
Providing Guaranteed Services Without Per Flow Management *

Ion Stoica., Hui Zhang
Carnegie Mellon University

Pittsburgh, PA 15213
e-mail: { istoica, hzhang}Qcs . emu . edu

Existing approaches for providing guarant.eed services re-
quire routers to manage per fiow states and perform per flow
operations [9, 211. Such a statefIr/ network architecture is
less scalable and robusl than stateless network architectures
like the original IP and the recently proposed Diffserv [3].
However, services provided with current stateless solutions,
Diffserv included, have lower flexibility, utilization, and/or
assurance level as compared to the services that can be pro-
vided with per flow mechanisms.

In this paper, we propose techniques that do not require
per flow management (either control or data planes) at core
routers, but can implement guaranteed services with levels
of flexibility, utilization, and assurance similar to those that
can be provided with per flow mechanisms. In this way we
can simultaneously achieve high quality of service, high scal-
ability and robustness. The key technique we use is called
Dynamic Packet State (DPS), which provides a lightweighl;
and robust mechanism for routers to coordinate actions and
implement distributed algorithms. We present an imple-
mentation of the proposed algorithms that has minimum
incompatibility with IPvI.

1 Introduction

Cut-rent IP networks provide one simple service: the best-
effort datagram delivery. Such a simple service model allows
IP routers to be stateless: except routing state, which is
highly aggregated, routers do not keep any ot,her fine grain
information about traffic. Providing a minimalist service
model and having the “stateless waist” in the protocol hour-
glass allows the Internet to scale with both the size of the
network and heterogeneous applications and technologies.
Together, they are two of the most important technical rea-
sons behind the success of the Internet.

‘This research was sponsored by DARPA under contract numbers
N66001-96-C-8528 and E3060?-97-2-0387, and by NSF under grant
numbers Career Award NCR-9624979 and ANI-9814929. Additional
support was provided by Intel Corp. Views and conclusions contained
in this document. are those OC the authors and should not be inter-
preted as representing the official policies, either expressed or implied,
of DARPA, NSF, Intel, OF the U.S. government.

Permission to make digital or hard copies of all or part of fhis work for
personal or classroom use is granted without fee provided fhat
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, fo republish, to post on servers or fo
redistribute fo lists. requires prior specific permission and/or a fee.
SIGCOMM ‘99 E/99 Cambridge, MA, USA
0 1999 ACM 1.56113.135.6/99/0006...$5.00

As the Internet evolves into a global communication in-
frastructure, there is a growing need to support more so-
phisticated services (e.g., traffic management, QoS) than
the traditional best-effort service. Two classes of solut.ions
emerge: those maintaining the stateless property of the orig-
inal IP architecture, and those requiring a new statefular-
chitecture. Examples of stateless solutions are RED for con-
gestion control [ll] and Differentiated Service (Diffserv) [3]
for &OS. The corresponding examples of stalefvl solutions
are Fair Queueing [8] for congestion control and Integrated
Service (Intserv) [31] for QoS. In general, stat,eful solu(;ions
can provide more powerful and flexible services. For exam-
ple, compared with RED, Fair Queueing can protect well-
behaving flows from misbehaving ones and accommodate
heterogeneous end-to-end congestion control algorithms [16,
221. Similarly, as discussed in Section 2, services provided by
lntserv solutions have higher flexibility, utilization, and/or
assurance level than those provided by Diffserv solutions.
However, as also discussed in Section 2, stateful solutions are
less scalable and robust than their stateless counterparts.

The question we want t,o answer is: is it possible to have
the best of the two worlds, i.e.: providing services as powerful
as those implemented by stateful networks, while utilizing
algorit.hms as scalable and robust as those used in stateless
net,works?

While we cannot. answer the above question in its full
generality, we can answer it in some specific cases of practical
interest. We consider a network architecture similar to the
Diffserv architecture, called Scalable Core or SCORE, in
which only edge routers perform per flow management., while
core routers do not. As illustrated in Figure 1, t,he goal of a
SCORE network is to approximate the service provided by
a reference statefulnetwork. In [26] we have shown that a
SCORE network can achieve fair bandwidth allocation by
approximating the service provided by a reference network
in which every node performs fair queueing.

In this paper, we will show that a SCORE network can
provide end-to-end per flow delay and bandwidth guaran-
tees as defined in Intserv. Current Intserv solutions assume
a stateful network in which two types of per flow state are
needed: forwarding state, which is used by the forward-
ing engine to ensure fixed path forwarding, and QoS state’,
which is used by both the admission control module in the
control plane and the classifier and scheduler in the dat.a
plane. In [27], we have proposed an algorithm that imple-
ments fixed path forwarding with no per flow forwarding

‘In the context of RSVP, we use “QoS” state to refer to both the
flow spec and the filter spec.

81

(a) Reference Nelwork

(b) SCORE Network

Figure 1: (a) .4 reference stateful network whose functional-
itv is approximated bv (b) a Scalable Core (SCORE1 network.
In SCdgE only edge nodes perform per flow‘management; core
nodes do not perform per flow management,.

state. In this paper, we focus on techniques to eliminate
the need for core nodes to keep per flow QoS state. In par-
ticular, we propose two algorithms: one for the data plane
to schedule packets, and the other for the control plane to
perform admission control. Neither requires per flow state
at core routers.

The key technique used to implement a SCORE network
is Dynamic Packet State (DPS). With DPS, each packet
carries in its header some state t.hat is initialized by the
ingress router. Core routers process each incoming packet
based on the state carried in the packet’s header, updating
both its internal state and the state in the packet’s header
before forwarding it to the next hop (see Figure 2). By
using DPS to coordinate actions of edge and core routers
along the path traversed by a flow, distributed algorithms
can be designed to approximate the behavior of a broad class
of stateful networks using networks in which core routers do
not maintain per flow state.

The rest of the paper is organized as follows. In Section 2,
we give an overview of Intserv and Diffserv, and discuss the
tradeoffs of these two architectures in providing QoS. In Sec-
tions 3 and 4 we present the details of our data and control
path algorithms, respectively. Section 5 describes a design
and a prototype implementation of the proposed algorithms
in IPv4 networks. This demonstrates that it is indeed pos-
sible to implement algorithms with Dynamic Packet State
techniques that have minimum incompatibility with existing
protocols. Finally, we conclude t.he paper in Section 7.

2 lntserv and Diffserv

To support QoS in the Internet, the IETF has defined two
architectures: the Integrated Services or Intserv [21], and
the Differentiated Services or Diffserv [3]. They have impor-
tant differences in both service definitions and implementa-
tion architectures. At the service definition level, Intserv
provides end-to-end guaranteed [23] or controlled load ser-
vice [34] on a per flow (individual or aggregate) basis, while
Diffserv provides a coarser level of service differentiation

(b)

(d)

Figure 2: The illustration of the Dynamic Packet State (DPS)
technique used to implement a SCORE network: (a-b) upon a
packet arrival the ingress node inserts some state into the packet
header; (b-c) a core node processes the packet based on this state,
and eventually updates both its internal state and the packet state
before forwarding it. (c-d) the egress node removes the state from
the packet header.

among a small number of traffic classes. At the implemen-
tation level, current Intserv solutions require each router to
process per flou: signaling messages and maintain per flow
data forwarding and QoS state on the control path, and to
perform per flow classification, scheduling, and buffer man-
agement on the data path. Performing per flow management
inside the network affects both the network scalability and
robustness. The former is because the complexities of these
per flow operat,ions usually increase as a function of the num-
ber of flows; the later is because it is difficult to maintain the
consistency of dynamic, and replicated per flow state in a
distributed network environment. As pointed out by Clark
in [5]: “because of the distributed nature of the replication,
algorithms to ensure robust replication are themselves difi-
cult to build, and few networks with distributed state injor-
mation provide any sort of protection against failure. ” While
there are several proposals that aim to reduce the number
of flows inside the network by aggregating micro-flows that
follow the same path into one macro-flow [2, 141, they only
alleviate this problem, but do not fundamentally solve it -
the number of macro flows can still be quite large in a net-
work with many edge routers, as the number of paths is a
quadratic function of the number of edge nodes.

Diffserv, on the other hand, distinguishes between edge
and core routers. While edge routers process packets on
the basis of finer traffic granularity, such as per flow or per
organization, core routers do not maintain fine grain state,
and process packets based on a small number of Per Hop
Behaviors (PHBs) encoded by bit patterns in the packet
header. By pushing the complexity to the edge and main-
taining a simple core, Diffserv’s data plane is much more
scalable than Intserv. However, Diffserv still needs to ad-
dress the problem of admission control on the control path.
One proposal is to use a centralized bandwidth broker that
maintains the topology as well as the state of all nodes in the
network. In this case, the admission control can be imple-
mented by the broker, eliminating the need for maintaining
distributed reservation state. Such a centralized approach is
more appropriate for an environment where most flows are
long lived, and set-up and tear-down events are rare. To
support fine grain and dynamic flows, there may be a need
for a distributed broker architecture, in which the broker

82

database is replicated or partitioned. Distributed broker
architectures are still an active area of research. One can
envision an architecture in which, when a broker receives a
request, it makes an acceptance or rejection decision based
on its own database, without consulting other brokers. This
eliminates the need for a signaling protocol, but requires an-
other protocol to maintain the consistency of the different
broker databases. However, since it is impossible to achieve
perfect consistency, this may lead to race conditions and/or
resource fragmentation. In particular, since requests which
arrive simultaneously at different brokers may want to re-
serve capacity along the same link, each broker can indepen-
dently allocate only a fraction of the link capacity without
running the risk of over-provisioning. This translates into
a fundamental trade-off between scalability and fragment.a-
tion: while increasing the number of brokers make the solu-
tion more scalable, it also increases resource fragmentat.ion.

While Diffserv is more scalable than Intserv in terms
of implementation, services provided with existing Diffserv
solut.ions usually have lower flexibility, utilization, and as-
surance levels than Intserv services. Two examples of dif-
ferentiated service models are the assured service [6, 71 and
the premium service [18]. The assured service is a form of
statist.ical service and achieves lower assurance than guaran-
teed service. The premium service provides the equivalent
of a dedicat,ed link of fixed bandwidth between two edge
nodes. However, as we have shown in 1281, in order for the
premium service to achieve service assurance comparable to
the guarant.eed service, even with a relative large queueing
delay bound (e.g., 300 ms), the fraction of bandwidth that
can be allocated to premium service traffic has to be very low
(e.g., 10%). It is debatable whether these numbers should
be of significant concern. For example, low utilization by the
premium traffic may be acceptable if the majority of traffic
will be best effort, either because the best effort service is
“good enough” for most. applications or the price difference
between premium traffic and best effort traffic is too high
to justify the performance difference between them. Alter-
natively, if the guaranteed naLure of service assurance is not
needed, i.e., statistical service assurance is sufficient for pre-
mium service, higher network utilization can be achieved.
Providing meaningful statistical service is still an open re-
search problem. A discussion of these topics is beyond the
scope of this paper. For the remaining sect.ions of the paper,
we assume that it is a desirable goal to provide guarant.eed
service and at the same time achieve high resource utiliza-
tion.

In summary, Intserv provides more powerful service but
has serious limitations with respect to network scalability
and robustness. Diffserv is more scalable, but cannot pro-
vide services t.hat are comparable t,o Intserv. In addition,
scalable and robust admission control for Diffserv is still an
open research problem.

3 QoS Scheduling Without Per Flow State

Current Intserv solutions assume a stateful network in which
each router maintains per flow QoS state. The state is used
by both the admission control module in the control plane
and the classifier and scheduler in the data plane.

In this paper, we propose scheduling and admission con-
trol algorithms that provide guarantee services but do not
require core routers to maintain per flow state. In this sec-
tion, we present techniques that eliminate the need for data

plane algorithms to use per flow state at core nodes. In
particular, at core nodes, packet classification is no longer
needed and packet scheduling is based on the state carried in
packet headers, rather than per flow state stored locally at
each node. In Section 4, we will show t.hat fully distributed
admission control can also be achieved without t.he need for
maintaining per flow state at core nodes.

The main idea behind our solution is to approximate a
reference stateful network with a SCORE network. The key
technique used to implement approximation algorithms is
Dynamic Packet State (DPS). With DPS, each packet car-
ries some state which is initialized by the ingress node, and
then updated by core nodes along the packet’s path. The
state is used by nodes t.raversed by the packet to coordi-
nate actions and implement distributed algorithms. On the
data path, our algorithm aims to approximate a network
with every node implementing the Delay-Jit,ter-Controlled
Virtual Clock (Jitter-VC) algorithm. We make this choice
for several reasons. First, unlike various Fair Queueing al-
gorithms [8, 201, in which a packet’s deadline can depend on
state variables of all active flows, in Virtual Clock a packet’s
deadline depends only on the state variables of t.he flow it
belongs to. This property of Virtual Clock makes t.he al-
gorithm easier to approximate in a SCORE network. In
particular, the fact that the deadline of each packet can be
computed exclusively based on the state variables of the flow
it belongs to, makes possible to eliminate the need of repli-
cating and maintaining per flow state at all nodes across
the path. Instead, per flow state can be stored only at the
ingress node, inserted into the packet header by the ingress
node, and retrieved later by core nodes, which then use it to
determine the packet’s deadline. Second, by regulating traf-
fic inside network using delay-jitter-controllers (discussed
below), it can be shown that with very high probability,
the number of packets in the server at any given time is sig-
nificantly smaller than the number of flows (see Section 3.3).
This helps to simplify the scheduler.

In the remainder of this section, we will lirst describe
the implementation of Jitter-VC using per flow state, then
present our algorithm, called Core-Jitter-VC (CJVC), which
uses the technique of Dynamic Packet State (DPS). In [28]
we present an analysis to show that a network of rout.ers
implementing CJVC provides the same delay bound as a
network of routers implementing the Jitter-VC algorithm.

3.1 Jitter Virtual Clock (Jitter-VC)

Jitter-VC is a non-work-conserving version of the Virtual
Clock algorithm [37]. It uses a combination of a delay-jitter
rate-controller [30, 361 and a Virtual Clock scheduler. The
algorithm works as follows: each packet is assigned an cligi-
ble time and a deadline upon its arrival. The packet is held
in the rate-controller until it becomes eligible, i.e., the sys-
tem time exceeds the packet’s eligible time (see Figure 3(a)).
The scheduler then orders the transmission of eligible pack-
ets according to their deadlines.

For the L?’ packet of flow i, its eligible time ef;,, and

deadline df,, at the jth node on its path are computed as
follows:

1 1
etz, = ai,

k
ei,3 = max(af’,j + gtk,j-l, d:,;‘), i,j 1 l,lc > 1 (1)

83

Notation Comments

P” the k-th packet of flow i
1; length of p”
k

ai., arrival time of p” at node j

s” sending time of p” at node j
k

ei,7 eligible time of p” at node j

df; deadline of pfi at node j
.

gf,j time ahead of deadline: g” = d: - 3”

a; slack delay of pb
A, propagation delay between nodes j and j + 1

Table 1: Notations used in Section 3.

where Zf is the length of the packet, r, is the reserved rate
for the flow, a:,, is the packet’s arrival time at the jrh node

traversed by the packet., and g”j, stamped into the packet
header by t.he previous node, is the amount of time the
packet was transmitted before its deadline, i.e., the differ-
ence between the packet’s deadline and its actual departure
time at the j - lth node. Intuitively, the algorithm elimi-
nates the delay variation of different packets by forcing all
packets to incur the maximum allowable delay. The purpose
of having gf,]-i is to compensate at. node j the variation of
delay due to load fluctuation at the previous node j - 1.
Such regulations limit the traffic burstiness caused by net-
work load fluctuations, and as a consequence, reduce both
buffer space requirements and the scheduler complexity.

It has been shown that if a flow’s long term arrival rate is
no greater than its reserved rate, a network of Virtual Clock
servers can provide the same delay guarantee to the flow as
a network of WFQ servers [lo, 13, 251. In addition, it has
been shown that a net,work of Jit.ter-VC servers can provide
the same delay guarantees as a network of Virtual Clock
servers [12]. Therefore, a network of Jitter-VC servers can
provide the same guaranteed service as a network of WFQ
servers.

3.2 Core-Jitter-VC (CJVC)

In this section we propose a variant of Jitter-VC, called
Core-Jitter-VC (CJVC), which does not. require per flow
state at core nodes. In addit,ion, we show that a network
of CJVC servers can provide the same guaranteed service as
a network of Jitter-VC servers.

CJVC uses the DPS technique. The key idea is to have
the ingress node to encode scheduling parameters in each
packet’s header. The core routers can then make scheduling
decisions based on the parameters encoded in packet head-
ers, thus eliminating the need for maintaining per flow state
at core nodes. As suggested by Eqs. (1) and (2), the Jitter-
VC algorithm needs two state variables for each flow i: ri,
which is the reserved rate for flow i and df,,, which is the
deadline of the last packet from flow i that was served by
node j. While it is straightforward to eliminate r, by

P
utting

it in the packet header, it. is not trivial to eliminat,e di,, . The

difference between rt and df’,j is that while all nodes along

the path keep the same rr value for flow i, df’,, is a dynamic
value that is computed it,eratively at each node. In fact, the
eligible time and the deadline of pfi depend on the deadline
of the previous packet of the same flow, i.e., dfi’.

A naive implementation using the DPS technique would
be to pre-compute the eligible times and the deadlines of

the packet at all nodes along its path and insert all of them
in the header. This would eliminate the need for core nodes
to maintain df,]. The main disadvantage of this approach
is that the amount of information carried by the packet in-
creases with the number of hops along the path. The chal-
lenge then is to design algorithms that compute df,, for all
nodes while requiring a minimum amount of state in the
packet header.

Notice that in Eq. (l), the reason for node j to maintain

df’, is that it will be used to compute the deadline and the
eligible time of the next packet. Since it is only used in a
max operation, we can eliminate the need for d:,, if we can

ensure that the other term in max is never less than d.:,]. The
key idea is then to use a slack variable associated with each
packet, denoted 6f;, such that for every core node j along
the path, the following holds

a:,,, +gk,,-1 +a” 2 df;,;‘, j > 1 (3)

By replacing the first term of max in Eq. (1) with af,j +

gf,,-, + Sf;, the computation of the eligible time reduces to

ef;,, = a!,, + gik,j-1 + 6,“~ .i > 1 (4)

Therefore, by using one additional DPS variable df; we elim-
inate the need for maintaining dF,j for in core nodes.

The derivation of 15; proceeds in two steps. First, we
express the eligible time of packet p” at an arbitrary core
node j, e f;,, , as a function of the eligible time of p” at the

ingress node ef;,i (see Eq. (7)). Second, we use this result

and Ineq. (4) to derive a lower bound for 6,“.

We now proceed with the first step. Recall that g1k,]-i

represents the time by which p” is transmitted before its
deadline at node j - 1, i.e., d~,j-l - s”,-i. Let ~~-1 denote
the propagation delay between nodes 3 - 1 and j. Then the
arrival time of pf at node j, cxfi., , is given by

k
aw = Sfi,j-1 + ~3-1 = df;,,-l - g;k,j-l + rj-1. (5)

By replacing a:,,, gi ven by the above expression, in Eq. (4),
and then using Eq. (2), we obtain

k lk
ei,3 = cl:,,-, + 6” + x,--1 = ef,,-l + $ + $ + n,-I (6)

I

By iterating over the above equation we express

function of ef;,l :

k
es13

k et,, a.5 a

1 (7)

We are now ready to compute 6:. Recall that the goal is to
compute the minimum 6,” which ensures that Ineq. (3) holds
for every node along the path. After combining Ineq. (3),
Eq. (4) and Eq. (2) this reduces to ensure that

lk-1

ef,, 2 d$’ + ef;,, 2 ef,;’ + L, j > 1
)‘I

(8)

By plugging ef,, and ef,,’ as expressed by Eq. (7) into

Ineq. (S), we get

84

,,‘,de 3 ,

(egress)

time

45 2
e i.l dZ1

node I,-, p ,.,,.., ..,,..,,...

(ingress)
e i!? d;.2 f2 dz2

,,,,& 2, ,-, bk+.

(egress)

(b)

)
time

Figure 3: The time diagram of the first. two packets of flow i along a four nodes path under (a) Jitter-VC, and (b) CJVC, respectively.

From Eqs. (1) and (2) we have eF,,l > d:,;’ = eF,T’ +1:-*/r,.

Thus, t.he right-hand side term in lneq. (9) is maximized

when j = h. As a result WC compute 6f: as

a,’ = 0, (10)

lk-’ - lk k

S;” = max 0 Sk-’ + I- ei,l - ef;.;’ - 1f-‘/l-i
9 I l-i h-l

b > 1,h > 1.

In this way, CJVC ensures that the eligible time of every
packet p” at node j is no smaller than the deadline of the
previous packet of the same flow at node j, i.e., e:,, 2 d$‘.
In addition, the Virtual Clock scheduler ensures that the
deadline of every packet is met.*

In [%I, we have shown that, a network of CJVC servers
provide the same worst case delay bounds as a network of
Jitter-VC servers. More precisely, we have proven the fol-
lowing rcsull.

Theorem 1 The deadline of a packet at the last hop in a
network of CJVC servers is equal to the deadline of the same
packet in a corresponding network of Jitter- VC servers.

The example in Figure 3 provides some intuition behind
the above result. The basic observation is that, with Jitt.er-
VC, not counting the propagation delay, the difference be-
tween the eligible time of packet pf: at node i and it.s dead-
line at the previous node j - 1, i.e., e:,, - d,;,-, , never de-
creases as the packet, propagates along the path. Consider
the second packet in Figure 3. With Jitter-VC, the dif-
ferences ez3 - df’j-l (represented by the bases of the gray
triangles) increase in j. By introducing the slack variable

6f, CJVC equalized these delays. While this change may in-
crease the delay of the packet at intermediate hops, it does
not affect the end-to-end delay bound.

Figure 4 shows t.he computation of the scheduling pa-
rameters ef,, and df,j by a CJVC server. The number of
hops h is computed at the admission time as discussed in
Section 4.1.

3.3 Data Path Complexity

While our algorithms do not maintain per flow state at core
nodes, there is still the need for core nodes to perform reg-
ulation and packet, scheduling based on eligible t.imes and

2For simplicity we ignore here the transmission time of a packet of
maxunum sme, T,,,.~, which represents the maximum tune by which
a packet can miss its deadline in the packet syst.em [37]. Taking
into account this term would not affect our results. For a complete
discussion see [38].

Ingress node
on packet p arrival

i = getJlow(p);
if (first-packetofflow(p, i))

ei = current-time;
6, = 0;

else
S, = max(O,S, + (It - [englh(p))/ri-

max(current-time - d,, O)/(h - 1)); /a Eq. (10) */
e, = max(&rrent-time, d,);

1; = length(p);
di = ei + [i/r;;

on packet p transmission
label(D) t Ir,. d; - current-time. 5.1:

core/enress node
on packet p arrival

(r,s, 6) t hbel(p);
e = currcntkne + g + 6; /* Eq. (4) */
d = e + length(p)/?

on packet p t,ransmission
if (core node)

label(p) +- (r, d - current-time, 6);
else /s this is an egress node */

clear-label(p);

Figure 4: Algorithms performed by ingress, core, and egress
nodes at the packet arrival and departure. Note t.hat core and
egress nodes do not maintain per flow stat.e.

deadlines. The natural question to ask is: why is t,his a
more scalable scheme than previous solutions requiring per
flow management’?

There are several scalability bottlenecks for solutions re-
quiring per flow management. On the data path, the expen-
sive operations are per flow classification and scheduling.
On the control path, the comple.xity is the maintenance of
consistent and dynamic state in a distributed environment.
Among the three, it is easiest to reduce the complexity of the
scheduling algorithm as there is a natural tradeoff between
t,he complexity and the flexibility of the scheduler [32]. In
fact, a number of techniques have already been proposed to
reduce t,he scheduling complexity, including those requiring
constant time complexity [24, 33, 351.

We also note that due to the way we regulate traffic, it
can be shown that with very high probability, the number
of packets in the server at any given time is significantly
smaller t.han t.he number of fIows. This will further reduce
the scheduling complexity and in addition reduce the buffer

85

space requirement. More precisely, we have proven in [28]
the following result.

Theorem 2 Consider u server traversed by n flows. As-
sume that fhe arrival times of the packets from different
flows are independent, and that all packets have the same
sire. Then, for any given probability e, the queue size of the
server during an arbitrary busy interval is bounded above by
s, where

.!? = fi(b+lP) - (1% E)/2 - 11, iw
with a probability larger than 1--E. For identical reservations
0 = 1; for heterogeneous reservations ,8 = 3.

As an example, let rs = lo”, and E = lo-“, which is
the same order of magnitude as the probability of a packet
being corrupted at the physical layer. Then, by Eq. (11) we
obtain s = 493? if all flows have identical reservations, and
s = 8348 if flows have heterogeneous reservations. Thus
the probability of having more packets in the queue than
specified by Eq. (11) can be neglected at the level of the
entire system even in the context of guaranteed services.

In Table 2 we compare the bounds given by Eq. (11)
to simulation result.s. In each case we report the maximum
queue size obtained over 10’ independent trials, and the cor-
responding bound computed by Eq. (11) for E = lo-‘. The
results show that our bounds are reasonably close (within
a factor of two) when all reservations are identical, but are
more conservative when the reservations are different. Fi-
nally, we make two comments. First, by performing per
packet regulation at every core node, the bounds given by
Eq. (11) hold for any core node and are independent of the
path length. Second, if the flows’ arrival patterns are not
independent, we can easily enforce this by randomly delay-
ing the first packet from each backlogged period of t.he flow
at ingress nodes. This will increase the end-to-end packet
delay by at most the queueing delay of one extra hop.

4 Admission Control With No Per Flow State

A key component of any architecture that provides guaran-
teed services is the admission control. The main job of the
admission control is to ensure that the network resources
are not over-commit.ted. In particular it has to ensure that
the sum of the reservation rates of all flows that traverse
any link in the network is no larger than the link capac-
ity, i.e., xi ri < C. A new reservation request is granted
if it passes the admission test at each hop along its path.
As discussed in Section 2, implementing such a functional-
ity is not trivial: t,raditional distributed architectures based
on signaling protocols are not scalable and are less robust
due to the requirement of maintaining dynamic and repli-
cated state; centralized architectures have scalability and
availability concerns.

In this section, we propose a fully distributed architec-
ture for implement.ing admission control. Like most dis-
tributed admission control archit.ectures, in our solution,
each node keeps track of the aggregate reservation rate for
each of its out-going links and makes local admission con-
trol decisions. However, unlike existing reservation prot,o-
cols, this distributed admission control process is achieved
without core nodes maintaining per flow st.ate.

sender

-4. Data :mfiic

- - -- RSVP COnIml messlgcs

- imra-domain
signaling messages

Figure 5: Ingress-egress admission control when RSVP is used
outside the SCORE domain.

4.1 Ingress-to-Egress Admission Control

We consider an archit,ecture in which a lightweight, signaling
protocol is used within the SCORE domain. Edge routers
are the interface between this signaling protocol and an
inter-domain signaling protocol such as RSVP. For the pur-
pose of this discussion, we consider only unicast reservations.
In addition, we assume a mechanism like the one proposed
in 1271 or Multi-Protocol Label Switching (MPLS) [4] that
can be used to pin a flow to a route.

From the point of view of RSVP, a path through the
SCORE domain is just a virtual link. There are two ba-
sic control messages in RSVP: Path and Resv. These mes-
sages are processed only by edge nodes; no operations are
performed inside the domain. For the ingress node, upon
receiving a Path message, it simply forwards it through the
domain. For t,he egress node, upon receiving the first Resv
message for a flow (i.e., there was no RSVP state for the
flow at the egress node before receiving the message), it
will forward the message (message “1” in Figure 5) to the
corresponding ingress node, which in turn will send a spe-
cial signaling message (message “2” in Figure 5) along the
path toward the egress node. Upon receiving the signaling
message, each node along the path performs a local admis-
sion control test as described in Section 4.2. In addition, the
message carries a counter h that is incremented at each hop.
The final value h is used for computing the slack delay 6 (see
Eq. (10)). If we use the route pinning mechanism described
in [27], message “2” is also used to compute the label of the
path between the ingress and egress. This label is used then
by the ingress node to make sure that all data packets of the
flow are forwarded along the same path. When the signaling
message “2” reaches the egress node, it is reflected back to
the sender, which makes the final decision (message “3” in
Figure 5). RSVP refresh messages for a flow that already
has per flow RSVP state installed at edge routers will not
trigger additional signaling messages inside the domain.

Since RSVP uses raw IP or UDP to send control mes-
sages, there is no need for retransmission for our signaling
messages, as message loss will not break the RSVP seman-
tics. If the sender does not receive a reply after a certain
timeout, it simply drops the Resv message. In addition, as
we will show in Section 4.3, there is no need for a special
termination message inside the domain when a flow is torn
down.

4.2 Per-Hop Admission Control

Each node needs to ensure that xi r, < C holds at all times.
At first sight, one simple solution t.hat implements this test
and also avoids per flow state is for each node to maintain t.he
aggregate reserved rat.e R, where R is updated to R = R + v

86

Table 3: The upper bound of the queue size, s, computed by Eq. (11) for c = 10m5 versus the maximum queue size obtained over lo5
independent trials: (a) when all flows have identical reservations; (b) when flows’ reservations differ by a factor of 20.

anereeate reservation at time t

Table 3: Notations used in Section 4.3.

when a new flow with the reservation rate r is admit.ted
and t.o R = R - r’ when a flow with the reservat,ion rate t :

terminates. The admission control reduces then t.o checking
whether R + r 5 C holds. However, it can be easily shown
that such a simple solution is not robust with respect to
various failure conditions such as packet loss, partial reser-
vation failures, and network node crashes. To handle packet
loss, when a node receives a set-up or tear-down message,
the node has to be able to tell whether it is a duplicak of
a message already processed. To handle part,ial reservation
failures, a node needs to “remember” what decision it made
for the flow in a previous pass. That is why all existing solu-
tions maintain per Bow reservation state, be it hard state as
in ATM UN1 or soft state as in RSVP. However, maint,aining
consistent and dynamic state in a distributedenvironment is
itself challenging. Fundament,ally, this is due to the fact that
the updat,e operations assume a transactionsemantic, which
is difficult t.o implement. in a disbribut,ed environment [1, 311.

In the remaining of the section, we show that by using
DE’S, il is possible to significantly reduce the complexity
of admission control in a distributed environment. Before
we present the details of the algorithm, we point out that
our goal is to estimate a close upper bound on the aggre-
gate reserved rate. By using this bound in the admission
test we avoid over-provisioning, which is a necessary con-
dition to provide deterministic service guarantees. This is
in contrast to many measurement-based admission control
algorithms [15, 291, which, in the context of supporting con-
trolled load or statistical services, base their admission test
on the measurement of the actualamount of trafic t.ransmit-
ted. To achieve this goal, our algorithm uses t.wo techniques.
First, a conservative upper bound of R, denoted &,,,,,d, is
maintained at each core node and is used for making ad-
mission control decisions. &ut,d is updated with a simple
rule: Rbaund = Rbound + r whenever a new request of a rate
r is accepted. It should be noted that in order to maintain
the invariant. t.hat &,,,,d is an upper bound of R, this algo-
rithm does not need to detect duplicate request messages,

generated either due to retransmission in case of packet loss
or retry in case of partial reservation failures. Of course,
the obvious problem with this algorithm is that Rbound will
diverge from R. In the limit, when &,ound reaches the link
capacity C, no new requests can be accepted even though
there might be available capacity.

To address this problem, a separate algorithm is intro-
duced to periodically estimate the aggregate reserved rate.
Based on this estimate, a second upper bound for R, de-
noted Rcnl, is computed and used to re-calibrate &und.
An important aspect of the estimation algorithm is that the
discrepancy between the upper bound Real and the actual
reserved rate R can be bounded. The re-calibration then
becomes choosing the minimum of the two upper bounds
Rbound and Real. The estimation algorithm is based on DPS
and does not require core routers to maintain per flow state.

Our algorithms have several important properties. First,
t.hey are robust in the presence of network losses and partial
reservation failures. Second, while they can over-estimate
R, they will never under-estimate R. This ensures the se-
mantics of the guaranteed service - while over-estimation
can lead to under-utilization of network resources, under-
estimation can result in over-provisioning and violation of
performance guarantees. Finally, the proposed estimation
algorithms are self-correct.ing in the sense that over-estimation
in a previous period will be correct.ed in the next period.
This greatly reduces the possibility of serious resource under-
utilization.

4.3 Aggregate Reservation Estimation Algorithm

In this section, we present the estimation algorithm of t,he
aggregate reserved rate which is performed at each core
node. In particular, we will describe how Real is computed
and how it is used to re-calibrate &,,,,d. In designing t.he
algorithm for computing Real, we want to balance between
two goals: (a) Real should be an upper bound on R; (b)
over-est.imation errors should be corrected and kept to the
minimum.

To compute Rca[, we start with an inaccurate estimate
of R, denoted RDPS, and then make adjustments to ac-
count for estimation inaccuracies. In the following, we first
present the algorithm that computes RDPS, then describe
the possible inaccuracies and the corresponding adjustment
algorithms.

The estimat,e 12~~s is calculated using the DPS tech-
nique: ingress nodes insert addit.ional state in packet head-
ers, which is in turn used by core nodes to estimate the
a gregate reservation R. In particular, the following state

& b; is inserted in the header of packet p::

bf = ri(sf;,l - sF,J’), (12)

where sf;’ and .s:,~ are the times the packet.s pi ‘-’ and pf are

87

edge no&

Figure 6: The scenario in which the lower bound of b;, i.e.,
ri(Tiv -TI -TJ), is achieved. The arrows represent packet trans-
missions. Tw is the averaging window size; TI is an upper bound
on the packet inter-departure time; TJ is an upper bound on the
delay jitter. Both ml and m2 miss the estimation int.erval Tw.

transmitted by the ingress node. Therefore, bf; represents
the total amount. of bits that. flow i is entitled to send during
the interval [.sf;;’ , s”,]. The computation of Rips is based
on the followini simile observation: the sum of b values of all
packets of flow i during an interval is a good approximation
for the total number of bit.s that flow i is entitled to send
during that interval according to it.s reserved rate. Similarly,
the sum of b values of all packets is a good approximation
for the total number of bits that all flows are ent,itled to send
during the corresponding int.erval. Dividing bhis sum by the
length of the interval gives the aggregat.e reservation rate.
More precisely, let us divide time into intervals of length
Tw: (uk,uk+1], k > 0. Let bi(eck,zck+l) be the sum of 6
values of packets in flow i received during (uk,uk+l], and
let B(uk, t&+1) be the sum of b values of all packets during
(uk,uk+l]. The estimate is then computed at the end of
each interval (uk, t&+1] as follows

RDps(w+l) =
B(Uk, uk+l) = &uk, uktl)

uk+l - Uk Tw
(13)

While simple, the above algorit.hm may introduce two
types of inaccuracies. First, it ignores the effects of the
delay jitter and the packet inter-departure times. Second,
it does not consider the effect.s of accepting or terminat.ing
a reservation in the middle of an estimation interval. I11

particular, having newly accepted flows in the interval may
result in the under-estimat,ion of R(t) by RDPS(~). To illus-
trate this, consider the following simple example: there are
no guaranteed flows on a link until a new request with rate
r is accepted at the end of an estimation interval (Uk, uk+1].

If no dat.a packet from the new flow reaches the node before
U&l, B(Uk, uk+l) would be 0, and so would be R,PS(ul;+l).
However, the correct value should be r.

In the following, we present the algorithm to compute
an upper bound of R(uk+l), denoted &,l(uk+l), In do-
ing this we account for both types of inaccuracies. Let
L(t) denote the set of reservations at time t. Our goal is
then to bound the aggregate reservation at time u&l, i.e.,

R(Uk+l) = .&(uktl) ri. Consider the division of L(uk+l)

into two subset.s: the subset of new reservations that were
accepted during the interval (uk, uk+l], denoted .‘2/(uk+l),
and the subset containing the rest of reservations which were
accepted no later t.han uk+l. Next, we express R(uk+l) as

R(Uk+l) =
c

ri + c rr. (14)

iE4uk+l)\N(uk+d) iEN(uk+,)

The idea is then to derive an upper bound for each of the
two right-hand side terms, and comput,e Rcul as the sum

of these two bounds. To bound ~i~~~u~tl~,~~,~t,~ r,, we

note that

B(Uk, uktl) 2 c h(Uk,Uk+l). (15)

‘E4Q+l)\N(Uk+l)

The reason that (15) is an inequality instead of an equality
is that when there are flows terminating during the inter-
val (uk,uk+l], their packets may still have contributed to
B(uk,uk+l) even though they do not belong to L(uk+1) \
n/(uk+l). Next, we compute a lower bound for bi(Uk, Uk+l).

By definit,ion, since i E L(uk+1) \n/(uk+l), it follows that
flow i holds a reservation during the entire interval (uk, uk+l].
Let. Tr be the maximum inter-departure time between two
consecutive packets of a ilow at the edge node, and let TJ
be the maximum delay jitter of a flow, where both TI and
TJ are much smaller than Tw. Now, consider the scenario
shown in Figure 6 in which a core node receives the packets
ml and m2 just outside the estimat.ion window. Assuming
the worst case in which ml incurs the lowest possible delay,
m2 incurs the maximum possible delay, and that the last
packet before m2 departs TI seconds earlier, it is easy to
see that that the sum of the b values carried by the pack-
ets received during t.he estimation interval by the core node
cannot be smaller t.han ri(Tw - Tr - TJ). Thus, we have

bi(Uk:Uk+l) > ri(Tb -TI -TJ), (16)

vi E c(Uk+l) \n/(Uk+l). 07)

By combining Ineqs. (15) and (16), and Eq. (13) we obtain

c l-s< c bi(Uk,Uk+l)

iE4uk+l)\WUk+l) iEUuk+l)\N(Uk+l)
Tw(l - f)

I
&ps(uk+l)

1-f ’

where f = (TI + TJ)/T~v.
Next, we bound the second right-hand side term in Ineq. (14):

c -J(v+l)
ri For this, we introduce a new global variable

p-‘-.

R,,, is initialized at the beginning of each interval
Uk, uk+l] to zero, and is updated to R,,, $ r every time a

new reservation r is accepted. Let R,,,(t) denote the value
of this variable at time t. For simplicity, here we assume
that a flow which is granted a reservation during the inter-
val (uk,uk+l] becomes active no later than uk+1.3 Then it
is easy to see that

c rt 5 &ew(Uktl). (19)

:EN(uk+l)

The inequality holds when no duplicate reservation requests
are processed, and none of the new accepted reservations
terminate during the interval. Then we define &al(uk+l)
as

From Eq. (14), and Ineqs. (18) and (19) follow easily that
&l(tQ+l) is anupper bound for R(uk+l), i.e., &l(uk+l) >
j?(uk+l). Finally, we use &&(uk.+l) to re-calibrate the up-

per bound of the aggregate reservation, Rbound, at uk+l as

Rbcund(Uk+l) = min(Rbound(Uk+l)r fh(Uk+l)). (21)

88

Per-hop Admission Control
on reservation request r
if (Rb ound + r 5 c) /* perform admission test */

R - Rnew + r; new -
R bound = Rbound t 1‘;
accept request;

else
deny request;

on reservation termination r /* optional */

Rbound = Rbound - r;

Aggregate Reservation Bound Comp.
on packet arrival p

;z g,et$(.p); /V get b value inserted by ingress (‘Eq, (12)) */

on time-out i;,
RDps = L/Tw; /* estinaate aggregate reservation */
&md = min(Rbound, R~ps/(l- /) t Rnew);
R - 0: “C,IJ -

F’ lgure 7: The control path algorithms executed by core nodes;
R new is initialized to 0.

Figure 7 shows the pseudocode of control algorithms at
core nodes. Next we make several observations.

First, t.he estimation algorithm uses only the informa-
tion in the current interval. This makes the algorithm ro-
bust with respect to loss and duplication of signaling packets
since their effects are “forgotten” after one time interval. As
an example, if a node processes both the original and a du-
plicate of the same reservat,ion request during the interval
(WC, w+l], Rb ,,und will be updated twice for the same flow.
However, this erroneous update will not be reflected in the
computation of RDPS(U~+~), since its computation is based
only on the b values received during (uk+l , uk+s].

As a consequence, an important property of our admis-
sion control algorithm is that it can asymptotically reach
a link utilization of C(1 - f)/(l + f). In particular, the
following result is proven in [28]:

Theorem 3 Consider a link of capacity C at time t. As-
sume that no reservation terminates und there are no reser-
vation failures or request losses after time t. Then if there
is sufficient demand after t the link utilization approaches
asymptotically C(l - f)/(l + f).

Second, note that since Rcal(uk) is an upper bound of
R(uk), a simple solution would be to use Rcal(uk) + R,,,,
instead of Rboundr to perform the admission test during
(uk,uk+l]. The problem with this approach is that Real
can overestimate the aggregate reservation R. An example
is given in Section 5.3 to illustrate this issue (Figure 13(b)).

Third, we note that a possible optimization of the ad-
mission control algorithm is to add reservation termination
messages (see Figure 7). This will reduce the discrepancy
between the upper bound &, ,,und and the aggregate reserva-
tion R. However, in order to guarantee that &,,,,d remains
an upper bound for R, we need to ensure that a termination
message is sent at most. once, i.e., there are no retransmis-
sions if the message is lost. In practice, this property can be
enforced by edge nodes, which maintain per flow state.

30therwise, to account for the worst case in which a reservation
that was accepted by the node during (u~-~,u~] becomes at time
uk + RTT, we need to subtract RTT x R,,,(uA) from B(ur, u*+~).

Finally, to ensure that the maximum inter-departure time
is no larger than Tr, the ingress node may need to send a
dummy packet in the case when no data packet arrives for a
flow during an interval TI. This can be achieved by having
the ingress node to maintain a timer with each flow. An op-
timization would be to aggregate all “micro-flows” between
each pair of ingress and egress nodes into one flow, and com-
pute b values based on the aggregat,ed reservation rate, and
insert a dummy packet only if there is no data packet of the
aggregate flow during an interval.

5 Implementation and Experiments

The key technique of our algorithms is DPS, which encodes
stat.es in the packet header, and thus eliminates the need
for maintaining per flow state at each node. Since there is
limited space in protocol headers and most header bits have
been allocated, the main challenge of implementing these al-
gorithms is to (a) find space in the packet header for storing
DPS variables and at the same time remain fully compati-
ble with current standards and protocols; and (b) efficient.ly
encode state variables so that they fit in the available space
without introducing too much inaccuracy.

In the remaining of the section, we will first present how
we address the above two problems in the context of IPv4
networks, describe a prototype implementation of our algo-
rithms in FreeBSD ~2.2.6, and, finally we give results from
experiments in local t.estbed. The mam goal of these exper-
iments is to provide a proof of concept, of our design.

5.1 Carrying State in Data Packets

Two possibilities to encode state in the packet header are:
(1) int,roduce a new IP option and insert the option at the
ingress router, or (2) introduce a new header between layer
2 and layer 3, similar to the way labels are transported in
Multi-Protocol Label Switching (MPLS) [4]. While both of
these solutions are quite general and can potentially provide
large space for encoding state variables, for the propose of
our implementation we consider a third option: store the
state in the IP header. By doing this, we avoid the penalty
imposed by most IPv4 routers in processing the IP options,
or the need of devising different solutions for different tech-
nologies as it would have been required by introducing a new
header between layer 2 and layer 3.

The biggest problem with using the IP header is to find
enough space to insert the extra information. The main
challenge is to remain compatible with current standards
and protocols. In particular, we want the network domain to
be transparent to end-to-end protocols, i.e., the egress node
should restore the fields changed by ingress and core nodes
to their original values. To achieve this goal, we first use four
bits from the type of service (TOS) byte (now renamed the
Differentiated Service (DS) field) bits which are specifically
allocated for local and experimental use [17]. In addition,
we observe that there is an ip-oflfield of 13 bits in the IPv4
header to support packet, fragmentation/reassembly which
is rarely used. For example, by analyzing the traces of over
1.7 million packets on an OC-3 link [19], we found that less
than 0.22% of all packets were fragments. Therefore, in most
cases it is possible to use ip-off field to encode the DPS val-
ues. This idea can be implemented as follows. When a
packet arrives at an ingress node, the node checks whether
a packet is a fragment or needs to be fragmented. If neither
of t.hese are true, the ip-of field in the packet header will be

void intToFP(int val, int *mantissa, int *exponent) f
int nbits = get-num-bitsfval);
if (Inbits <= m) {

*mantissa = val;
*axponent = (1 << n) - 1;

) else {
*exponent = nbits - m - 1;
*mantissa = (val >> *exponent) - (1 << m);

1
1

int FPToIntfint mantissa, int exponent) {
int tmp;
if (exponent == ((1 << n) - 1))

return mantissa;
tmp = mantissa I (1 << m);
return (tmp (C exponent)

)

Figure 8: The C code for converting between integer and floating point formats. m represents the number of bits used by the mantissa;
n represents the number of bits in the exponent. Only positive values are represented. The exponent is computed such that the first bit
of the mantissa is always 1, when the number is 1 2m. By omitting this bit, we gain an extra bit in precision. If the number is < 2”’
we set by convention the exponent to 2” - 1 to indicate this.

10s byte (DS field) ip_oNtield

0 12 3 4
0 used by our scheme

I 1 OF FI IT? F3
1

0 2 4 5 67 9 10 16

if(OF=O)FIc-(llr)lR FZC-g/P3 F3=l/r+6

if(OF=I)FI c-b

Figure 9: For carrying state we use the four bits from the TOS
byte (or DS field) reserved for local use and experimental pur-
poses, and up to 13 bits from the ip-off. The first three bits
specify whether ip-off is used to encode DPS variables. Fl, F2,
and F3 are used to encode the DPS variables corresponding to a
data packet (codes 11x identify the state in data packet headers).

used to encode DPS values. When the packet reaches the
egress node, the ip-o#is cleared. Otherwise, if the packet is
a fragment, it is forwarded as a best-effort packet.. In t,his
way the use of ip-off is transparent outside the domain. We
believe that forwarding a fragment as a best-effort packet, is
acceptable in practice, as end-points can easily avoid frag-
mentation by using an MTU discovery mechanism. .41so
note that in the above we implicitly assume that packets
can be fragmented only by egress nodes.

In summary, we have up to 17 bits available in the current
IPv4 header to encode four state variables. The next section
discusses how we use this space to encode the DPS states.

5.2 State Encoding

There are four pieces of state that need to be encoded: three
are for scheduling purposes, (1) the reserved rate r or equiv-
alently l/r, (2) 6, as computed by Eq. (lo), and (3) g; and
one for admission control purpose, (4) b. All are positive
values.

One possible solution is to restrict each state variable
to only a small number of possible values. For example if
a state variable is limited to eight values, only three bits
are needed to represent it. While this can be a reason-
able solution in practice, in our implementation we use a
more sophisticated representation based on a floating point
like format. The details of this representation are presented

cl muter

0 host

Figure 10: The test configuration used in experiments.

in [28]. Here, we show only the C code of the conversion
between this representation and an integer representation
(see Figure 8). To further opt.imize the use of the available
space we employ two additional techniques. First, we use
the floating point format only to represent the largest value,
and then represent, the other value(s) as a fraction of the
largest value. In this way we are able to represents a much
larger range of possible values. Second, in the case in which
there are states which are not required to be simultaneously
encoded in the same packet, we use the same field to encode
them.

Figure 9 shows how the 17 bits available in the current
IPv4 header are used to encode DPS states in a data packet.
The 17 bits are divided in four fields: a code field which
specifies whether the ip-oflis used to encode state variables,
and three data fields, denoted Fl, F2 and F3, used to encode
our variables.

The code field consists of three bits: 000 means that the
packet is a fragment and therefore no state is encoded; any
other value means that up to 13 bits of ip-ofi are used to
encode the state. In particular, the code values specify the
layout and the states encoded in the packet header. For
example, 11x specifies that the encoded states correspond
to a data packet, while 100 specifies that the encoded states
correspond to a dummy packet. Due to space limitations,
in Figure 9 we show the state encoding for a data packet
only. In this case, the last bit of the code field, also called
Offset Field (OF), determines the content of Fl. If this bit
is 1, then Fl encodes the b value. Otherwise it encodes
(l/r)/F3, where F3 = l/r + 6. Finally, F2 encodes gfF3.
We make several observations. First, since F3 encodes the
largest value among all fields, we represent it in floating
point format [28]. By using this format, with seven bits we
can represent any positive number in the range [1..15 x 215],
with a relative error within (-6.25%, 6.25%) [28]. Second,
since the deadline determines the delay guarantees, we use a
representation that trades the eligible time accuracy4 for the

‘As long as the eligible time value is under-estimated, its inac-

90

35

30 - 0
.O

35
packet arrival 0 packet arrival 0

packet departure + + _ packet departure + o +_ + 30 - et et

f 20- 0 o” * ii 0 . *- *+ et

0” *
2

2

20-
e + f

2
0 f Of

2 : + + 3 0 + 15- + . .
0 .= * +

15 -

P go + 3
0 0 - :+

IO _ f +**
P 0.

10 -
0 f et et 0 - et

5x0 ++
+ 0 f

0 I 5-
0 + Ot 0 + 0 * et 0 + *I

0 0 +
0 5 10 (m$ 20 25 0 5 10 (m’s5 20 25

Time Time

(4 (b)

Figure 11.: Packet arrival and departure times for a 10 Mbps flow at (a) the ingress node, and (b) the egress node.

deadline accuracy. In particular, the deadline is computed as
d = current_time+FZ*F3+F3 N current_time+g+l/r+6.
If OF is 0, t,he eligible time is computed as e = d - Fl *
F3 z current-time + g + 6. Fl uses only three bits and its
value is computed such that Fl * F3 always over-estimates
l/r. If OF is 1, the eligible time is computed simply as
e = current-time. Third, we express b in units equals with
the maximum packet size. In this way we eliminat.e the need
for each packet to carry the b value. In fact, if a flow sends at
its reserved rate, only one packet every other eight packets
needs to carry the b value. This observation, combined with
the fact that the under-estimation of the packet eligible time
does not affect the guaranteed delay of the flow, allows us
to alternatively encode either b or (l/r)/F3 in Fl, without
impacting the correctness of our algorithms.

5.3 Experimental Results

We have implemented these algorithms in FreeBSD ~2.2.6
and deployed them in a testbed consisting of 266 MHz and
300 MHz Pentium II PCs connected by point-to-point 100
Mbps Ethernets. The testbed allows configuring a path with
up to two intermediate routers.

In the following, we present results from four simple ex-
periment,s. The experiments are designed to iIlustrate the
microscopic behaviors of the algorithms, rather than their
scalabi1it.y. All experiments were run on the topology shown
in Figure 10. The first router is configured as an ingress
node, while the second router is configured as an egwss node.
An egress node also implements the functionalities of a core
node. In addition, it restores the initial values of the ip-off
field. All traffic is UDP and all packets are 1000 bytes, not
including the header.

In the first experiment we consider a flow between hosts 1
and 3 that has a reservation of 10 Mbps but sends at a much
higher rate of about 3OMbps. Figures 11(a) and (b) plot the
arrival and departure times for the first 30 packets of the flow
at the ingress and egress node, respectively. One thing to
notice in Figure 11(a) is that the arrival rate at the ingress
node is almost three times the departure rate, which is the
same as the reserved rate of 10 Mbps. This illustrate the
non-work-conserving nature of the CJVC algorithm, which

curacy will affect only the scheduling complexity, as the packet may
become eligible earlier.

Flow 1 (packet departure) 0

i

Figure 12: The packets’ arrival and departure times for four
flows. The first three flows are guaranteed, with reservations of
10 Mbps, 20 Mbps, and 40 Mbps. The last flow is best effort with
an arrival rate of about 60 Mbps.

enforces the traffic profile and allows only 10 Mbps traffic
into the network. Another thing to notice is t,hat, all packet,s
incur about 0.8 ms delay in the egress node. This is because
they are sent by the ingress node as soon as they become
eligible, and therefore g N Z/r = 8 x 1052bits/lOMbps = 0.84
ms. As a result, they will be held in the rate-controller for
this amount of time at the next hop5, which is the egress
node in our case.

In the second experiment we consider three guaranteed
flows between hosts 1 and 3 with reservations of 10 Mbps,
20 Mbps, and 40 Mbps, respectively. In addition, we con-
sider a fourth UDP flow between hosts 3 and 4 which is
treated as best effort. The arrival rates of the first three
flows are slightly larger than their reservations, while the
arrival rate of the fourth flow is approximately 60 Mbps. At
time 0, only the best-effort flow is active. At time 2.8 ms, the
first three flows become simultaneously active. Flows 1 and
2 terminate after sending 12 and 35 packets, respectively.
Figure 12 shows the packet arrival and departure times for

5Note that since all packets have the same size, 6 = 0.

91

.-* + ., * / * .._.... F.*..C * ..,..._.,. *_

1.4

1.2 -
t”” ~

Rws -*--
Rca, ..*

Rbound -u- .
Aggregate Traffic -

0 0
0 10 20 30 40 50 60 15 20 25 30 35 40 45 50

Time (set) Time (set)

(4 (b)

Figure 13: The estimate aggregate reservation I&, and the bounds Rbou,,d and Real in the case of (a) two ON-OFF flows
reservations of 0.5 Mbps, and 1.5 Mbps, respectively, and in the case when (b) one reservation of 0.5 Mbps is accepted at time t
seconds, and then is terminated at t = 39 seconds.

the best-effort flow 4, and the packet departure times for the
real-time flows 1, 2, and 3. As can be seen, the best-effort
packets experience very low delay in the initial period of 2.8
ms. After the QoS flows become active, best-effort pack-
ets experience longer delays while QoS flows receive service
at their reserved rate. After flow 1 and 2 terminate, the
best-effort traffic grabs the remaining bandwidth.

The last two experiments illustrate the algorithms for
admission control described in Section 4.3. The first exper-
iment demonstrates the accuracy of estimating the aggre-
gate reservation based on the b values carried in the packet
headers. The second experiment illustrates the computa-
tion of the aggregat,e reservation bound, Rho,,,,& when a
new reservation is accepted or a reservation terminates. In
these experiments we use an averaging interval, Tl;v, of 5 sec-
onds, and a maximum inter-departure time, Tr, of 500 ms.
For simplicity, we neglect the delay jitter, i.e., we assume
TJ = 0. This gives us f = (TJ + TJ)/Tw = 0.1.

In the fist experiment we consider two flows, one with a
reservation of 0.5 Mbps, and the other with a reservation of
1.5 Mbps. Figure 13(a) plots the arrival rate of each flow,
as well as the arrival rate of the aggregat.e traffic. In addi-
tion, Figure 13(a) plots the bound of the aggregate reser-
vation used by admission test, RbOund, the estimate of the
aggregate reservation RDPS, and the bound Real used to re-
calibrate Rbou,,d. According to the pseudocode in Figure 7,
both RDPS and Rfal are updated at the end of each esti-
mation interval. More precisely, every 5 seconds Rips is
computed based on the b values carried in the packet head-
ers, while Real is computed as R~ps/(l - f) + R,,,. Note
that since in this case no new reservation is accepted, we
have R,,,, = 0, which yields Rfal = R~ps/(l - f). The
important thing t.o note in Figure 13(a) is that the rate
variation of the actual t,rafflc (represented by the continu-
ous line) has little effect on the accuracy of computing the
aggregate reservation estimate RDPS, and consequently of
Real. In contrast, traditional measurement based admis-
sion control algorithms, which base their estimation on the
actual traffic, would significantly under-estimate the aggre-
gate reservation, especially during the time periods when
no data packets are received. In addition, note that since in
this experiment Rcul is always larger than Rbound, and no

with
= 18

new reservations are accepted, the value of Rbound is never
updated.

In the second experiment we consider a scenario in which
a new reservation of 0.5 Mbps is accepted at time t = 18 sec-
onds and terminates approximately at time t = 39 seconds.
For the ent.ire time duration, plotted in Figure 13(b), we
have a background traffic with an aggregate reservation of
0.5 Mbps. Similarly to the previous case, we plot t.he rate
of the aggregate traffic, and, in addition, Rbound, Real, and
RDPS. There are several points worth noting. First, when
the reservation is accepted at. time t = 18 seconds, Rbound
increases by the value of the accepted reservation, i.e., 0.5
Mbps (see Figure 7). In this way! Rbolrnd is guaranteed to
remain an upper bound of the aggregate reservation R. In
contrast, since both Rips and Real are updated only at the
end of the estimation interval, they under-estimate the ag-
gregate reservation, as well as the aggregate traffic, before
time t = 20 seconds. Second, after Real is updated at time
t = 20 seconds, as R~ps/(l- f) + R,,,, the new value sig-
nificantly over-estimates the aggregate reservation. This is
the main reason for which we do not use Real (+Rnew), but
RboUnd, to do the admission control test. Third, note that
unlike the case when the reservation was accepted, Rbound
does not change when t.he reservation terminates at time
t = 39 seconds. This is simply because in our implemen-
t,ation no tear-down message is generated when a reserva-
tion terminates. However, as Real is updated at the end of
the next estimation interval (i.e., at time t = 45 seconds),
Rbound drops to the correct value of 0.5 Mbps. This shows
the importance of using Real to recalibrate Rbound. ln ad-
dition, this illustrates the robustness of our algorithm, i.e.,
the over-estimation in a previous period is corrected in the
next period. Finally, note that in both experiments RDPS
always under-estimates the aggregate reservation. This is
due to t.he truncation errors in computing both the b values
and the Rips estimate.

5.4 Processing Overhead

To evaluate the overhead of our algorithm we have per-
formed three experiments on a 300 MHz Pentium II involv-
ing 1, 10, and 100 flows, respectively. The reservation and

92

Table 4: The average and standard deviation of the enqueue and dequeue times, measured in ps.

actual sending rates of all flows are identical. The aggre-
gate sending rate is about 20% larger than the aggregate
reservation rate. Table 4 shows the means and the standard
deviations for the enqueue and dequeue t,imes at both ingress
and egress nodes. Each of these numbers is based on a mea-
surement of 1000 packet.s. For comparison we also show the
enqueue and dequeue times for the unmodified code. There
are several points worth noting. First, our implement.ation
adds less than 5 ps overhead per enqueue operation, and
about 2 ps per dequeue operation. In addition, both the
enqueue and dequeue times at the ingress node are greater
than at the egress node. This is because ingress node per-
forms per flow operations. Furthermore, as the number of
flows increases the enqueue times increase only slightly, i.e.,
by less than 20%. This suggests that our algorithm is indeed
scalable in the number of flows. Finally, the dequeue times
actually decrease as the number of flows increases. This
is because the rate-controller is implemented as a calendar
queue with each entry corresponding to a 128 ps time in-
terval. Packet.s with eligible times falling between the same
interval are stored in the same entry. Therefore, when the
number of flows is large, more packets are stored in the same
calendar queue entry. Since all these packets are transferred
during one operation when they become eligible, the actual
overhead per packet decreases.

6 Related Work

Our scheme shares its intellectual roots with two pieces of
related work: Diffserv and the Core-Stateless Fair Queueing.

The idea of implementing QoS services by using a core-
stateless architecture was first proposed by Jacobson [18]
and Clark [7], and is now being pursued by the IETF Diff-
serv working group [3]. There are several differences be-
tween our scheme and the existing Diffserv proposals. First,
our algorithms operate at a much finer granularity both in
terms of time and traffic aggregates: the state embedded in
a packet can be highly dynamic, as it encodes the current
state of the flow, rather than the static and global properties
such as dropping or scheduling priority. In addition, the goal
of our scheme is to implement distributed algorithms that
try to approximate the services provided by a network in
which all routers implement per flow management. There-
fore, we can provide service differentiation and performance
guarantees on a per flout basis. In contrast, existing Diff-
serv solutions provide service differentiation only among a
small number of traffic classes. Finally, we propose fully
distributed and dynamic algorithms for implementing both
data and control functionalities, where existing Diffserv so-
lutions rely on more centralized and static algorithms for
implementmg admission control.

We first proposed the idea of using Dynamic Packet State
to encode dynamic per flow state in the context of approxi-
mating the Fair Queueing algorithm in a SCORE architec-

ture [26]. While algorithms proposed in this paper share the
same architecture <as CSFQ, there are important differences
both in high level goals and low level mechanisms. First,
while CSFQ was designed to support best-effort traffic, al-
gorithms proposed here are designed to support guaranteed
services. As a consequence, while CSFQ can use a proba-
bilistic forwarding algorithm to statistically approximate the
Fair Queueing service, CJVC needs to use more elaborate
mechanisms to provide performance guarantees identical to
those provided by Virtual Clock or Weighted Fair Queue-
ing algorithms. In particular, CJVC uses three types of
Dynamic Packet State for scheduling purpose and regulates
traffic at each hop. One more type of Dynamic Packet State
was used to implement the admission control, which was
not needed in CSFQ. Finally, we have proposed a detailed
design for encoding the DPS variables in IPv4.

In this paper, we propose a technique to estimate the
aggregate reservation rate and use that estimate to per-
form admission control. While this may look similar to
measurement-based admission control algorithms [15, 291,
the objectives and thus the techniques are quit.e different.
The measurement-based admission control algorithms are
designed to support controlled-load type of services, the es-
timation is based on the act&amount of traffic transmitted
in the past, and is usually an optimisticestimate in the sense
t.hat the estimated aggregate rate is smaller than the aggre-
gate reserved rate. While this has the benefit of increasing
the network utilization by the controlled-load service traf-
fic, it has the risk of incurring transient overloads that may
cause the degradation of QoS. In cont,rast, our algorithm
aims to support guaranteed service, and the goal is to es-
timate a close upper bound on the aggregate reserved rate
even when t.he the actual arrival rate may vary.

7 Conclusion

In this paper, we developed two distributed algorithms t.hat
implement QoS scheduling and admission control in a SCORE
network where core routers do not maintain per flow state.
Combined, these two algorithms significantly enhance the
scalability of both the data and control plane mechanisms
for implementing guaranteed services, and at the same time,
provide guaranteed services with flexibility, utilization, and
assurance levels similar to those that can be provided with
per flow mechanisms. The key technique used in both al-
gorithms is called Dynamic Packet State (DPS), which pro-
vides a lightweight and robust means for routers to coor-
dinate actions and implement distributed algorithms. By
presenting a design and prototype implementation of the
proposed algorithms in IPv4 networks, we demonstrate that
it is indeed possible to apply DPS techniques and have min-
imum incompatibility with existing protocols.

As a final note, we believe DPS is a powerful concept.
By using DPS to coordinate actions of edge and core routers

93

along the path traversed by a flow, distributed algorithms
can be designed to approximate the behavior of a broad
class of “stateful” networks with networks in which core
routers do not maintain per flow state. We observe that
it is possible to extend the current Diffserv framework to
accommodate algorithms using Dynamic Packet State such
as the ones proposed in this paper and Core-Stateless Fair
Queueing [26]. The key extension needed is to associate with
each Per Hop Behavior (PHB additional space in the packet
header for storing PHB speci B c Dynamic Packet State. Such
a paradigm will significantly increase the flexibility and ca-
pabilities of the services that can be built with a Dikserv-like
architecture.

References

PI

PI

I31

[41

.[51

k31

171

PI

PI

[lOI

1111

I121

1131

[I41

[I51

&alp Babaoglu and Sam Toueg. Non-Blocking Atomic
Commitment. Distributed Systems, S. Mullender (ed.),
pages 147-168, 1993.

F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Ag-
gregation of RSVP for IP4 and IP6 Reservations. Internet
Draft, draft-baker-rsvpaggregation-OO.txt.

Y. Bernet et. al. A framework for differentiated ser-
vices, November 1998. Internet Draft, draft-ietf-diffserv-
framework-Ol.txt.

R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow,
and A. Viswanathan. A framework for multiprotocol label
switching, November 1997. Internet Draft, draft-ietf-mpls-
framework-02.t.xt.

D. Clark. The design philosophy of the DARPA internet pro-
tocols. In Proceedings of ACM SIGCOMM’88, pages 106-
114, Stanford, CA, August 1988.

D. Clark. Internet cost allocation and pricing. Internet Eco-
nomics, L. W. Mclinight and J. P. Bailey (eds.), pages 215-
252,1997.

D. Clark and J. Wroclawski. An approach to service alloca-
tion in the Internet, July 1997. Internet Draft.

A. Demers, S. Keshav, and S. Shenker. Analysis and sim-
ulation of a fair queueing algorithm. In Journal of Inter-
networking Research and Experience, pages 3-26, October
1990. Also in Proceedings of ACM SIGCOMM’89, pp 3-12.

D. Ferrari and D. Verma. A scheme for real-time channel
establishment in wide-area networks. IEEE Journal on Se-
lected Areas in Communications, 8(3):368-379, April 1990.

N. Figueiraand J. Pasquale. An upper bound on delay for the
VirtualClock service discipline. IEEE/A CM Transactions on
.weetworking, 3(4), April 1995.

S. Floyd and V. Jacobson. Random early detection for con-
gestion avoidance. IEEE/A CM Transactions on IVetworking,
1(4):397-413, July 1993.

L. Georgiadis, R. Guerin, V. Peris, and K. Sivarajan. Ef-
ficient network QoS provisioning based on per node traf-
fic shaping. IEEE/ACM Transactions on Networking,
4(4):482-501, August 1996.

P. Goyal, S. Lam, and H. Vin. Determining end-to-end delay
bounds in heterogeneous networks. In Proceedings of NOSS-
D.4V’95, pages 287-298, Durham, New Hampshire, April
1995.

R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-
based QoS Requests. Internet Draft, draft-guerin-aggreg-
rsvp-OO.txt.

S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A
measurement-based admission control algorithm for inte-
grated services packet networks. In Proceedings of SIG-
COMM’95, pages 2-13, Boston, MA, September 1995.

[I‘31

I171

[I81

P91

WI

WI

P21

[231

[24l

WI

[261

1271

WI

WI

[301

[311

[321

[331

I341

[351

t361

I371

S. Keshav. A control-theoretic approach to flow control.
In Proceedings of AChf SIGCOMM’91, pages 3-15, Zurich,
Switzerland, September 1991.

K. Nichols, S. Blake, F. Baker, and D. L. Black. Definition
of the Differentiated Services Field (DS Field) in the ipv4
and ipv6 Headers, October 1998. Internet Draft, draf-ietf-
diffserv-header-04.txt.

I<. Nichols, V. Jacobson, and L. Zhang. An approach to
service allocation in the Internet, November 1997. Internet
Draft.

NLANR: Network Traffic Packet Header Traces. URL:
http://moat.nlanr.net/Traces/.

A. Parekh and R. Gallager. A generalized processor sharing
approach to flow control - the single node case. In Proceed-
ings of the INFOCOM’92, 1992.

S. Shenker R. Braden, D. Clark. Integrated services in the
Internet architecture: an overview, June 1994. Internet RFC
1633.

S. Shenker. Making greed work in networks: A game theo-
retical analysis of switch service disciplines. In Proceedings
of ACM SIGCOMM’94, pages 47-5i, London, UK, August
1994.

S. Shenker, C. Partridge, and R. Guerin. Specification of
guaranteed quality of service, 1997. Internet RFC 2212.

D.C. Stephens, J.C.R. Bennett, and H. Zhang. Implementing
scheduling algorithms in high speed networks. To Appear in
IEEE JSAC, 1999.

D. Stilliadis and A. Verma. Latency-rate servers: A gen-
eral model for analysis of traffic scheduling algorithms.
IEEE/.4CM Transactions on Networking, 6(2):164-174,
April 1998.

I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth Allo-
cations in High Speed Networks. In Proceedings ACM SIG-
COMM’98, pages 118-130, Vancouver, September 1998.

I. Stoica and H. Zhang. LIRA: A model for service differ-
entiation in the Internet. In Proceedings of NOSSDAV’98,
London, UK, July 1998.

I. Stoicaand H. Zhang. Providingguranteedservices without
per flow management, May 1999. Technical Report CMU-
cs-99-133.

D. Tse and M. Grosslauser. Measurement-based Call Ad-
mission Control: Analysis and Simulation. In Proceedings oj
INFOCOM’97, pages 981-989, Kobe, Japan, 1997.

D. Verma, H. Zhang, and D. Ferrari. Guaranteeing delay
jitter bounds in packet switching networks. In Proceedings
of Tricomm’91, pages 35-46, Chapel Hill, North Carolina,
April 1991.

W. E. Weihl. Transaction-Processing Techniques. Dis-
tributed Systems, S. Mullender (ed.), pages 329-352, 1993.

D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr. De-
terministic delay bounds for vbr video packet-switching net-
works: Fundmental limits and practical trade-offs. 4(3):352-
362, June 1996.

D.E. Wregc and J. Liebeherr. A Near-Optimal Packet Sched-
uler for QoS Networks.

J. Wroclawski. Specification of controlled-load network ele-
ment service, 1997. Internet RFC 2211.

H. Zhang and D. Ferrari. Rate-controlled static priority
queueing. In Proceedings of IEEE INFOCOM’99, pages 227-
236, San Francisco, California, April 1993.

H. Zhang and D. Ferrari. Rate-controlled service disciplines.
Journal of High Speed Networks, 3(4):389-412, 1994.

L. Zhang. Virtual Clock: A new traffic control algorithm
for packet switching networks. In Proceedings of ACM SIG-
COMM’90, pages 19-29, Philadelphia, PA, September 1990.

94

