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Social, technological and information systems can often be described in terms of complex networks
that have a topology of interconnected nodes that combines organization and randomness [1I, 2] [3]
4, [5]. The typical size of large networks such as social network services, mobile phone networks or
the web now counts in millions when not billions of nodes and these scales demand new methods
to retrieve comprehensive information from their structure [6]. A promising approach consists in
decomposing the networks into sub-units or communities, which are sets of highly connected nodes
[7]. The identification of these communities is of crucial importance as they may help to uncover
a-priori unknown functional modules such as topics in information networks or cyber-communities in
social networks. Moreover, the resulting meta-network, whose nodes are the communities, may then
be used to visualize the original network structure. Here we propose a simple community detection
method that reveals the hierarchical community structure of networks and that outperforms all
other known community detection methods. We use our method to identify language communities
and analyze community interactions in a Belgian mobile phone network of 2.6 million customers
and we apply it to a web network of 118 million nodes and more than one billion links.

PACS numbers: 89.75.-k, 02.50.Le, 05.50.+q, 75.10.Hk

I. INTRODUCTION

modularity optimization is a problem that is computa-

The problem of community detection [8] requires the
partition of a network into communities of strongly con-
nected nodes, with the nodes belonging to different com-
munities only sparsely connected. Finding exact optimal
partitions in networks is known to be computationally
intractable, mainly due to the explosion of the number
of possible partitions as the number of nodes increases.
Several algorithms have therefore been proposed to find
reasonably good partitions in a reasonably fast way. This
search for fast algorithms has attracted much interest in
recent years due to the increasing availability of large
network data sets and the impact of networks on every
day life. As an example, the identification of the place
of an individual in a partition —at the heart of a com-
munity or at the interface between communities— is of
crucial importance in order to optimize viral methods
of diffusion. One can distinguish several types of com-
munity detection algorithms: divisive algorithms detect
inter-community links and remove them from the net-
work [7, @, [10], agglomerative algorithms merge similar
nodes/communities recursively [11], spectral methods are
based on the eigenvectors of the Laplacian matrix [12],
and optimization methods are based on the maximisation
of a benefit function [I3], I4]. The quality of the par-
titions resulting from these methods is often measured
by the so-called modularity of the partition. The mod-
ularity of a partition is a scalar value between -1 and
1 that measures the density of links inside communities
as compared to links between communities [I5]. This
measure has been used to compare the quality of the
partitions obtained by different methods, but also as an
objective function to optimize [16]. Unfortunately, exact

tionally hard [I7] and so approximation algorithms are
necessary when dealing with large networks. The fastest
approximation algorithm for optimizing modularity on
large networks was proposed by Clauset et al. [13]. That
method consists in recurrently merging communities that
optimize the production of modularity. Unfortunately,
this greedy algorithm has a tendency to produce super-
communities that contain a large fraction of the nodes,
even on synthetic networks that have no significant com-
munity structure. This artefact also has the disadvan-
tage to slow down the algorithm considerably and makes
it inapplicable to networks of more than a million nodes.
This undesired effect has been circumvented by introduc-
ing tricks in order to balance the size of the communities
being merged, thereby speeding up the running time and
making it possible to deal with networks that have a few
million nodes [I8]. The largest networks that have been
dealt with so far in the literature are a protein-protein in-
teraction network of 30739 nodes [6], a network of about
400000 items on sale on the website of a large on-line re-
tailer [I3], and a Japanese social networking systems of
about 5.5 million users [I8]. These sizes still leave consid-
erable room for improvement considering that, as of to-
day, the social networking service Facebook has about 64
million active users, the mobile network operator Voda-
phone has about 200 million customers, Google indexes
several billion web-pages and the human brain is esti-
mated to have about a hundred billion neurons. Let us
also notice that in most large networks such as those
listed above there are several natural organization levels
—communities divide themselves into sub-communities—
and it is thus desirable to obtain community detection
methods that reveal this hierarchical structure.



FIG. 1: On this simple illustrative example the algorithm
produces two hierarchy levels. The colours show the first level
partition and the surrounded clusters of nodes correspond to
the partition at the second level. Although the latter partition
has higher modularity, both partitions make sense.

II. METHOD

We now introduce our algorithm that finds high modu-
larity partitions of large networks in short time and that
unfolds a complete hierarchical community structure for
the network, thereby giving access to different resolutions
of community detection. Contrary to most of the other
community detection algorithms, the network size limits
that we are facing with our algorithm are due to limited
storage capacity rather than limited computation time:
identifying communities in a 118 million nodes network
took only 152 minutes [19]. Our algorithm is divided in
two phases that are repeated iteratively. Assume that
we start with a weighted network of N nodes (weighted
networks are networks that have weights on their links,
such as the number of communications between two mo-
bile phone users). First, we assign a different community
to each node of the network. So, in this initial parti-
tion there are as many communities as there are nodes.
Then, for each node ¢ we consider the neighbours j of 4
and we evaluate the gain of modularity that would take
place by placing ¢ in the community of j. The node ¢
is then placed in one of the communities for which this
gain is maximum, but only if this gain is positive. If no
positive gain is possible, ¢ stays in its original community.
This process is applied repeatedly and sequentially for all
nodes until no further improvement can be achieved and
the first phase is then complete. Part of the algorithm
efficiency results from the fact that the gain in modular-
ity AQ obtained by moving ¢ in the community C of j
can easily be computed by:
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where ). is the sum of the weights of the links inside
C, >, is the sum of the weights of the links incident
to nodes in C, k; is the sum of the weights of the links
incident to node i, k; ;,, is the sum of the weights of the
links from 7 to nodes in C' and m is the sum of the weights
of all the links in the network.

The second phase of the algorithm consists in build-
ing a new network whose nodes are now the communities
found during the first phase. To do so, the weights of the
links between the new nodes are given by the sum of the
weight of the links between nodes in the corresponding
two communities. It is then possible to reapply the first
phase of the algorithm to the resulting weighted network
and to iterate. The algorithm naturally incorporates the
notion of hierarchy, as communities of communities are
built during the process (see Figure 1). By construction,
the number of meta-communities decreases at each time
step, until there are no more changes and a local maxi-
mum is attained.

This simple algorithm has several advantages. First,
its steps are intuitive and easy to implement, and the
outcome is unsupervised. Moreover, the algorithm is ex-
tremely fast. This is due to the fact that the possible
gains in modularity are easy to compute with the above
formula and that the number of communities decreases
drastically after just a few iterations so that most of the
running time is concentrated on the first iterations. Our
algorithm is also unaffected by the so-called resolution
limit problem of modularity. It is shown in Fortunato
and Barthélemy [20] that modularity optimization may
fail to identify communities smaller than a certain size
and this induces a resolution limit on the community de-
tected by a pure modularity optimization approach. Our
approach provides instead a hierarchical tree of commu-
nities, i.e. a decomposition of the network into commu-
nities for different levels of organization. This flexibility
allows the end-user to zoom in the network and to ob-

serve its structure with the desired resolution (see Figure
2).

III. APPLICATION TO LARGE NETWORKS

In order to verify the validity of our algorithm, we
have applied it on a number of test-case networks that
are commonly used for efficiency comparison (see Table
1). The networks that we consider include a small so-
cial network [21], a network of 9000 scientific paper and
their citations [22], a sub-network of the internet [23]
and a webpage network of a few hundred thousands web-
pages (the nd.edu domain, see [24]). In all cases, one



FIG. 2: We use our method for partitioning this modular, fractal-like network that is made of approximately 20000 nodes
and has a multi-level community structure. The communities are plotted with different colours and at different resolution
levels. The partition with the highest resolution is found after the first step of the algorithm and corresponds to the bottom
of the hierarchical tree of communities. At further steps, the merging of small communities leads to the uncovering of larger

meta-communities.

can observe both the rapidity and the large values of the
modularity that are obtained. Our method outperforms
all the other methods to which it is compared. We also
have applied our method on two web networks of un-
precedented sizes: a sub-network of the .uk domain of 39
million nodes and 783 million links [25] and a network
of 118 million nodes and 1 billion links obtained by the
Stanford WebBase crawler [25, 26]. Even for these very
large networks, the computation time is small (12 min-
utes and 152 minutes respectively) and makes networks
of still larger size, perhaps a billion nodes, accessible to
computational analysis.

To validate the communities obtained we have applied
our algorithm to a large network constructed from the
records of a Belgian mobile phone company. This net-
work is described in details in [27] where it is shown to
exhibits typical features of social networks, such as a high
clustering coefficient and a fat-tailed degree distribution.
The network is composed of 2.6 million customers, be-
tween whom weighted links are drawn that account for
their total number of phone calls during a 6 month pe-
riod. This large social network is exceptional due to the
particular situation of Belgium where two main linguis-
tic communities (French and Dutch) coexist and which
provides an excellent way to test the validity of our com-

munity detection method by looking at the linguistic ho-
mogeneity of communities [28]. From a more sociolog-
ical point of view, the possibility to highlight the lin-
guistic, religious or ethnic homogeneity of communities
opens perspectives for describing the social cohesion and
the potential fragility of a country [29].

On this particular network, our community detection
algorithm has identified a hierarchy of six levels. At the
bottom level every customer is a community of its own
and at the top-level there are 261 communities that have
more than 100 customers. These communities account
for about 75% of all customers. We have performed a
language analysis of these 261 communities (see Figure
3). The homogeneity of a community is characterized
by the percentage of those speaking the dominant lan-
guage in that community; this quantity goes to 1 when
the community tends to be monolingual. Our analysis re-
veals that the network is strongly segregated, with most
communities almost monolingual. There are 36 commu-
nities with more than 10000 customers and, except for
one community at the interface between the two language
clusters, all these communities have more than 85% of
its members speaking the same language (see Figure 4
for a complete distribution). It is interesting to anal-
yse more closely the only community that has a more



FIG. 3: Graphical representation of the network of communi-
ties extracted from a Belgian mobile phone network. About
2M customers are represented on this network. The size of
a node is proportional to the number of individuals in the
corresponding community and its colour on a red-green scale
represents the main language spoken in the community (red
for French and green for Dutch). Only the communities com-
posed of more than 100 customers have been plotted. Notice
the intermediate community of mixed colours between the two
main language clusters.
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FIG. 4: For the largest communities in the Belgian mobile
phone network we represent the size of the community and
the proportion of customers in the community that speak the
dominant language of the community. For all but one com-
munity of more than 10000 members the dominant language
is spoken by more than 85% of the community members.

equilibrate distribution of languages. Our hierarchy re-
vealing algorithm allows us to do this by considering the
sub-communities provided by the algorithm at the lower
level. As shown on Figure 5, these sub-communities are
closely connected to each other and are themselves com-
posed of heterogeneous groups of people. These groups
of people, where language ceases to be a discriminating

FIG. 5: Representation of the community at the interface be-
tween the two main language clusters of Figure 3. The com-
munity is made of several sub-communities with no apparent
language separation.

factor, might possibly play a crucial role for the integra-
tion of the country and for the emergence of consensus
between the communities [30]. One may indeed wonder
what would happen if the community at the interface be-
tween the two language clusters on Figure 3 was to be
removed.

Another interesting observation is related to the pres-
ence of other languages. There are actually four possible
language declarations for the customers of this partic-
ular mobile phone operator: French, Dutch, English or
German. It is interesting to note that, whereas FEnglish
speaking customers disperse themselves quite evenly in
all communities, more than 60% of the German speak-
ing customers are concentrated in just one community.
Let us finally observe that, as can be visually noticed on
Figure 3, French speaking communities are much more
densely connected than their Dutch speaking counter-
parts: on average, the strength of the links between
French speaking communities is 54% stronger than those
between Dutch speaking communities. This difference of
structure between the two sub-networks seems to indi-
cate that the two linguistic communities are character-
ized by different social behaviours and therefore suggests
to search other topological characteristics for the com-
munities.

Acknowledgments

This research was supported by the Communauté
Francaise de Belgique through a grant ARC and by the
Belgian Network DYSCO, funded by the Interuniversity
Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. J.-L. G. is also supported
by the project MAPE (ANR France) and MAPAP (Safer
Internet Plus Programme, European Union).



[1] R. Albert and A.-L. Barabdsi (2002) Statistical mechan-
ics of complex networks. Rev. Mod. Phys. 74, 4797.

[2] A.-L. Barabasi and R. Albert (1999) Emergence of scaling
in random networks. Science 286, 509512.

[3] J.F.F. Mendes and S.N. Dorogovtsev, Evolution of Net-
works: From Biological Nets to the Internet and WWW
(Oxford University Press, Oxford, 2003).

[4] M.E.J. Newman, A.-L. Barabasi and D.J. Watts, The
Structure and Dynamics of Networks (Princeton Univer-
sity Press, Princeton, 2006).

[5] D.J. Watts and S.H. Strogatz (1998) Collective dynamics
of small-world networks. Nature 393, 440442.

[6] G. Palla, I. Derényi, I. Farkas and T. Vicsek (2005) Un-
covering the overlapping community structure of complex
networks in nature and society. Nature 435, 814-818.

[7] M. Girvan and M.E.J. Newman (2002) Community struc-
ture in social and biological networks. Proc. Natl. Acad.
Sci. USA 99, 7821-7826.

[8] S. Fortunato and C. Castellano (2007) Community struc-
ture in graphs. arXw:0712.2716

[9] M.E.J. Newman and M. Girvan (2004) Finding and eval-
uating community structure in networks. Phys. Rev. E
69, 026113.

[10] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi (2004) Defining and identifying communities in
networks. Proc. Natl. Acad. Sci. USA 101, 26582663.

[11] P. Pons and M. Latapy (2006) Computing communities
in large networks using random walks. Journal of Graph
Algorithms and Applications 10, 191-218.

[12] M.E.J. Newman (2006) Finding community structure in
networks using the eigenvectors of matrices. Phys. Rev.
E 74, 036104.

[13] A. Clauset, M.E.J. Newman and C. Moore (2004) Find-
ing community structure in very large networks. Phys.
Rev. E 70, 066111.

[14] F. Wu and B.A. Huberman (2004) Finding communities
in linear time: a physics approach. Fur. Phys. J. B 38,
331-338.

[15] M.E.J. Newman (2006) Modularity and community
structure in networks. Proc. Natl. Acad. Sci. USA 103,
8577-8582.

[16] M.E.J. Newman (2004) Fast algorithm for detecting com-
munity structure in networks. Phys. Rev. E 69, 066133.

[17] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoe-
fer, Z. Nikoloski and D. Wagner (2006) Maximizing Mod-
ularity is hard. physics/0608255

[18] K. Wakita and T. Tsurumi (2007) Finding commu-
nity structure in a mega-scale social networking ser-
vice. Proceedings of IADIS international conference on
WWW /Internet 2007, 153-162.

[19] All methods described here have been compiled and
tested on the same machine: a bi-opteron 2.2k with 24GB
of memory.

[20] S. Fortunato and M. Barthélemy (2007) Resolution limit
in community detection. Proc. Natl. Acad. Sci. USA 104,
36-41.

[21] W.W. Zachary (1977) An information flow model for con-
flict and fission in small groups. Journal of Anthropolog-
ical Research 33, 452-473.

[22] |http://www.cs.cornell.edu/projects/kddcup/
KDD Cup)

(Cornell

[23] M. Hoerdt and D. Magoni (2003) Completeness of the in-
ternet core topology collected by a fast mapping software.
Proceedings of the 11th International Conference on Soft-
ware, Telecommunications and Computer Networks, 257-
261.

[24] R. Albert, H. Jeong and A.-L. Barabési (1999) Diameter
of the World Wide Web. Nature 401, 130.

[25] |http://law.dsi.unimi.it/ (Laboratory for Web Algorith-
mics)

[26] |http://dbpubs.stanford.edu:8091/~testbed/doc2/WebBase/

(Stanford WebBase Project)

[27] R. Lambiotte, V.D. Blondel, C. de Kerchove, E. Huens,
C. Prieur, Z. Smoreda and P. Van Dooren (2008) A grav-
ity model for the geographical dispersal of mobile com-
munication networks. arX:w:0802.2178

[28] G. Palla, A.-L. Barabdsi and T. Vicsek (2007) Quantify-
ing social group evolution. Nature 446, 664-667.

[29] J.-P. Onnela, J. Saraméiki, J. Hyvonen, G. Szabd, D.
Lazer, K. Kaski, J. Kertész, and A.-L. Barabdsi (2007)
Structure and tie strengths in mobile communication net-
works. Proc. Natl. Acad. Sci. USA 104, 7332-7336.

[30] R. Lambiotte, M. Ausloos and J. A. Holyst (2007) Ma-
jority Model on a network with communities. Phys. Rev.
E 75 030101(R).


http://arXiv.org/abs/0712.2716
http://arXiv.org/abs/physics/0608255
http://www.cs.cornell.edu/projects/kddcup/
http://law.dsi.unimi.it/
http://dbpubs.stanford.edu:8091/$\sim $testbed/doc2/WebBase/
http://arXiv.org/abs/0802.2178

TABLE I: Summary of numerical results. This table give the performances of the algorithm of Newman and Girvan [9], of
Pons and Latapy [11] and of our algorithm for community detection in networks of various sizes. For each method/network,
the table displays the modularity that is achieved and the computation time. Empty cells correspond to a computation time
over 24 hours. The source code for the algorithm by Wakita and Tsurumi [I8] is not available for comparison and we have
therefore not been able to run their algorithm on the same data. However, the largest network that they are able to treat has
5.5M nodes and they do not expect their method to scale beyond 10M nodes. By extrapolation on the basis of the results and
computation times that they provide for various network sizes, we expect their method to take 3 hours on our phone network
and several days on the web networks of 39M and 118M nodes.

Karate Arxiv Internet Web nd.edu Phone ‘Web uk-2005 Web WebBase 2001
Nodes/links 34/77 9k /24k 70k/351k 325k /1M 2.6M/6.3M 39M/783M 118M/1B
Newman-Girvan  .404/0s  .772/3.6s  .692/799s .927/5034s -/- -/- -/-
Pons-Latapy .43/0s .757/3.3s  .729/575s .895/6666s -/- -/- -/-

Our algorithm .43/0s .813/0s .781/1s .935/3s .769/134s .979/738s .984/152mn
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