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Existing approaches for providing guarant.eed services re- 
quire routers to manage per fiow states and perform per flow 
operations [9, 211. Such a statefIr/ network architecture is 
less scalable and robusl than stateless network architectures 
like the original IP and the recently proposed Diffserv [3]. 
However, services provided with current stateless solutions, 
Diffserv included, have lower flexibility, utilization, and/or 
assurance level as compared to the services that can be pro- 
vided with per flow mechanisms. 

In this paper, we propose techniques that do not require 
per flow management (either control or data planes) at core 
routers, but can implement guaranteed services with levels 
of flexibility, utilization, and assurance similar to those that 
can be provided with per flow mechanisms. In this way we 
can simultaneously achieve high quality of service, high scal- 
ability and robustness. The key technique we use is called 
Dynamic Packet State (DPS), which provides a lightweighl; 
and robust mechanism for routers to coordinate actions and 
implement distributed algorithms. We present an imple- 
mentation of the proposed algorithms that has minimum 
incompatibility with IPvI. 

1 Introduction 

Cut-rent IP networks provide one simple service: the best- 
effort datagram delivery. Such a simple service model allows 
IP routers to be stateless: except routing state, which is 
highly aggregated, routers do not keep any ot,her fine grain 
information about traffic. Providing a minimalist service 
model and having the “stateless waist” in the protocol hour- 
glass allows the Internet to scale with both the size of the 
network and heterogeneous applications and technologies. 
Together, they are two of the most important technical rea- 
sons behind the success of the Internet. 
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As the Internet evolves into a global communication in- 
frastructure, there is a growing need to support more so- 
phisticated services (e.g., traffic management, QoS) than 
the traditional best-effort service. Two classes of solut.ions 
emerge: those maintaining the stateless property of the orig- 
inal IP architecture, and those requiring a new statefular- 
chitecture. Examples of stateless solutions are RED for con- 
gestion control [ll] and Differentiated Service (Diffserv) [3] 
for &OS. The corresponding examples of stalefvl solutions 
are Fair Queueing [8] for congestion control and Integrated 
Service (Intserv) [31] for QoS. In general, stat,eful solu(;ions 
can provide more powerful and flexible services. For exam- 
ple, compared with RED, Fair Queueing can protect well- 
behaving flows from misbehaving ones and accommodate 
heterogeneous end-to-end congestion control algorithms [16, 
221. Similarly, as discussed in Section 2, services provided by 
lntserv solutions have higher flexibility, utilization, and/or 
assurance level than those provided by Diffserv solutions. 
However, as also discussed in Section 2, stateful solutions are 
less scalable and robust than their stateless counterparts. 

The question we want t,o answer is: is it possible to have 
the best of the two worlds, i.e.: providing services as powerful 
as those implemented by stateful networks, while utilizing 
algorit.hms as scalable and robust as those used in stateless 
net,works? 

While we cannot. answer the above question in its full 
generality, we can answer it in some specific cases of practical 
interest. We consider a network architecture similar to the 
Diffserv architecture, called Scalable Core or SCORE, in 
which only edge routers perform per flow management., while 
core routers do not. As illustrated in Figure 1, t,he goal of a 
SCORE network is to approximate the service provided by 
a reference statefulnetwork. In [26] we have shown that a 
SCORE network can achieve fair bandwidth allocation by 
approximating the service provided by a reference network 
in which every node performs fair queueing. 

In this paper, we will show that a SCORE network can 
provide end-to-end per flow delay and bandwidth guaran- 
tees as defined in Intserv. Current Intserv solutions assume 
a stateful network in which two types of per flow state are 
needed: forwarding state, which is used by the forward- 
ing engine to ensure fixed path forwarding, and QoS state’, 
which is used by both the admission control module in the 
control plane and the classifier and scheduler in the dat.a 
plane. In [27], we have proposed an algorithm that imple- 
ments fixed path forwarding with no per flow forwarding 

‘In the context of RSVP, we use “QoS” state to refer to both the 
flow spec and the filter spec. 
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(a) Reference Nelwork 

(b) SCORE Network 

Figure 1: (a) .4 reference stateful network whose functional- 
itv is approximated bv (b) a Scalable Core (SCORE1 network. 
In SCdgE only edge nodes perform per flow‘management; core 
nodes do not perform per flow management,. 

state. In this paper, we focus on techniques to eliminate 
the need for core nodes to keep per flow QoS state. In par- 
ticular, we propose two algorithms: one for the data plane 
to schedule packets, and the other for the control plane to 
perform admission control. Neither requires per flow state 
at core routers. 

The key technique used to implement a SCORE network 
is Dynamic Packet State (DPS). With DPS, each packet 
carries in its header some state t.hat is initialized by the 
ingress router. Core routers process each incoming packet 
based on the state carried in the packet’s header, updating 
both its internal state and the state in the packet’s header 
before forwarding it to the next hop (see Figure 2). By 
using DPS to coordinate actions of edge and core routers 
along the path traversed by a flow, distributed algorithms 
can be designed to approximate the behavior of a broad class 
of stateful networks using networks in which core routers do 
not maintain per flow state. 

The rest of the paper is organized as follows. In Section 2, 
we give an overview of Intserv and Diffserv, and discuss the 
tradeoffs of these two architectures in providing QoS. In Sec- 
tions 3 and 4 we present the details of our data and control 
path algorithms, respectively. Section 5 describes a design 
and a prototype implementation of the proposed algorithms 
in IPv4 networks. This demonstrates that it is indeed pos- 
sible to implement algorithms with Dynamic Packet State 
techniques that have minimum incompatibility with existing 
protocols. Finally, we conclude t.he paper in Section 7. 

2 lntserv and Diffserv 

To support QoS in the Internet, the IETF has defined two 
architectures: the Integrated Services or Intserv [21], and 
the Differentiated Services or Diffserv [3]. They have impor- 
tant differences in both service definitions and implementa- 
tion architectures. At the service definition level, Intserv 
provides end-to-end guaranteed [23] or controlled load ser- 
vice [34] on a per flow (individual or aggregate) basis, while 
Diffserv provides a coarser level of service differentiation 

(b) 

(d) 

Figure 2: The illustration of the Dynamic Packet State (DPS) 
technique used to implement a SCORE network: (a-b) upon a 
packet arrival the ingress node inserts some state into the packet 
header; (b-c) a core node processes the packet based on this state, 
and eventually updates both its internal state and the packet state 
before forwarding it. (c-d) the egress node removes the state from 
the packet header. 

among a small number of traffic classes. At the implemen- 
tation level, current Intserv solutions require each router to 
process per flou: signaling messages and maintain per flow 
data forwarding and QoS state on the control path, and to 
perform per flow classification, scheduling, and buffer man- 
agement on the data path. Performing per flow management 
inside the network affects both the network scalability and 
robustness. The former is because the complexities of these 
per flow operat,ions usually increase as a function of the num- 
ber of flows; the later is because it is difficult to maintain the 
consistency of dynamic, and replicated per flow state in a 
distributed network environment. As pointed out by Clark 
in [5]: “because of the distributed nature of the replication, 
algorithms to ensure robust replication are themselves difi- 
cult to build, and few networks with distributed state injor- 
mation provide any sort of protection against failure. ” While 
there are several proposals that aim to reduce the number 
of flows inside the network by aggregating micro-flows that 
follow the same path into one macro-flow [2, 141, they only 
alleviate this problem, but do not fundamentally solve it - 
the number of macro flows can still be quite large in a net- 
work with many edge routers, as the number of paths is a 
quadratic function of the number of edge nodes. 

Diffserv, on the other hand, distinguishes between edge 
and core routers. While edge routers process packets on 
the basis of finer traffic granularity, such as per flow or per 
organization, core routers do not maintain fine grain state, 
and process packets based on a small number of Per Hop 
Behaviors (PHBs) encoded by bit patterns in the packet 
header. By pushing the complexity to the edge and main- 
taining a simple core, Diffserv’s data plane is much more 
scalable than Intserv. However, Diffserv still needs to ad- 
dress the problem of admission control on the control path. 
One proposal is to use a centralized bandwidth broker that 
maintains the topology as well as the state of all nodes in the 
network. In this case, the admission control can be imple- 
mented by the broker, eliminating the need for maintaining 
distributed reservation state. Such a centralized approach is 
more appropriate for an environment where most flows are 
long lived, and set-up and tear-down events are rare. To 
support fine grain and dynamic flows, there may be a need 
for a distributed broker architecture, in which the broker 
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database is replicated or partitioned. Distributed broker 
architectures are still an active area of research. One can 
envision an architecture in which, when a broker receives a 
request, it makes an acceptance or rejection decision based 
on its own database, without consulting other brokers. This 
eliminates the need for a signaling protocol, but requires an- 
other protocol to maintain the consistency of the different 
broker databases. However, since it is impossible to achieve 
perfect consistency, this may lead to race conditions and/or 
resource fragmentation. In particular, since requests which 
arrive simultaneously at different brokers may want to re- 
serve capacity along the same link, each broker can indepen- 
dently allocate only a fraction of the link capacity without 
running the risk of over-provisioning. This translates into 
a fundamental trade-off between scalability and fragment.a- 
tion: while increasing the number of brokers make the solu- 
tion more scalable, it also increases resource fragmentat.ion. 

While Diffserv is more scalable than Intserv in terms 
of implementation, services provided with existing Diffserv 
solut.ions usually have lower flexibility, utilization, and as- 
surance levels than Intserv services. Two examples of dif- 
ferentiated service models are the assured service [6, 71 and 
the premium service [18]. The assured service is a form of 
statist.ical service and achieves lower assurance than guaran- 
teed service. The premium service provides the equivalent 
of a dedicat,ed link of fixed bandwidth between two edge 
nodes. However, as we have shown in 1281, in order for the 
premium service to achieve service assurance comparable to 
the guarant.eed service, even with a relative large queueing 
delay bound (e.g., 300 ms), the fraction of bandwidth that 
can be allocated to premium service traffic has to be very low 
(e.g., 10%). It is debatable whether these numbers should 
be of significant concern. For example, low utilization by the 
premium traffic may be acceptable if the majority of traffic 
will be best effort, either because the best effort service is 
“good enough” for most. applications or the price difference 
between premium traffic and best effort traffic is too high 
to justify the performance difference between them. Alter- 
natively, if the guaranteed naLure of service assurance is not 
needed, i.e., statistical service assurance is sufficient for pre- 
mium service, higher network utilization can be achieved. 
Providing meaningful statistical service is still an open re- 
search problem. A discussion of these topics is beyond the 
scope of this paper. For the remaining sect.ions of the paper, 
we assume that it is a desirable goal to provide guarant.eed 
service and at the same time achieve high resource utiliza- 
tion. 

In summary, Intserv provides more powerful service but 
has serious limitations with respect to network scalability 
and robustness. Diffserv is more scalable, but cannot pro- 
vide services t.hat are comparable t,o Intserv. In addition, 
scalable and robust admission control for Diffserv is still an 
open research problem. 

3 QoS Scheduling Without Per Flow State 

Current Intserv solutions assume a stateful network in which 
each router maintains per flow QoS state. The state is used 
by both the admission control module in the control plane 
and the classifier and scheduler in the data plane. 

In this paper, we propose scheduling and admission con- 
trol algorithms that provide guarantee services but do not 
require core routers to maintain per flow state. In this sec- 
tion, we present techniques that eliminate the need for data 

plane algorithms to use per flow state at core nodes. In 
particular, at core nodes, packet classification is no longer 
needed and packet scheduling is based on the state carried in 
packet headers, rather than per flow state stored locally at 
each node. In Section 4, we will show t.hat fully distributed 
admission control can also be achieved without t.he need for 
maintaining per flow state at core nodes. 

The main idea behind our solution is to approximate a 
reference stateful network with a SCORE network. The key 
technique used to implement approximation algorithms is 
Dynamic Packet State (DPS). With DPS, each packet car- 
ries some state which is initialized by the ingress node, and 
then updated by core nodes along the packet’s path. The 
state is used by nodes t.raversed by the packet to coordi- 
nate actions and implement distributed algorithms. On the 
data path, our algorithm aims to approximate a network 
with every node implementing the Delay-Jit,ter-Controlled 
Virtual Clock (Jitter-VC) algorithm. We make this choice 
for several reasons. First, unlike various Fair Queueing al- 
gorithms [8, 201, in which a packet’s deadline can depend on 
state variables of all active flows, in Virtual Clock a packet’s 
deadline depends only on the state variables of t.he flow it 
belongs to. This property of Virtual Clock makes t.he al- 
gorithm easier to approximate in a SCORE network. In 
particular, the fact that the deadline of each packet can be 
computed exclusively based on the state variables of the flow 
it belongs to, makes possible to eliminate the need of repli- 
cating and maintaining per flow state at all nodes across 
the path. Instead, per flow state can be stored only at the 
ingress node, inserted into the packet header by the ingress 
node, and retrieved later by core nodes, which then use it to 
determine the packet’s deadline. Second, by regulating traf- 
fic inside network using delay-jitter-controllers (discussed 
below), it can be shown that with very high probability, 
the number of packets in the server at any given time is sig- 
nificantly smaller than the number of flows (see Section 3.3). 
This helps to simplify the scheduler. 

In the remainder of this section, we will lirst describe 
the implementation of Jitter-VC using per flow state, then 
present our algorithm, called Core-Jitter-VC (CJVC), which 
uses the technique of Dynamic Packet State (DPS). In [28] 
we present an analysis to show that a network of rout.ers 
implementing CJVC provides the same delay bound as a 
network of routers implementing the Jitter-VC algorithm. 

3.1 Jitter Virtual Clock (Jitter-VC) 

Jitter-VC is a non-work-conserving version of the Virtual 
Clock algorithm [37]. It uses a combination of a delay-jitter 
rate-controller [30, 361 and a Virtual Clock scheduler. The 
algorithm works as follows: each packet is assigned an cligi- 
ble time and a deadline upon its arrival. The packet is held 
in the rate-controller until it becomes eligible, i.e., the sys- 
tem time exceeds the packet’s eligible time (see Figure 3(a)). 
The scheduler then orders the transmission of eligible pack- 
ets according to their deadlines. 

For the L?’ packet of flow i, its eligible time ef;,, and 

deadline df,, at the jth node on its path are computed as 
follows: 

1 1 
etz, = ai, 

k 
ei,3 = max(af’,j + gtk,j-l, d:,;‘), i,j 1 l,lc > 1 (1) 
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Notation Comments 

P” the k-th packet of flow i 
1; length of p” 
k 

ai., arrival time of p” at node j 

s” sending time of p” at node j 
k 

ei,7 eligible time of p” at node j 

df; deadline of pfi at node j 
. 

gf,j time ahead of deadline: g” = d: - 3” 

a; slack delay of pb 
A, propagation delay between nodes j and j + 1 

Table 1: Notations used in Section 3. 

where Zf is the length of the packet, r, is the reserved rate 
for the flow, a:,, is the packet’s arrival time at the jrh node 

traversed by the packet., and g”j, stamped into the packet 
header by t.he previous node, is the amount of time the 
packet was transmitted before its deadline, i.e., the differ- 
ence between the packet’s deadline and its actual departure 
time at the j - lth node. Intuitively, the algorithm elimi- 
nates the delay variation of different packets by forcing all 
packets to incur the maximum allowable delay. The purpose 
of having gf,]-i is to compensate at. node j the variation of 
delay due to load fluctuation at the previous node j - 1. 
Such regulations limit the traffic burstiness caused by net- 
work load fluctuations, and as a consequence, reduce both 
buffer space requirements and the scheduler complexity. 

It has been shown that if a flow’s long term arrival rate is 
no greater than its reserved rate, a network of Virtual Clock 
servers can provide the same delay guarantee to the flow as 
a network of WFQ servers [lo, 13, 251. In addition, it has 
been shown that a net,work of Jit.ter-VC servers can provide 
the same delay guarantees as a network of Virtual Clock 
servers [12]. Therefore, a network of Jitter-VC servers can 
provide the same guaranteed service as a network of WFQ 
servers. 

3.2 Core-Jitter-VC (CJVC) 

In this section we propose a variant of Jitter-VC, called 
Core-Jitter-VC (CJVC), which does not. require per flow 
state at core nodes. In addit,ion, we show that a network 
of CJVC servers can provide the same guaranteed service as 
a network of Jitter-VC servers. 

CJVC uses the DPS technique. The key idea is to have 
the ingress node to encode scheduling parameters in each 
packet’s header. The core routers can then make scheduling 
decisions based on the parameters encoded in packet head- 
ers, thus eliminating the need for maintaining per flow state 
at core nodes. As suggested by Eqs. (1) and (2), the Jitter- 
VC algorithm needs two state variables for each flow i: ri, 
which is the reserved rate for flow i and df,,, which is the 
deadline of the last packet from flow i that was served by 
node j. While it is straightforward to eliminate r, by 

P 
utting 

it in the packet header, it. is not trivial to eliminat,e di,, . The 

difference between rt and df’,j is that while all nodes along 

the path keep the same rr value for flow i, df’,, is a dynamic 
value that is computed it,eratively at each node. In fact, the 
eligible time and the deadline of pfi depend on the deadline 
of the previous packet of the same flow, i.e., dfi’. 

A naive implementation using the DPS technique would 
be to pre-compute the eligible times and the deadlines of 

the packet at all nodes along its path and insert all of them 
in the header. This would eliminate the need for core nodes 
to maintain df,]. The main disadvantage of this approach 
is that the amount of information carried by the packet in- 
creases with the number of hops along the path. The chal- 
lenge then is to design algorithms that compute df,, for all 
nodes while requiring a minimum amount of state in the 
packet header. 

Notice that in Eq. (l), the reason for node j to maintain 

df’, is that it will be used to compute the deadline and the 
eligible time of the next packet. Since it is only used in a 
max operation, we can eliminate the need for d:,, if we can 

ensure that the other term in max is never less than d.:,]. The 
key idea is then to use a slack variable associated with each 
packet, denoted 6f;, such that for every core node j along 
the path, the following holds 

a:,,, +gk,,-1 +a” 2 df;,;‘, j > 1 (3) 

By replacing the first term of max in Eq. (1) with af,j + 

gf,,-, + Sf;, the computation of the eligible time reduces to 

ef;,, = a!,, + gik,j-1 + 6,“~ .i > 1 (4) 

Therefore, by using one additional DPS variable df; we elim- 
inate the need for maintaining dF,j for in core nodes. 

The derivation of 15; proceeds in two steps. First, we 
express the eligible time of packet p” at an arbitrary core 
node j, e f;,, , as a function of the eligible time of p” at the 

ingress node ef;,i (see Eq. (7)). Second, we use this result 

and Ineq. (4) to derive a lower bound for 6,“. 

We now proceed with the first step. Recall that g1k,]-i 

represents the time by which p” is transmitted before its 
deadline at node j - 1, i.e., d~,j-l - s”,-i. Let ~~-1 denote 
the propagation delay between nodes 3 - 1 and j. Then the 
arrival time of pf at node j, cxfi., , is given by 

k 
aw = Sfi,j-1 + ~3-1 = df;,,-l - g;k,j-l + rj-1. (5) 

By replacing a:,,, gi ven by the above expression, in Eq. (4), 
and then using Eq. (2), we obtain 

k lk 
ei,3 = cl:,,-, + 6” + x,--1 = ef,,-l + $ + $ + n,-I (6) 

I 

By iterating over the above equation we express 

function of ef;,l : 

k 
es13 

k et,, a.5 a 

1 (7) 

We are now ready to compute 6:. Recall that the goal is to 
compute the minimum 6,” which ensures that Ineq. (3) holds 
for every node along the path. After combining Ineq. (3), 
Eq. (4) and Eq. (2) this reduces to ensure that 

lk-1 

ef,, 2 d$’ + ef;,, 2 ef,;’ + L, j > 1 
)‘I 

(8) 

By plugging ef,, and ef,,’ as expressed by Eq. (7) into 

Ineq. (S), we get 
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e i.l dZ1 
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,,,,& 2, ....... ..... ,-, ...... bk+. .......... ....... 

(egress) 

(b) 

) 
time 

Figure 3: The time diagram of the first. two packets of flow i along a four nodes path under (a) Jitter-VC, and (b) CJVC, respectively. 

From Eqs. (1) and (2) we have eF,,l > d:,;’ = eF,T’ +1:-*/r,. 

Thus, t.he right-hand side term in lneq. (9) is maximized 

when j = h. As a result WC compute 6f: as 

a,’ = 0, (10) 

lk-’ - lk k 

S;” = max 0 Sk-’ + I- ei,l - ef;.;’ - 1f-‘/l-i 
9 I l-i h-l 

b > 1,h > 1. 

In this way, CJVC ensures that the eligible time of every 
packet p” at node j is no smaller than the deadline of the 
previous packet of the same flow at node j, i.e., e:,, 2 d$‘. 
In addition, the Virtual Clock scheduler ensures that the 
deadline of every packet is met.* 

In [%I, we have shown that, a network of CJVC servers 
provide the same worst case delay bounds as a network of 
Jitter-VC servers. More precisely, we have proven the fol- 
lowing rcsull. 

Theorem 1 The deadline of a packet at the last hop in a 
network of CJVC servers is equal to the deadline of the same 
packet in a corresponding network of Jitter- VC servers. 

The example in Figure 3 provides some intuition behind 
the above result. The basic observation is that, with Jitt.er- 
VC, not counting the propagation delay, the difference be- 
tween the eligible time of packet pf: at node i and it.s dead- 
line at the previous node j - 1, i.e., e:,, - d,;,-, , never de- 
creases as the packet, propagates along the path. Consider 
the second packet in Figure 3. With Jitter-VC, the dif- 
ferences ez3 - df’j-l (represented by the bases of the gray 
triangles) increase in j. By introducing the slack variable 

6f, CJVC equalized these delays. While this change may in- 
crease the delay of the packet at intermediate hops, it does 
not affect the end-to-end delay bound. 

Figure 4 shows t.he computation of the scheduling pa- 
rameters ef,, and df,j by a CJVC server. The number of 
hops h is computed at the admission time as discussed in 
Section 4.1. 

3.3 Data Path Complexity 

While our algorithms do not maintain per flow state at core 
nodes, there is still the need for core nodes to perform reg- 
ulation and packet, scheduling based on eligible t.imes and 

2For simplicity we ignore here the transmission time of a packet of 
maxunum sme, T,,,.~, which represents the maximum tune by which 
a packet can miss its deadline in the packet syst.em [37]. Taking 
into account this term would not affect our results. For a complete 
discussion see [38]. 

Ingress node 
on packet p arrival 

i = getJlow(p); 
if (first-packetofflow(p, i)) 

ei = current-time; 
6, = 0; 

else 
S, = max(O,S, + (It - [englh(p))/ri- 

max(current-time - d,, O)/(h - 1)); /a Eq. (10) */ 
e, = max(&rrent-time, d,); 

1; = length(p); 
di = ei + [i/r;; 

on packet p transmission 
label(D) t Ir,. d; - current-time. 5.1: 

core/enress node 
on packet p arrival 

(r,s, 6) t hbel(p); 
e = currcntkne + g + 6; /* Eq. (4) */ 
d = e + length(p)/? 

on packet p t,ransmission 
if (core node) 

label(p) +- (r, d - current-time, 6); 
else /s this is an egress node */ 

clear-label(p); 

Figure 4: Algorithms performed by ingress, core, and egress 
nodes at the packet arrival and departure. Note t.hat core and 
egress nodes do not maintain per flow stat.e. 

deadlines. The natural question to ask is: why is t,his a 
more scalable scheme than previous solutions requiring per 
flow management’? 

There are several scalability bottlenecks for solutions re- 
quiring per flow management. On the data path, the expen- 
sive operations are per flow classification and scheduling. 
On the control path, the comple.xity is the maintenance of 
consistent and dynamic state in a distributed environment. 
Among the three, it is easiest to reduce the complexity of the 
scheduling algorithm as there is a natural tradeoff between 
t,he complexity and the flexibility of the scheduler [32]. In 
fact, a number of techniques have already been proposed to 
reduce t,he scheduling complexity, including those requiring 
constant time complexity [24, 33, 351. 

We also note that due to the way we regulate traffic, it 
can be shown that with very high probability, the number 
of packets in the server at any given time is significantly 
smaller t.han t.he number of fIows. This will further reduce 
the scheduling complexity and in addition reduce the buffer 
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space requirement. More precisely, we have proven in [28] 
the following result. 

Theorem 2 Consider u server traversed by n flows. As- 
sume that fhe arrival times of the packets from different 
flows are independent, and that all packets have the same 
sire. Then, for any given probability e, the queue size of the 
server during an arbitrary busy interval is bounded above by 
s, where 

.!? = fi(b+lP) - (1% E)/2 - 11, iw 
with a probability larger than 1--E. For identical reservations 
0 = 1; for heterogeneous reservations ,8 = 3. 

As an example, let rs = lo”, and E = lo-“, which is 
the same order of magnitude as the probability of a packet 
being corrupted at the physical layer. Then, by Eq. (11) we 
obtain s = 493? if all flows have identical reservations, and 
s = 8348 if flows have heterogeneous reservations. Thus 
the probability of having more packets in the queue than 
specified by Eq. (11) can be neglected at the level of the 
entire system even in the context of guaranteed services. 

In Table 2 we compare the bounds given by Eq. (11) 
to simulation result.s. In each case we report the maximum 
queue size obtained over 10’ independent trials, and the cor- 
responding bound computed by Eq. (11) for E = lo-‘. The 
results show that our bounds are reasonably close (within 
a factor of two) when all reservations are identical, but are 
more conservative when the reservations are different. Fi- 
nally, we make two comments. First, by performing per 
packet regulation at every core node, the bounds given by 
Eq. (11) hold for any core node and are independent of the 
path length. Second, if the flows’ arrival patterns are not 
independent, we can easily enforce this by randomly delay- 
ing the first packet from each backlogged period of t.he flow 
at ingress nodes. This will increase the end-to-end packet 
delay by at most the queueing delay of one extra hop. 

4 Admission Control With No Per Flow State 

A key component of any architecture that provides guaran- 
teed services is the admission control. The main job of the 
admission control is to ensure that the network resources 
are not over-commit.ted. In particular it has to ensure that 
the sum of the reservation rates of all flows that traverse 
any link in the network is no larger than the link capac- 
ity, i.e., xi ri < C. A new reservation request is granted 
if it passes the admission test at each hop along its path. 
As discussed in Section 2, implementing such a functional- 
ity is not trivial: t,raditional distributed architectures based 
on signaling protocols are not scalable and are less robust 
due to the requirement of maintaining dynamic and repli- 
cated state; centralized architectures have scalability and 
availability concerns. 

In this section, we propose a fully distributed architec- 
ture for implement.ing admission control. Like most dis- 
tributed admission control archit.ectures, in our solution, 
each node keeps track of the aggregate reservation rate for 
each of its out-going links and makes local admission con- 
trol decisions. However, unlike existing reservation prot,o- 
cols, this distributed admission control process is achieved 
without core nodes maintaining per flow st.ate. 

sender 

-4. Data :mfiic 

- - -- RSVP COnIml messlgcs 

- imra-domain 
signaling messages 

Figure 5: Ingress-egress admission control when RSVP is used 
outside the SCORE domain. 

4.1 Ingress-to-Egress Admission Control 

We consider an archit,ecture in which a lightweight, signaling 
protocol is used within the SCORE domain. Edge routers 
are the interface between this signaling protocol and an 
inter-domain signaling protocol such as RSVP. For the pur- 
pose of this discussion, we consider only unicast reservations. 
In addition, we assume a mechanism like the one proposed 
in 1271 or Multi-Protocol Label Switching (MPLS) [4] that 
can be used to pin a flow to a route. 

From the point of view of RSVP, a path through the 
SCORE domain is just a virtual link. There are two ba- 
sic control messages in RSVP: Path and Resv. These mes- 
sages are processed only by edge nodes; no operations are 
performed inside the domain. For the ingress node, upon 
receiving a Path message, it simply forwards it through the 
domain. For t,he egress node, upon receiving the first Resv 
message for a flow (i.e., there was no RSVP state for the 
flow at the egress node before receiving the message), it 
will forward the message (message “1” in Figure 5) to the 
corresponding ingress node, which in turn will send a spe- 
cial signaling message (message “2” in Figure 5) along the 
path toward the egress node. Upon receiving the signaling 
message, each node along the path performs a local admis- 
sion control test as described in Section 4.2. In addition, the 
message carries a counter h that is incremented at each hop. 
The final value h is used for computing the slack delay 6 (see 
Eq. (10)). If we use the route pinning mechanism described 
in [27], message “2” is also used to compute the label of the 
path between the ingress and egress. This label is used then 
by the ingress node to make sure that all data packets of the 
flow are forwarded along the same path. When the signaling 
message “2” reaches the egress node, it is reflected back to 
the sender, which makes the final decision (message “3” in 
Figure 5). RSVP refresh messages for a flow that already 
has per flow RSVP state installed at edge routers will not 
trigger additional signaling messages inside the domain. 

Since RSVP uses raw IP or UDP to send control mes- 
sages, there is no need for retransmission for our signaling 
messages, as message loss will not break the RSVP seman- 
tics. If the sender does not receive a reply after a certain 
timeout, it simply drops the Resv message. In addition, as 
we will show in Section 4.3, there is no need for a special 
termination message inside the domain when a flow is torn 
down. 

4.2 Per-Hop Admission Control 

Each node needs to ensure that xi r, < C holds at all times. 
At first sight, one simple solution t.hat implements this test 
and also avoids per flow state is for each node to maintain t.he 
aggregate reserved rat.e R, where R is updated to R = R + v 
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Table 3: The upper bound of the queue size, s, computed by Eq. (11) for c = 10m5 versus the maximum queue size obtained over lo5 
independent trials: (a) when all flows have identical reservations; (b) when flows’ reservations differ by a factor of 20. 

anereeate reservation at time t 

Table 3: Notations used in Section 4.3. 

when a new flow with the reservation rate r is admit.ted 
and t.o R = R - r’ when a flow with the reservat,ion rate t : 

terminates. The admission control reduces then t.o checking 
whether R + r 5 C holds. However, it can be easily shown 
that such a simple solution is not robust with respect to 
various failure conditions such as packet loss, partial reser- 
vation failures, and network node crashes. To handle packet 
loss, when a node receives a set-up or tear-down message, 
the node has to be able to tell whether it is a duplicak of 
a message already processed. To handle part,ial reservation 
failures, a node needs to “remember” what decision it made 
for the flow in a previous pass. That is why all existing solu- 
tions maintain per Bow reservation state, be it hard state as 
in ATM UN1 or soft state as in RSVP. However, maint,aining 
consistent and dynamic state in a distributedenvironment is 
itself challenging. Fundament,ally, this is due to the fact that 
the updat,e operations assume a transactionsemantic, which 
is difficult t.o implement. in a disbribut,ed environment [1, 311. 

In the remaining of the section, we show that by using 
DE’S, il is possible to significantly reduce the complexity 
of admission control in a distributed environment. Before 
we present the details of the algorithm, we point out that 
our goal is to estimate a close upper bound on the aggre- 
gate reserved rate. By using this bound in the admission 
test we avoid over-provisioning, which is a necessary con- 
dition to provide deterministic service guarantees. This is 
in contrast to many measurement-based admission control 
algorithms [15, 291, which, in the context of supporting con- 
trolled load or statistical services, base their admission test 
on the measurement of the actualamount of trafic t.ransmit- 
ted. To achieve this goal, our algorithm uses t.wo techniques. 
First, a conservative upper bound of R, denoted &,,,,,d, is 
maintained at each core node and is used for making ad- 
mission control decisions. &ut,d is updated with a simple 
rule: Rbaund = Rbound + r whenever a new request of a rate 
r is accepted. It should be noted that in order to maintain 
the invariant. t.hat &,,,,d is an upper bound of R, this algo- 
rithm does not need to detect duplicate request messages, 

generated either due to retransmission in case of packet loss 
or retry in case of partial reservation failures. Of course, 
the obvious problem with this algorithm is that Rbound will 
diverge from R. In the limit, when &,ound reaches the link 
capacity C, no new requests can be accepted even though 
there might be available capacity. 

To address this problem, a separate algorithm is intro- 
duced to periodically estimate the aggregate reserved rate. 
Based on this estimate, a second upper bound for R, de- 
noted Rcnl, is computed and used to re-calibrate &und. 
An important aspect of the estimation algorithm is that the 
discrepancy between the upper bound Real and the actual 
reserved rate R can be bounded. The re-calibration then 
becomes choosing the minimum of the two upper bounds 
Rbound and Real. The estimation algorithm is based on DPS 
and does not require core routers to maintain per flow state. 

Our algorithms have several important properties. First, 
t.hey are robust in the presence of network losses and partial 
reservation failures. Second, while they can over-estimate 
R, they will never under-estimate R. This ensures the se- 
mantics of the guaranteed service - while over-estimation 
can lead to under-utilization of network resources, under- 
estimation can result in over-provisioning and violation of 
performance guarantees. Finally, the proposed estimation 
algorithms are self-correct.ing in the sense that over-estimation 
in a previous period will be correct.ed in the next period. 
This greatly reduces the possibility of serious resource under- 
utilization. 

4.3 Aggregate Reservation Estimation Algorithm 

In this section, we present the estimation algorithm of t,he 
aggregate reserved rate which is performed at each core 
node. In particular, we will describe how Real is computed 
and how it is used to re-calibrate &,,,,d. In designing t.he 
algorithm for computing Real, we want to balance between 
two goals: (a) Real should be an upper bound on R; (b) 
over-est.imation errors should be corrected and kept to the 
minimum. 

To compute Rca[, we start with an inaccurate estimate 
of R, denoted RDPS, and then make adjustments to ac- 
count for estimation inaccuracies. In the following, we first 
present the algorithm that computes RDPS, then describe 
the possible inaccuracies and the corresponding adjustment 
algorithms. 

The estimat,e 12~~s is calculated using the DPS tech- 
nique: ingress nodes insert addit.ional state in packet head- 
ers, which is in turn used by core nodes to estimate the 
a gregate reservation R. In particular, the following state 

& b; is inserted in the header of packet p:: 

bf = ri(sf;,l - sF,J’), (12) 

where sf;’ and .s:,~ are the times the packet.s pi ‘-’ and pf are 
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edge no& 

Figure 6: The scenario in which the lower bound of b;, i.e., 
ri(Tiv -TI -TJ), is achieved. The arrows represent packet trans- 
missions. Tw is the averaging window size; TI is an upper bound 
on the packet inter-departure time; TJ is an upper bound on the 
delay jitter. Both ml and m2 miss the estimation int.erval Tw. 

transmitted by the ingress node. Therefore, bf; represents 
the total amount. of bits that. flow i is entitled to send during 
the interval [.sf;;’ , s”,]. The computation of Rips is based 
on the followini simile observation: the sum of b values of all 
packets of flow i during an interval is a good approximation 
for the total number of bit.s that flow i is entitled to send 
during that interval according to it.s reserved rate. Similarly, 
the sum of b values of all packets is a good approximation 
for the total number of bits that all flows are ent,itled to send 
during the corresponding int.erval. Dividing bhis sum by the 
length of the interval gives the aggregat.e reservation rate. 
More precisely, let us divide time into intervals of length 
Tw: (uk,uk+1], k > 0. Let bi(eck,zck+l) be the sum of 6 
values of packets in flow i received during (uk,uk+l], and 
let B(uk, t&+1) be the sum of b values of all packets during 
(uk,uk+l]. The estimate is then computed at the end of 
each interval (uk, t&+1] as follows 

RDps(w+l) = 
B(Uk, uk+l) = &uk, uktl) 

uk+l - Uk Tw 
(13) 

While simple, the above algorit.hm may introduce two 
types of inaccuracies. First, it ignores the effects of the 
delay jitter and the packet inter-departure times. Second, 
it does not consider the effect.s of accepting or terminat.ing 
a reservation in the middle of an estimation interval. I11 

particular, having newly accepted flows in the interval may 
result in the under-estimat,ion of R(t) by RDPS(~). To illus- 
trate this, consider the following simple example: there are 
no guaranteed flows on a link until a new request with rate 
r is accepted at the end of an estimation interval (Uk, uk+1]. 

If no dat.a packet from the new flow reaches the node before 
U&l, B(Uk, uk+l) would be 0, and so would be R,PS(ul;+l). 
However, the correct value should be r. 

In the following, we present the algorithm to compute 
an upper bound of R(uk+l), denoted &,l(uk+l), In do- 
ing this we account for both types of inaccuracies. Let 
L(t) denote the set of reservations at time t. Our goal is 
then to bound the aggregate reservation at time u&l, i.e., 

R(Uk+l) = .&(uktl) ri. Consider the division of L(uk+l) 

into two subset.s: the subset of new reservations that were 
accepted during the interval (uk, uk+l], denoted .‘2/(uk+l), 
and the subset containing the rest of reservations which were 
accepted no later t.han uk+l. Next, we express R(uk+l) as 

R(Uk+l) = 
c 

ri + c rr. (14) 

iE4uk+l)\N(uk+d) iEN(uk+,) 

The idea is then to derive an upper bound for each of the 
two right-hand side terms, and comput,e Rcul as the sum 

of these two bounds. To bound ~i~~~u~tl~,~~,~t,~ r,, we 

note that 

B(Uk, uktl) 2 c h(Uk,Uk+l). (15) 

‘E4Q+l)\N(Uk+l) 

The reason that (15) is an inequality instead of an equality 
is that when there are flows terminating during the inter- 
val (uk,uk+l], their packets may still have contributed to 
B(uk,uk+l) even though they do not belong to L(uk+1) \ 
n/(uk+l). Next, we compute a lower bound for bi(Uk, Uk+l). 

By definit,ion, since i E L(uk+1) \n/(uk+l), it follows that 
flow i holds a reservation during the entire interval (uk, uk+l]. 
Let. Tr be the maximum inter-departure time between two 
consecutive packets of a ilow at the edge node, and let TJ 
be the maximum delay jitter of a flow, where both TI and 
TJ are much smaller than Tw. Now, consider the scenario 
shown in Figure 6 in which a core node receives the packets 
ml and m2 just outside the estimat.ion window. Assuming 
the worst case in which ml incurs the lowest possible delay, 
m2 incurs the maximum possible delay, and that the last 
packet before m2 departs TI seconds earlier, it is easy to 
see that that the sum of the b values carried by the pack- 
ets received during t.he estimation interval by the core node 
cannot be smaller t.han ri(Tw - Tr - TJ). Thus, we have 

bi(Uk:Uk+l) > ri(Tb -TI -TJ), (16) 

vi E c(Uk+l) \n/(Uk+l). 07) 

By combining Ineqs. (15) and (16), and Eq. (13) we obtain 

c l-s< c bi(Uk,Uk+l) 

iE4uk+l)\WUk+l) iEUuk+l)\N(Uk+l) 
Tw(l - f) 

I 
&ps(uk+l) 

1-f ’ 

where f = ( TI + TJ)/T~v. 
Next, we bound the second right-hand side term in Ineq. (14): 

c -J(v+l) 
ri For this, we introduce a new global variable 

p-‘-. 

R,,, is initialized at the beginning of each interval 
Uk, uk+l] to zero, and is updated to R,,, $ r every time a 

new reservation r is accepted. Let R,,,(t) denote the value 
of this variable at time t. For simplicity, here we assume 
that a flow which is granted a reservation during the inter- 
val (uk,uk+l] becomes active no later than uk+1.3 Then it 
is easy to see that 

c rt 5 &ew(Uktl). (19) 

:EN(uk+l) 

The inequality holds when no duplicate reservation requests 
are processed, and none of the new accepted reservations 
terminate during the interval. Then we define &al(uk+l) 
as 

From Eq. (14), and Ineqs. (18) and (19) follow easily that 
&l(tQ+l) is anupper bound for R(uk+l), i.e., &l(uk+l) > 
j?(uk+l). Finally, we use &&(uk.+l) to re-calibrate the up- 

per bound of the aggregate reservation, Rbound, at uk+l as 

Rbcund(Uk+l) = min(Rbound(Uk+l)r fh(Uk+l)). (21) 
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Per-hop Admission Control 
on reservation request r 
if (Rb ound + r 5 c) /* perform admission test */ 

R - Rnew + r; new - 
R bound = Rbound t 1‘; 
accept request; 

else 
deny request; 

on reservation termination r /* optional */ 

Rbound = Rbound - r; 

Aggregate Reservation Bound Comp. 
on packet arrival p 

;z g,et$(.p); /V get b value inserted by ingress (‘Eq, (12)) */ 

on time-out i;, 
RDps = L/Tw; /* estinaate aggregate reservation */ 
&md = min(Rbound, R~ps/(l- /) t Rnew); 
R - 0: “C,IJ - 

F’ lgure 7: The control path algorithms executed by core nodes; 
R new is initialized to 0. 

Figure 7 shows the pseudocode of control algorithms at 
core nodes. Next we make several observations. 

First, t.he estimation algorithm uses only the informa- 
tion in the current interval. This makes the algorithm ro- 
bust with respect to loss and duplication of signaling packets 
since their effects are “forgotten” after one time interval. As 
an example, if a node processes both the original and a du- 
plicate of the same reservat,ion request during the interval 
(WC, w+l], Rb ,,und will be updated twice for the same flow. 
However, this erroneous update will not be reflected in the 
computation of RDPS(U~+~), since its computation is based 
only on the b values received during (uk+l , uk+s]. 

As a consequence, an important property of our admis- 
sion control algorithm is that it can asymptotically reach 
a link utilization of C(1 - f)/(l + f). In particular, the 
following result is proven in [28]: 

Theorem 3 Consider a link of capacity C at time t. As- 
sume that no reservation terminates und there are no reser- 
vation failures or request losses after time t. Then if there 
is sufficient demand after t the link utilization approaches 
asymptotically C(l - f)/(l + f). 

Second, note that since Rcal(uk) is an upper bound of 
R(uk), a simple solution would be to use Rcal(uk) + R,,,, 
instead of Rboundr to perform the admission test during 
(uk,uk+l]. The problem with this approach is that Real 
can overestimate the aggregate reservation R. An example 
is given in Section 5.3 to illustrate this issue (Figure 13(b)). 

Third, we note that a possible optimization of the ad- 
mission control algorithm is to add reservation termination 
messages (see Figure 7). This will reduce the discrepancy 
between the upper bound &, ,,und and the aggregate reserva- 
tion R. However, in order to guarantee that &,,,,d remains 
an upper bound for R, we need to ensure that a termination 
message is sent at most. once, i.e., there are no retransmis- 
sions if the message is lost. In practice, this property can be 
enforced by edge nodes, which maintain per flow state. 

30therwise, to account for the worst case in which a reservation 
that was accepted by the node during (u~-~,u~] becomes at time 
uk + RTT, we need to subtract RTT x R,,,(uA) from B(ur, u*+~). 

Finally, to ensure that the maximum inter-departure time 
is no larger than Tr, the ingress node may need to send a 
dummy packet in the case when no data packet arrives for a 
flow during an interval TI. This can be achieved by having 
the ingress node to maintain a timer with each flow. An op- 
timization would be to aggregate all “micro-flows” between 
each pair of ingress and egress nodes into one flow, and com- 
pute b values based on the aggregat,ed reservation rate, and 
insert a dummy packet only if there is no data packet of the 
aggregate flow during an interval. 

5 Implementation and Experiments 

The key technique of our algorithms is DPS, which encodes 
stat.es in the packet header, and thus eliminates the need 
for maintaining per flow state at each node. Since there is 
limited space in protocol headers and most header bits have 
been allocated, the main challenge of implementing these al- 
gorithms is to (a) find space in the packet header for storing 
DPS variables and at the same time remain fully compati- 
ble with current standards and protocols; and (b) efficient.ly 
encode state variables so that they fit in the available space 
without introducing too much inaccuracy. 

In the remaining of the section, we will first present how 
we address the above two problems in the context of IPv4 
networks, describe a prototype implementation of our algo- 
rithms in FreeBSD ~2.2.6, and, finally we give results from 
experiments in local t.estbed. The mam goal of these exper- 
iments is to provide a proof of concept, of our design. 

5.1 Carrying State in Data Packets 

Two possibilities to encode state in the packet header are: 
(1) int,roduce a new IP option and insert the option at the 
ingress router, or (2) introduce a new header between layer 
2 and layer 3, similar to the way labels are transported in 
Multi-Protocol Label Switching (MPLS) [4]. While both of 
these solutions are quite general and can potentially provide 
large space for encoding state variables, for the propose of 
our implementation we consider a third option: store the 
state in the IP header. By doing this, we avoid the penalty 
imposed by most IPv4 routers in processing the IP options, 
or the need of devising different solutions for different tech- 
nologies as it would have been required by introducing a new 
header between layer 2 and layer 3. 

The biggest problem with using the IP header is to find 
enough space to insert the extra information. The main 
challenge is to remain compatible with current standards 
and protocols. In particular, we want the network domain to 
be transparent to end-to-end protocols, i.e., the egress node 
should restore the fields changed by ingress and core nodes 
to their original values. To achieve this goal, we first use four 
bits from the type of service (TOS) byte (now renamed the 
Differentiated Service (DS) field) bits which are specifically 
allocated for local and experimental use [17]. In addition, 
we observe that there is an ip-oflfield of 13 bits in the IPv4 
header to support packet, fragmentation/reassembly which 
is rarely used. For example, by analyzing the traces of over 
1.7 million packets on an OC-3 link [19], we found that less 
than 0.22% of all packets were fragments. Therefore, in most 
cases it is possible to use ip-off field to encode the DPS val- 
ues. This idea can be implemented as follows. When a 
packet arrives at an ingress node, the node checks whether 
a packet is a fragment or needs to be fragmented. If neither 
of t.hese are true, the ip-of field in the packet header will be 



void intToFP(int val, int *mantissa, int *exponent) f 
int nbits = get-num-bitsfval); 
if (Inbits <= m) { 

*mantissa = val; 
*axponent = (1 << n) - 1; 

) else { 
*exponent = nbits - m - 1; 
*mantissa = (val >> *exponent) - (1 << m); 

1 
1 

int FPToIntfint mantissa, int exponent) { 
int tmp; 
if (exponent == ((1 << n) - 1)) 

return mantissa; 
tmp = mantissa I (1 << m); 
return (tmp (C exponent) 

) 

Figure 8: The C code for converting between integer and floating point formats. m represents the number of bits used by the mantissa; 
n represents the number of bits in the exponent. Only positive values are represented. The exponent is computed such that the first bit 
of the mantissa is always 1, when the number is 1 2m. By omitting this bit, we gain an extra bit in precision. If the number is < 2”’ 
we set by convention the exponent to 2” - 1 to indicate this. 

10s byte (DS field) ip_oNtield 

0 12 3 4 
0 used by our scheme 

I 1 OF FI IT? F3 
1 

0 2 4 5 67 9 10 16 

if(OF=O)FIc-(llr)lR FZC-g/P3 F3=l/r+6 

if(OF=I)FI c-b 

Figure 9: For carrying state we use the four bits from the TOS 
byte (or DS field) reserved for local use and experimental pur- 
poses, and up to 13 bits from the ip-off. The first three bits 
specify whether ip-off is used to encode DPS variables. Fl, F2, 
and F3 are used to encode the DPS variables corresponding to a 
data packet (codes 11x identify the state in data packet headers). 

used to encode DPS values. When the packet reaches the 
egress node, the ip-o#is cleared. Otherwise, if the packet is 
a fragment, it is forwarded as a best-effort packet.. In t,his 
way the use of ip-off is transparent outside the domain. We 
believe that forwarding a fragment as a best-effort packet, is 
acceptable in practice, as end-points can easily avoid frag- 
mentation by using an MTU discovery mechanism. .41so 
note that in the above we implicitly assume that packets 
can be fragmented only by egress nodes. 

In summary, we have up to 17 bits available in the current 
IPv4 header to encode four state variables. The next section 
discusses how we use this space to encode the DPS states. 

5.2 State Encoding 

There are four pieces of state that need to be encoded: three 
are for scheduling purposes, (1) the reserved rate r or equiv- 
alently l/r, (2) 6, as computed by Eq. (lo), and (3) g; and 
one for admission control purpose, (4) b. All are positive 
values. 

One possible solution is to restrict each state variable 
to only a small number of possible values. For example if 
a state variable is limited to eight values, only three bits 
are needed to represent it. While this can be a reason- 
able solution in practice, in our implementation we use a 
more sophisticated representation based on a floating point 
like format. The details of this representation are presented 

cl muter 

0 host 

Figure 10: The test configuration used in experiments. 

in [28]. Here, we show only the C code of the conversion 
between this representation and an integer representation 
(see Figure 8). To further opt.imize the use of the available 
space we employ two additional techniques. First, we use 
the floating point format only to represent the largest value, 
and then represent, the other value(s) as a fraction of the 
largest value. In this way we are able to represents a much 
larger range of possible values. Second, in the case in which 
there are states which are not required to be simultaneously 
encoded in the same packet, we use the same field to encode 
them. 

Figure 9 shows how the 17 bits available in the current 
IPv4 header are used to encode DPS states in a data packet. 
The 17 bits are divided in four fields: a code field which 
specifies whether the ip-oflis used to encode state variables, 
and three data fields, denoted Fl, F2 and F3, used to encode 
our variables. 

The code field consists of three bits: 000 means that the 
packet is a fragment and therefore no state is encoded; any 
other value means that up to 13 bits of ip-ofi are used to 
encode the state. In particular, the code values specify the 
layout and the states encoded in the packet header. For 
example, 11x specifies that the encoded states correspond 
to a data packet, while 100 specifies that the encoded states 
correspond to a dummy packet. Due to space limitations, 
in Figure 9 we show the state encoding for a data packet 
only. In this case, the last bit of the code field, also called 
Offset Field (OF), determines the content of Fl. If this bit 
is 1, then Fl encodes the b value. Otherwise it encodes 
(l/r)/F3, where F3 = l/r + 6. Finally, F2 encodes gfF3. 
We make several observations. First, since F3 encodes the 
largest value among all fields, we represent it in floating 
point format [28]. By using this format, with seven bits we 
can represent any positive number in the range [1..15 x 215], 
with a relative error within (-6.25%, 6.25%) [28]. Second, 
since the deadline determines the delay guarantees, we use a 
representation that trades the eligible time accuracy4 for the 

‘As long as the eligible time value is under-estimated, its inac- 
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Figure 11.: Packet arrival and departure times for a 10 Mbps flow at (a) the ingress node, and (b) the egress node. 

deadline accuracy. In particular, the deadline is computed as 
d = current_time+FZ*F3+F3 N current_time+g+l/r+6. 
If OF is 0, t,he eligible time is computed as e = d - Fl * 
F3 z current-time + g + 6. Fl uses only three bits and its 
value is computed such that Fl * F3 always over-estimates 
l/r. If OF is 1, the eligible time is computed simply as 
e = current-time. Third, we express b in units equals with 
the maximum packet size. In this way we eliminat.e the need 
for each packet to carry the b value. In fact, if a flow sends at 
its reserved rate, only one packet every other eight packets 
needs to carry the b value. This observation, combined with 
the fact that the under-estimation of the packet eligible time 
does not affect the guaranteed delay of the flow, allows us 
to alternatively encode either b or (l/r)/F3 in Fl, without 
impacting the correctness of our algorithms. 

5.3 Experimental Results 

We have implemented these algorithms in FreeBSD ~2.2.6 
and deployed them in a testbed consisting of 266 MHz and 
300 MHz Pentium II PCs connected by point-to-point 100 
Mbps Ethernets. The testbed allows configuring a path with 
up to two intermediate routers. 

In the following, we present results from four simple ex- 
periment,s. The experiments are designed to iIlustrate the 
microscopic behaviors of the algorithms, rather than their 
scalabi1it.y. All experiments were run on the topology shown 
in Figure 10. The first router is configured as an ingress 
node, while the second router is configured as an egwss node. 
An egress node also implements the functionalities of a core 
node. In addition, it restores the initial values of the ip-off 
field. All traffic is UDP and all packets are 1000 bytes, not 
including the header. 

In the first experiment we consider a flow between hosts 1 
and 3 that has a reservation of 10 Mbps but sends at a much 
higher rate of about 3OMbps. Figures 11(a) and (b) plot the 
arrival and departure times for the first 30 packets of the flow 
at the ingress and egress node, respectively. One thing to 
notice in Figure 11(a) is that the arrival rate at the ingress 
node is almost three times the departure rate, which is the 
same as the reserved rate of 10 Mbps. This illustrate the 
non-work-conserving nature of the CJVC algorithm, which 

curacy will affect only the scheduling complexity, as the packet may 
become eligible earlier. 

Flow 1 (packet departure) 0 

i 

Figure 12: The packets’ arrival and departure times for four 
flows. The first three flows are guaranteed, with reservations of 
10 Mbps, 20 Mbps, and 40 Mbps. The last flow is best effort with 
an arrival rate of about 60 Mbps. 

enforces the traffic profile and allows only 10 Mbps traffic 
into the network. Another thing to notice is t,hat, all packet,s 
incur about 0.8 ms delay in the egress node. This is because 
they are sent by the ingress node as soon as they become 
eligible, and therefore g N Z/r = 8 x 1052bits/lOMbps = 0.84 
ms. As a result, they will be held in the rate-controller for 
this amount of time at the next hop5, which is the egress 
node in our case. 

In the second experiment we consider three guaranteed 
flows between hosts 1 and 3 with reservations of 10 Mbps, 
20 Mbps, and 40 Mbps, respectively. In addition, we con- 
sider a fourth UDP flow between hosts 3 and 4 which is 
treated as best effort. The arrival rates of the first three 
flows are slightly larger than their reservations, while the 
arrival rate of the fourth flow is approximately 60 Mbps. At 
time 0, only the best-effort flow is active. At time 2.8 ms, the 
first three flows become simultaneously active. Flows 1 and 
2 terminate after sending 12 and 35 packets, respectively. 
Figure 12 shows the packet arrival and departure times for 

5Note that since all packets have the same size, 6 = 0. 
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Figure 13: The estimate aggregate reservation I&, and the bounds Rbou,,d and Real in the case of (a) two ON-OFF flows 
reservations of 0.5 Mbps, and 1.5 Mbps, respectively, and in the case when (b) one reservation of 0.5 Mbps is accepted at time t 
seconds, and then is terminated at t = 39 seconds. 

the best-effort flow 4, and the packet departure times for the 
real-time flows 1, 2, and 3. As can be seen, the best-effort 
packets experience very low delay in the initial period of 2.8 
ms. After the QoS flows become active, best-effort pack- 
ets experience longer delays while QoS flows receive service 
at their reserved rate. After flow 1 and 2 terminate, the 
best-effort traffic grabs the remaining bandwidth. 

The last two experiments illustrate the algorithms for 
admission control described in Section 4.3. The first exper- 
iment demonstrates the accuracy of estimating the aggre- 
gate reservation based on the b values carried in the packet 
headers. The second experiment illustrates the computa- 
tion of the aggregat,e reservation bound, Rho,,,,& when a 
new reservation is accepted or a reservation terminates. In 
these experiments we use an averaging interval, Tl;v, of 5 sec- 
onds, and a maximum inter-departure time, Tr, of 500 ms. 
For simplicity, we neglect the delay jitter, i.e., we assume 
TJ = 0. This gives us f = (TJ + TJ)/Tw = 0.1. 

In the fist experiment we consider two flows, one with a 
reservation of 0.5 Mbps, and the other with a reservation of 
1.5 Mbps. Figure 13(a) plots the arrival rate of each flow, 
as well as the arrival rate of the aggregat.e traffic. In addi- 
tion, Figure 13(a) plots the bound of the aggregate reser- 
vation used by admission test, RbOund, the estimate of the 
aggregate reservation RDPS, and the bound Real used to re- 
calibrate Rbou,,d. According to the pseudocode in Figure 7, 
both RDPS and Rfal are updated at the end of each esti- 
mation interval. More precisely, every 5 seconds Rips is 
computed based on the b values carried in the packet head- 
ers, while Real is computed as R~ps/(l - f) + R,,,. Note 
that since in this case no new reservation is accepted, we 
have R,,,, = 0, which yields Rfal = R~ps/(l - f). The 
important thing t.o note in Figure 13(a) is that the rate 
variation of the actual t,rafflc (represented by the continu- 
ous line) has little effect on the accuracy of computing the 
aggregate reservation estimate RDPS, and consequently of 
Real. In contrast, traditional measurement based admis- 
sion control algorithms, which base their estimation on the 
actual traffic, would significantly under-estimate the aggre- 
gate reservation, especially during the time periods when 
no data packets are received. In addition, note that since in 
this experiment Rcul is always larger than Rbound, and no 

with 
= 18 

new reservations are accepted, the value of Rbound is never 
updated. 

In the second experiment we consider a scenario in which 
a new reservation of 0.5 Mbps is accepted at time t = 18 sec- 
onds and terminates approximately at time t = 39 seconds. 
For the ent.ire time duration, plotted in Figure 13(b), we 
have a background traffic with an aggregate reservation of 
0.5 Mbps. Similarly to the previous case, we plot t.he rate 
of the aggregate traffic, and, in addition, Rbound, Real, and 
RDPS. There are several points worth noting. First, when 
the reservation is accepted at. time t = 18 seconds, Rbound 
increases by the value of the accepted reservation, i.e., 0.5 
Mbps (see Figure 7). In this way! Rbolrnd is guaranteed to 
remain an upper bound of the aggregate reservation R. In 
contrast, since both Rips and Real are updated only at the 
end of the estimation interval, they under-estimate the ag- 
gregate reservation, as well as the aggregate traffic, before 
time t = 20 seconds. Second, after Real is updated at time 
t = 20 seconds, as R~ps/(l- f) + R,,,, the new value sig- 
nificantly over-estimates the aggregate reservation. This is 
the main reason for which we do not use Real (+Rnew), but 
RboUnd, to do the admission control test. Third, note that 
unlike the case when the reservation was accepted, Rbound 
does not change when t.he reservation terminates at time 
t = 39 seconds. This is simply because in our implemen- 
t,ation no tear-down message is generated when a reserva- 
tion terminates. However, as Real is updated at the end of 
the next estimation interval (i.e., at time t = 45 seconds), 
Rbound drops to the correct value of 0.5 Mbps. This shows 
the importance of using Real to recalibrate Rbound. ln ad- 
dition, this illustrates the robustness of our algorithm, i.e., 
the over-estimation in a previous period is corrected in the 
next period. Finally, note that in both experiments RDPS 
always under-estimates the aggregate reservation. This is 
due to t.he truncation errors in computing both the b values 
and the Rips estimate. 

5.4 Processing Overhead 

To evaluate the overhead of our algorithm we have per- 
formed three experiments on a 300 MHz Pentium II involv- 
ing 1, 10, and 100 flows, respectively. The reservation and 
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Table 4: The average and standard deviation of the enqueue and dequeue times, measured in ps. 

actual sending rates of all flows are identical. The aggre- 
gate sending rate is about 20% larger than the aggregate 
reservation rate. Table 4 shows the means and the standard 
deviations for the enqueue and dequeue t,imes at both ingress 
and egress nodes. Each of these numbers is based on a mea- 
surement of 1000 packet.s. For comparison we also show the 
enqueue and dequeue times for the unmodified code. There 
are several points worth noting. First, our implement.ation 
adds less than 5 ps overhead per enqueue operation, and 
about 2 ps per dequeue operation. In addition, both the 
enqueue and dequeue times at the ingress node are greater 
than at the egress node. This is because ingress node per- 
forms per flow operations. Furthermore, as the number of 
flows increases the enqueue times increase only slightly, i.e., 
by less than 20%. This suggests that our algorithm is indeed 
scalable in the number of flows. Finally, the dequeue times 
actually decrease as the number of flows increases. This 
is because the rate-controller is implemented as a calendar 
queue with each entry corresponding to a 128 ps time in- 
terval. Packet.s with eligible times falling between the same 
interval are stored in the same entry. Therefore, when the 
number of flows is large, more packets are stored in the same 
calendar queue entry. Since all these packets are transferred 
during one operation when they become eligible, the actual 
overhead per packet decreases. 

6 Related Work 

Our scheme shares its intellectual roots with two pieces of 
related work: Diffserv and the Core-Stateless Fair Queueing. 

The idea of implementing QoS services by using a core- 
stateless architecture was first proposed by Jacobson [18] 
and Clark [7], and is now being pursued by the IETF Diff- 
serv working group [3]. There are several differences be- 
tween our scheme and the existing Diffserv proposals. First, 
our algorithms operate at a much finer granularity both in 
terms of time and traffic aggregates: the state embedded in 
a packet can be highly dynamic, as it encodes the current 
state of the flow, rather than the static and global properties 
such as dropping or scheduling priority. In addition, the goal 
of our scheme is to implement distributed algorithms that 
try to approximate the services provided by a network in 
which all routers implement per flow management. There- 
fore, we can provide service differentiation and performance 
guarantees on a per flout basis. In contrast, existing Diff- 
serv solutions provide service differentiation only among a 
small number of traffic classes. Finally, we propose fully 
distributed and dynamic algorithms for implementing both 
data and control functionalities, where existing Diffserv so- 
lutions rely on more centralized and static algorithms for 
implementmg admission control. 

We first proposed the idea of using Dynamic Packet State 
to encode dynamic per flow state in the context of approxi- 
mating the Fair Queueing algorithm in a SCORE architec- 

ture [26]. While algorithms proposed in this paper share the 
same architecture <as CSFQ, there are important differences 
both in high level goals and low level mechanisms. First, 
while CSFQ was designed to support best-effort traffic, al- 
gorithms proposed here are designed to support guaranteed 
services. As a consequence, while CSFQ can use a proba- 
bilistic forwarding algorithm to statistically approximate the 
Fair Queueing service, CJVC needs to use more elaborate 
mechanisms to provide performance guarantees identical to 
those provided by Virtual Clock or Weighted Fair Queue- 
ing algorithms. In particular, CJVC uses three types of 
Dynamic Packet State for scheduling purpose and regulates 
traffic at each hop. One more type of Dynamic Packet State 
was used to implement the admission control, which was 
not needed in CSFQ. Finally, we have proposed a detailed 
design for encoding the DPS variables in IPv4. 

In this paper, we propose a technique to estimate the 
aggregate reservation rate and use that estimate to per- 
form admission control. While this may look similar to 
measurement-based admission control algorithms [15, 291, 
the objectives and thus the techniques are quit.e different. 
The measurement-based admission control algorithms are 
designed to support controlled-load type of services, the es- 
timation is based on the act&amount of traffic transmitted 
in the past, and is usually an optimisticestimate in the sense 
t.hat the estimated aggregate rate is smaller than the aggre- 
gate reserved rate. While this has the benefit of increasing 
the network utilization by the controlled-load service traf- 
fic, it has the risk of incurring transient overloads that may 
cause the degradation of QoS. In cont,rast, our algorithm 
aims to support guaranteed service, and the goal is to es- 
timate a close upper bound on the aggregate reserved rate 
even when t.he the actual arrival rate may vary. 

7 Conclusion 

In this paper, we developed two distributed algorithms t.hat 
implement QoS scheduling and admission control in a SCORE 
network where core routers do not maintain per flow state. 
Combined, these two algorithms significantly enhance the 
scalability of both the data and control plane mechanisms 
for implementing guaranteed services, and at the same time, 
provide guaranteed services with flexibility, utilization, and 
assurance levels similar to those that can be provided with 
per flow mechanisms. The key technique used in both al- 
gorithms is called Dynamic Packet State (DPS), which pro- 
vides a lightweight and robust means for routers to coor- 
dinate actions and implement distributed algorithms. By 
presenting a design and prototype implementation of the 
proposed algorithms in IPv4 networks, we demonstrate that 
it is indeed possible to apply DPS techniques and have min- 
imum incompatibility with existing protocols. 

As a final note, we believe DPS is a powerful concept. 
By using DPS to coordinate actions of edge and core routers 
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along the path traversed by a flow, distributed algorithms 
can be designed to approximate the behavior of a broad 
class of “stateful” networks with networks in which core 
routers do not maintain per flow state. We observe that 
it is possible to extend the current Diffserv framework to 
accommodate algorithms using Dynamic Packet State such 
as the ones proposed in this paper and Core-Stateless Fair 
Queueing [26]. The key extension needed is to associate with 
each Per Hop Behavior (PHB additional space in the packet 
header for storing PHB speci B c Dynamic Packet State. Such 
a paradigm will significantly increase the flexibility and ca- 
pabilities of the services that can be built with a Dikserv-like 
architecture. 
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