Social Computing Homework 1: Basic Network Analysis
CS5750/1S4700 Fall 2013 August 31, 2013

This project is due at 11:59:59pm on September 25, 2013 and is worth 5% of your grade. You must
complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

1 Description

There are several goals for this assignment. First, you will get experience measuring and analyzing
real network data. Second, you will gain experience implementing algorithms that we discussed
in class. Third, you will face scalability challenges, as some of the networks are quite large.

Your assignment is to write a program that, given a network, calculates a number of statis-
tics. Your program, called 5750netalyzer will read input from a file given as a command-line
argument, open the file and read in the network, and then output a number of statistics about the
network. There are very specific requirements for the format of the input and the output; these
are included below.

2 Requirements

Your program will accept a filename as a single argument, will read in the graph file in the format
described below, and will output the statistics in the output described below. The instructors have
provided a reference solution, and your program’s output will be compared against the reference
solution. The reference solution is the same code that your project will be graded against, so you
should ensure that your program’s output matches in order to achieve a good score.

2.1 Starter code

Very basic starter code and sample data for the assignment is available on the CCIS Linux network
at /course/cs5750£13/code/homework1. You are free to implement this project in any language
you choose (assuming the CCIS Linux machines have the necessary compiler and library support).
You may also use any existing graph libraries to store and query the graph; you must not use these
libraries to run the analysis (e.g., calculate the clustering coefficient). All analysis code must be
written by you.

To get started, you should copy down this directory into your own local directory (i.e., cp
-r [course/cs5750£13/code/homework1 ~/cs5750). The Makefile is configured to test your
code on sample input (via the test target). You should feel free to edit the Makefile so that it
will compile your code (or do other things). However, you should not change the test target.
Your executable program must be named 5750netalyzer, and must be executable by running
./5750netalyzer.

2.2 Input format

Your 5750netalyzer program will accept exactly one argument: a filename. The file will repre-
sent a graph, which will be a number of lines of the form:



nodel [tab] node2 [\n]
The node1 and node2 labels can be of the form (in regular expression syntax):
[A-Za-z0-9 -]+

The graph files can be arbitrarily large, and the node labels can be of any length (greater than 0
characters). The graphs will be directed, meaning a link from A to B does not imply a link in the
reverse direction.

2.3 Features

Your program must run a number of graph analysis metrics on the graph that you read in. In
particular, you should examine (in this order):

2.3.1 Total nodes and links

You should output the total number of unique nodes, number of links, and the fraction of links
that are symmetric that you observed. The format should be:

Nodes: [space] [number of nodes] [\n]
Links: [space] [number of links] [\n]
Symmetric links: [space]| [percentage to 5 decimal places] [%] [\n]

(i.e., the string "Nodes:", a space, the number of nodes, and a carriage return, etc). One example
output might be

Nodes: 21
Links: 83
Symmetric links: 23.30211%

2.3.2 Average out-degree and in-degree

You should output the average out-degree and in-degree of nodes in the graph. Your output should
be in the format:

Average outdegree: [space] [average outgoing links to 5 decimal places] [\n]
Average indegree: [space] [average outgoing links to 5 decimal places] [\n]

One example (partial) output might be

Average outdegree: 24.50572

2.3.3 Clustering coefficient

Recall that the clustering coefficient of a node i, denoted by c(i), is defined as the number of
directed links that exist between the node’s neighbors, divided by the number of possible directed
links that could exist between the node’s neighbors (i.e., the nodes that this node points to). Thus,
if a node i’s neighbors have n directed links between them, then the clustering coefficient of i is

defined as
n

D= T@-n

(1)

2



(nodes with less than 2 neighbors are disregarded) The clustering coefficient of a graph is the
average clustering coefficient of all its nodes with more than 1 neighbor, and we denote it as C(G),

or
Zvevc(v)
14

Thus, the clustering coefficient of a graph ranges between 0 and 1, with higher values representing
a higher degree of “cliquishness" between the nodes. In particular, a graph with clustering coeffi-
cient of 0 contains no “triangles" of connected nodes, whereas a graph with clustering coefficient
of 1 is a perfect clique. A graph with no nodes with more than 1 neighbor is defined to have a
clustering coefficient of 0.

Your program must output the clustering coefficient of the graph as

C(G) = (2)

Clustering coefficient: [space] [coefficient to 5 decimal places]| [\n]
One example output might be

Clustering coefficient: 0.20347

2.3.4 Assortativity

The assortativity of a graph captures the linking behavior of nodes. Assortativity is measured
in the range [-1, 1], where 1 means that nodes always link to other nodes of equal degree, and -1
indicates that nodes link to other nodes of different degree. A graph with assortativity >0 is called
assortative, while a graph with assortativity <0 is called disassortative. For directed graphs, you
can actually calculate four different assortativities: r(in,in), r(in,out), r(out,in), and r(out,out).
Here, in and out refer to which types of degrees you are comparing, i.e. in-degree vs. in-degree,
in-degree vs. out-degree, etc.

Taken form Foster et al.’s PNAS paper, let a, § € {in,out} be the degree type, and j* and kf be
the a- and p-degree of the source and target node for edge i. We can then define the assortativity
as

SNPSR b 1 (/o )
VET A T E Lk R
Where E is the number of edges in the graph, j* = E"'Y ; j#, and kB is similarly defined. In cases
where the denominator is 0, the metric is defined to be 0 (in such cases, the numerator must also

be 0).
Your program must output r(in,in) and r(out,out) as

(3)

Assortativity (in/in): [space] [in-degree assortativity to 5 decimal places] [\n]
Assortativity (out/out): [space] [out-degree assortativity to 5 decimal places] [\n]

One example output might be

Assortativity (in/in): 0.59270
Assortativity (out/out): 0.01373



2.3.5 Radius and diameter

Recall that the radius and diameter of a graph represent how far away nodes are from each other
in the network. Formally, the eccentricity of a node v is the maximal directed shortest path dis-
tance between v and any other node (for the purposes of this project, pairs of nodes that have
no path between them should be ignored and nodes with no outgoing links have an undefined
eccentricity). The radius of a graph is then the minimum eccentricity across all vertices, and the
diameter is the maximum eccentricity across all vertices. Thus, the radius represents the maximal
distance from the most “central” node in the graph to all other nodes, and the diameter represents
the maximal distance from the least “central” node in the graph to all other nodes.
Your program must output the radius and diameter of the graph as

Radius: [space] [radius] [\n]
Diameter: [space] [diameter] [\n]

2.3.6 Average path length

The shortest path length between two nodes is defined as the minimum number of directed hops
that must be traversed to get from one node to another. Note that (a) due to the directed nature
of graphs, the shortest path length is not necessarily commutative, and (b) certain pairs of nodes
may have no defined shortest path length. The average path length is defined as the average value
of the shortest path length, measured across all pairs of nodes that have a defined shortest path
length.

Your program must output the average path length of the graph as

Average path length: [space] [average path length to 5 decimal places] [\n]

2.3.7 Connected components

Recall that for an undirected graph, a connected component is a subset of the nodes where that there
is a path in the network between all pairs of nodes in the set. For a directed graph, we distinguish
between a strongly connected component and a weakly connected component. A strongly connected
component (SCC) is defined as a set of nodes such that there is a path in the network between all
pairs of nodes in the set. In contrast, a weakly connected component (WCC) is defined as a set of
nodes such that there is a path in the network between all pairs of nodes in set if the all links in
the network were viewed as undirected.

Your program must calculate the weakly connected components in the graph, and output their
sizes (i.e., the number of nodes in each component). The format should be

Weakly connected components: [space]| [size_1] [space] [size_2] ... [size_n] [\n]
Your program must print these out in decreasing order of size. For example, one output might be

Weakly connected components: 45 39 9 3 2 1 1

2.4 Exit message

Finally, your program should output
So long and thanks for all the fish! [\n]

before it exits.



2.5 Error handling

If your program is unable to open the file, or if the file does not exist, you should output
Error: Unable to open graph file.

and exit. If you encounter a graph file which does not meet the specification listed above, you
should output

Error: Malformed graph file on line LINE.

(where LINE is the [0-indexed] offending line number) and exit. If you encounter a duplicate link,
you should output

Error: Duplicate link on line LINE.
and if you encounter a self-loop, you should output
Error: Self-loop on line LINE.
If you encounter any other error while running the program, you should output

Error: [meaningful description of the error]

3 Implementation hints

You should develop your client program on the CCIS Linux machines, as these have the necessary
compiler and library support. You are welcome to use your own Linux/OS X machines, but you
are responsible for getting your code working, and your code must work when graded on the CCIS
Linux machines. If you do not have a CCIS account, you should get one ASAP in order to complete
the project. If you are using C, your code must be -Wall clean on gcc. Do not ask the TA for help
on (or post to the forum) code that is not -Wall clean unless getting rid of the warning is what the
problem is in the first place.

You will want to make sure that you break your program up into modules, such that each
module represents a sensible type abstraction. If you have questions on how to do this, please
come see the instructors or the TA.

4 Testing

First test that your program can run on very simple graph files. Your program should not crash,
no matter how weird the input; in all cases, your program must either complete successfully or
print an error.

Additionally, we have included a basic test script to check the output of your code against
our reference solution and check your code’s compatibility with the grading script. If your code
fails in the test script we provide, you can be assured that it will fare poorly when run under the
grading script. To run the test script, simply type

bash$ make test



This will compile your code and then test your shell on a number of inputs, comparing the results
against the reference solution. If any errors are detected, the test will print out the side-by-side
diff-ed output (the left side is the reference solution, the right side is yours). For example, you
might see something like

bash$ make test
Milestone tests

Trying with graph ’graph1’ [FAIL]
Diff in expected output:
Nodes: 10 < Nodes: 11
Links: 20 < Links: 19
So long and thanks for all the fish! So long and thanks for all th

This indicates that the test with input . /5750netalyzer was expected to print out the lines with a
< in the left column, but instead returned the right column; both output the “So long...” text. We
include a few sample tests, but these are by no means exhaustive. We expect that you will create
additional test to ensure that your programs behave as expected.

5 Submitting your project

5.1 Registering your team

You and your partner should first register as a team by running the /course/cs5750£13/bin/register
script. You should pick out a team name (no spaces or non-alphanumeric characters, please) and
run

/course/cs5750f13/bin/register homework1l <teamname>

This will either report back success or will give you an error message. If you have trouble regis-
tering, please contact the course staff.

You must register your team by 11:59:59pm on September 9, 201 3.

5.2 Final submission

For the final submission, you should submit you (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is
good, and an overview of how you tested your code. In your README, you should also point out
any extra features of your project that you have implemented.

You should submit your project by running the /course/cs5750£13/bin/turnin script. Specif-
ically, you should create a homework1 directory, and place all of your code and README files in
it. Then, run

/course/cs5750f13/bin/turnin homeworkl1 <dir>

Where <dir> is the name of the directory with your submission. Again, the script will print out
every file that you are submitting, make sure that it prints out all of the files you wish to submit!

You must submit your project by 11:59:59pm on September 25, 201 3.



6 Grading
The grading in this project will consist of
75% Program functionality

15% Correct error handling

10% Style and documentation

7 Advice
A few pointers that you may find useful while working on this project:

* Check the Piazza forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

* Finally, get started early!



	Description
	Requirements
	Starter code
	Input format
	Features
	Total nodes and links
	Average out-degree and in-degree
	Clustering coefficient
	Assortativity
	Radius and diameter
	Average path length
	Connected components

	Exit message
	Error handling

	Implementation hints
	Testing
	Submitting your project
	Registering your team
	Final submission

	Grading
	Advice

