. The overall increase in average node degrees
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Fig. 28. The contribution of the most interactive
users to total interactions in 2008 and 2009.

Fig. 29. The contribution of the most well-
connected nodes to total interactions in 2008 and
2009.

means users end up interacting with even less of their “friends.” Similarly, the in-
crease in normal users relative to supernodes reduces the impact of high-degree and
high-interaction nodes on total interactions. These results are to be expected, given
the changes in the social graph over the measurement period.

8. RELATED WORK

The body of research geared towards real-world social webs and physical networks has
only begun to be leveraged to understand online social networks within the last few
years. The original papers in this area focused primarily on static, structural charac-
teristics of OSN graphs. One of first was a study focusing on the Club Nexus Web site
of Stanford University [Adamic et al. 2003]. Since then, traces from CyWorld, MyS-
pace, and Orkut [Ahn et al. 2007] have been analyzed, as well as YouTube, Flickr, and
LiveJournal [Mislove et al. 2007]. Other studies have focused on social graph evolution
over time using traces from Flickr and Yahoo! 360 [Kumar et al. 2006; Mislove et al.
2008]. These studies confirm that online social networks obey power-law scaling char-
acteristics [Barabasi and Albert 1999] and exhibit high clustering coefficients, firmly
establishing them as small-world graphs [Amaral et al. 2000].

More recently, OSN studies have shifted focus to analyzing interactions between
users, rather than static graph topologies alone. Prior to our work, there were two
studies in this vein, one focusing on the online communication patterns among users in
a large IM trace [Leskovec and Horvitz 2008], and one targeting users of the CyWorld
OSN [Chun et al. 2008]. Like our study, the CyWorld interaction study [Chun et al.
2008] showed that CyWorld user interactions are reciprocal. User interaction behavior
differs significantly from our study, however. CyWorld users with less than 200 friends
interact only with a small subset of friends and users with more than 200 friends
interact evenly. In addition, both activity and social graphs are similar in CyWorld and
exhibit multiscaling behavior. This multiscaling is unique to CyWorld; all other social
networks analyzed so far, including Facebook, exhibit simple power-law connectivity
scaling [Ahn et al. 2007; Leskovec and Horvitz 2008; Mislove et al. 2007].

Since our initial work was published, numerous other studies have been published
that analyze visible interactions between OSN users. Two papers have leveraged
Flickr data to study user interactions and the dynamics of photo popularity over
time [Cha et al. 2009; Valafar et al. 2009]. Twitter has rapidly grown in popularity
in recent years, and its relatively open data access policies have made it the target of
several graph topological and user interaction studies [Cha et al. 2010; Kwak et al.
2010; Yang and Counts 2010]. Facebook has also been the subject of additional stud-
ies focused on time-varying dynamics in user interactions [Viswanath et al. 2009]. The
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general consensus from this growing body of research reinforces the findings of this ar-
ticle: only a fraction of all friendship links represent active connections between users,
interactions are not spread evenly over users’ friends, and the relative interactivity
of different links varies with time. These observations have led to the formulation of
models that attempt to predict pairwise tie-strength between OSN and email users
using interaction events [Choudhury et al. 2010; Xiang et al. 2010].

The study of visible interactions on OSNs has naturally led to work focused on
nonvisible, or latent, user interactions. Latent interactions are characterized by things
like profile browsing or photo viewing, where (usually) no explicit trace of the behav-
ior remains, except for perhaps in the OSN provider’s private HTTP logs. This lack of
available data makes latent interactions a challenge to study. Latent interactions on
Facebook, MySpace, LinkedIn, Hi5, and StudiVZ were studied by using anonymized
HTTP traces captured at ISP level [Schneider et al. 2009]. Similarly, latent inter-
actions on Orkut, MySpace, Hi5, and LinkedIn were analyzed using HTTP session
data collected at a Brazilian social network aggregator site [Benevenuto et al. 2009].
Latent interactions on the Chinese OSN Renren were collected and analyzed by
leveraging features unique to Renren that display recent visitors on each user’s pro-
file [Jiang et al. 2010]. Finally, visible and latent interactions on Facebook have also
been characterized [Backstrom et al. 2011]. These studies demonstrate that latent
interactions exhibit different characteristics than visible interactions: more friend
links tend to be active for browsing behavior, and latent interactions are nonreciprocal.
These results suggest that social application developers need to evaluate what types
of interactions are important to their applications (visible or latent) before settling on
an appropriate evaluation model.

9. CONCLUSION

This article aims to answer the question: Are social links valid indicators of real user
interaction? To do this, we gathered extensive data from crawls of the Facebook social
network in 2008, including social and interaction statistics on more than 10 million
users. We show that interaction activity on Facebook is significantly skewed towards
a small portion of each user’s social links. This finding casts doubt on the assumption
that all social links imply equally meaningful friend relationships.

We introduce the interaction graph as a more accurate representation of meaningful
peer connectivity on social networks. Analysis of interaction graphs derived from our
Facebook data reveals different characteristics than the corresponding social graph.
Most notably, interaction graphs exhibit an absence of small-world clustering. We also
observe much lower average node degrees in the interaction graph as compared to the
Facebook social graph. This confirms the intuition that human interactions are limited
by constraints such as time, and brings into question the practice of evaluating social
networks in distributed systems directly using social connectivity graphs.

We conduct experiments to evaluate the effects of interaction graphs on three well-
known social applications. The performance of RE [Garriss et al. 2006] improves with
the use of interaction graphs, as the streamlined link structure helps control spam pro-
liferation. In the case of SybilGuard [Yu et al. 2006], the system becomes less able to
effectively classify nodes once its assumptions about graph structure are violated. Fur-
thermore, we observe that while computing influence maximization [Chen et al. 2009],
the selection of influential nodes and their effective range of influence changes when
interactivity is taken into account. These experiments strongly suggest that social-
based applications should be designed with interactions graphs in mind, so that they
reflect real user activity rather than social linkage alone.

Finally, we reexamine our conclusions about interactions on Facebook using addi-
tional data crawled from Facebook in 2009. We demonstrate that although Facebook’s
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user population continues to grow exponentially, interaction patterns between users
remain largely the same. This shows that our conclusions generalize over time, and
are likely to remain applicable for the foreseeable future.

To support the efforts of the social network research community, we make available
a selection of anonymized social and interaction graphs from our Facebook dataset.
Details on the available graphs, as well as instructions for requesting access to the
data, are available on our lab Web site3.
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