
Graph-based Cross Entropy Method for Solving Multi-Robot
Decentralized POMDPs

Shayegan Omidshafiei1, Ali-akbar Agha-mohammadi2, Christopher Amato3, Shih-Yuan Liu1,
Jonathan P. How1, John Vian4

Abstract— This paper introduces a probabilistic algorithm
for multi-robot decision-making under uncertainty, which can
be posed as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP). Dec-POMDPs are inherently
synchronous decision-making frameworks which require sig-
nificant computational resources to be solved, making them
infeasible for many real-world robotics applications. The De-
centralized Partially Observable Semi-Markov Decision Process
(Dec-POSMDP) was recently introduced as an extension of the
Dec-POMDP that uses high-level macro-actions to allow large-
scale, asynchronous decision-making. However, existing Dec-
POSMDP solution methods have limited scalability or perform
poorly as the problem size grows. This paper proposes a
cross-entropy based Dec-POSMDP algorithm motivated by the
combinatorial optimization literature. The algorithm is applied
to a constrained package delivery domain, where it significantly
outperforms existing Dec-POSMDP solution methods.

I. INTRODUCTION

Consider the problem of unmanned underwater exploration
using a fleet of autonomous robots. This can be posed as a
complex decentralized decision-making problem, where each
robot must not only decide which region of the domain to
explore, but also which route to take to complete the task
efficiently. Additionally, the robots operate in an uncertain
environment, using noisy sensors to detect their surroundings,
and have limited or no communication with each other during
execution. This team of robots must cooperate to achieve
their joint task, while considering the sources of uncertainty
present in the domain.

This problem, in its most general form, can be posed as a
Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [4], [18]. The Dec-POMDP is a sequential,
synchronized decision-making framework which extends the
single-robot POMDP to decentralized, multi-robot domains.

Due to the decentralized nature of Dec-POMDPs, POMDP
algorithms cannot be easily extended to solve them; find-
ing the optimal solution for a finite-horizon Dec-POMDP
is NEXP-complete, and the infinite-horizon problem is
undecidable [9]. Numerous algorithms have emerged for
obtaining exact solutions for finite-horizon Dec-POMDPs and
approximate solutions for the infinite-horizon case [5], [8],
[10]–[12], [18], [20], [21], [25], [27], [28]. Despite this, the

*This work was supported by The Boeing Company.
1Laboratory for Information and Decision Systems (LIDS), MIT, Cam-

bridge, MA 02139, USA {shayegan,syliu,jhow}@mit.edu
2Qualcomm Research, San Diego, CA, 92121, USA

aliagha@qualcomm.com
3Department of Computer Science, University of New Hampshire, Durham,

NH 03824, USA camato@cs.unh.edu
4Boeing Research & Technology, Seattle, WA 98108, USA

john.vian@boeing.com

complexity of Dec-POMDPs and high-memory requirements
for large domains limit the applicability of these solution
methods to small problems [8], [9], [28].

Dec-POMDPs are computationally difficult to solve as
they suffer from the curses of dimensionality and history. To
improve scalability, recent efforts have cast Dec-POMDPs
into higher-level frameworks which use macro-actions (MAs):
temporally-extended actions that have successfully aided rep-
resentation and solution in single robot MDPs and POMDPs
[1], [13], [14], [26]. In [3], [6], [7], integration of MAs into
Dec-POMDPs was presented, though until recently selection
and design of MAs relied on a human domain expert.

Principled integration of automatically-generated MAs into
Dec-POMDPs was considered in [22], which introduced the
Decentralized Partially Observable Semi-Markov Decision
Process (Dec-POSMDP) as well as a heuristics-based solution
method (Masked Monte Carlo Search). The Dec-POSMDP is
an inherently asynchronous decision-making framework that
is well-suited to real-world robotics applications. In real-world
settings, asynchronous decision-making is critical in scenarios
where the cost of idling robots (in order to synchronize their
decision-making) is high.

This paper provides an extension of the work presented in
[22]. The main contribution of this paper is the Graph-based
Direct Cross-Entropy method (G-DICE), a Dec-POSMDP
solution algorithm with probabilistic convergence guarantees.
This paper also presents more rigorous definitions of many
of the Dec-POSMDP concepts introduced in the earlier work,
and complexity analysis for G-DICE. Experiments conducted
for a package delivery domain are presented and compared
to the results from [22], showing significant improvement in
solution quality provided by the proposed algorithm.

II. PROBLEM STATEMENT

This section introduces the decentralized decision-making
under uncertainty problem as a Dec-POMDP and formally
defines its transformation into a MA-based Dec-POSMDP.

A. Dec-POMDPs

The Dec-POMDP [9] is a sequential decision-making
problem where multiple robots operate under uncertainty
based on different streams of observations. At each step,
every robot chooses an action (in parallel) based purely
on its local observations, resulting in an immediate reward
and an observation for each individual robot based on
stochastic (Markovian) models over continuous state, action,
and observation spaces.

(a) The selected MA, π(i), for each robot i
is itself a low-level policy mapping the
robot’s history of action-observations H(i)

to its next low-level (primitive) action,
u(i) ∈ U.

(b) High-level tree-based policy, φ(i), with
nodes q(i) representing the MAs the robot
should execute and edges representing the
MA-observation the robot receives after
the MA execution.

(c) Graph-based controllers (or FSAs) are
used to compress policy representation,
reducing the size of the policy search
space and allowing execution in infinite-
horizon domains.

Fig. 1: Overview of hierarchical decision-making using the Dec-POSMDP. The above illustrates policy, φ(i), for the i-th robot.
Each robot’s policy is represented as a high-level graph-based controller (right), which can be considered a compression of a
tree-based policy over MAs (middle). Each MA is, in turn, a low-level policy (left).

The Dec-POMDP model used in this paper is defined as1:

• I = {1, 2, · · · , n} is the set of robots, which may be
heterogeneous.

• S̄ = X̄× Xe is the joint super-state space, where Xe is
the environment state (e-state) and X̄ = ×iX(i) is the
joint state space of the robots. Note that Xe is a finite
set describing the state of the environment (for instance,
the location of packages in a warehouse). X(i) denotes
the continuous state space of the i-th robot.

• Ū = ×iU(i) is the set of continuous joint actions, where
U(i) is the set of actions for the i-th robot.

• P (s̄′|s̄, ū) is the joint state transition probability density
function, indicating the team’s probability of transition-
ing to state s̄′ ∈ S̄ when joint action ū ∈ Ū is taken in
state s̄ ∈ S̄.

• R̄ : S̄× Ū→ R, is the joint reward function, denoting
the reward for being in joint state s̄ ∈ S̄ and taking the
joint action ū ∈ Ū.

• Ω̄ = ×iΩ(i) = Z̄ × Z̄e is the set of continuous joint
observations obtained by the robots, where Z̄ = ×iZ(i)

and Z̄e = ×iZe(i). Note that Ω(i) = Z(i) × Ze(i) is
the set of observations obtained by the i-th robot, and
oe(i) ∈ Ze(i) is the environmental observation (e-obs)
that is a function of the e-state xe ∈ Xe.

• P (ō|s̄′, ū) is the joint observation probability density
function, denoting the probability of seeing joint obser-
vation ō ∈ Ω̄ given joint action ū ∈ Ū which resulted
in joint state s̄′ ∈ S̄.

• γ ∈ [0, 1] is a discount factor on rewards, used to
prioritize actions which yield earlier rewards.

1The typical Dec-POMDP definition does not include factored states [18].

The full action-observation history is then defined as

H̆
(i)
t = {ŏ(i)

0 , u
(i)
0 , ŏ

(i)
1 , u

(i)
1 , · · · , ŏ(i)

t−1, u
(i)
t−1, ŏ

(i)
t }, (1)

where ŏ(i) ∈ Ω(i). The policy, η(i), for the i-th robot is
defined as a mapping from the full action-observation history
to the next action the robot should take, u(i)

t = η(i)(H̆
(i)
t).

The collection of policies for all the robots is referred to as
the joint policy, η̄ = {η(1), η(2), · · · , η(n)}.

The joint value of a given joint policy η̄ starting from an
initial joint belief (or state distribution) b̄ = P (s̄) is defined
as the discounted sum of joint rewards,

V̄ (b̄; η̄) = E

[∞∑
t=0

γtR̄(s̄t, ūt)|P (s̄0) = b̄; η̄

]
. (2)

The solution to the Dec-POMDP is the optimal joint policy

η̄∗ = arg max
η̄

V̄ (b̄; η̄). (3)

B. Dec-POSMDPs

The Dec-POMDP is a general framework for multi-robot
decision-making problems. However, due to its reliance on
primitive (low-level) actions, it is typically infeasible to use for
large problems [8], [9], [28]. The use of primitive actions also
enforces synchronized decision-making amongst the robots,
which is limiting in real-world scenarios. This motivates the
need for the Dec-POSMDP [22], which is a belief-space
framework allowing tractable solving of large-scale planning
problems by using automatically-generated MAs.

Macro-action π(i) for the i-th robot provides a mapping
from the robot’s action-observation history to the next action it
should take, ut = π(i)(H

(i)
t), similar to the policy η(i) defined

in the previous section. MAs have probabilistic completion

times and success rates, meaning that the Dec-POSMDP is an
inherently asynchronous, semi-Markovian decision-making
framework as the robots’ actions take varying amounts of
time to complete.

Each MA is considered to be successfully executed when
it takes a robot from an initial belief, b, to an ε-neighborhood
of a milestone (or goal) belief, b̌goal. This ε-neighborhood is
referred to as a goal belief node for the MA, and is denoted
Bgoal = {b : ‖b − b̌goal‖ ≤ ε}. A detailed discussion of
belief nodes is presented in [22].

To allow implementation of MAs in decentralized decision-
making frameworks, three properties are required for each
MA, π, at any initial belief state, b:

1) The value of the MA, V (b;π). This is necessary when
the MA takes the environmental state into account
and abstracts these values into a generalized one-step
joint reward R̄ for the team. In practice, V (b;π) is
also useful for efficient, high-level simulations of MAs
when searching for joint policies.

2) The probabilistic completion time of the MA,
T (Bgoal|b;π). This is necessary for appropriate dis-
counting of each MA’s reward, since the MAs take
different amounts of time to complete.

3) The success probability of the MA, P (Bgoal|b;π).

Automatic MA-generation using a graph-based approach
is presented in [22], which also details calculation of the
aforementioned three characteristic properties for each MA.

The joint MA, π̄ = {π(1), · · · , π(n)}, is defined as the
collection of MAs being executed by the entire team at a
given time. Upon completion of its MA, each robot i receives
a partial observation of the e-state, xe, denoted as the e-obs
oe(i). In conjunction, the robot has access to its final local
belief, bf(i), at the end of the MA. This pair (the e-obs and
the final belief) is referred to as the MA-observation, defined
as ŏe(i) = (oe(i), bf(i)) for the i-th robot. Assuming oe(i)

changes its value only at the completion of a MA, then ŏe(i)

abstracts all the primitive observations o(i) within the MA
along with the e-obs oe(i) at the end of the MA.

The Dec-POSMDP framework is defined as follows:

• I = {1, 2, · · · , n} is the set of robots, which may be
heterogeneous.

• B(1) × B(2) × . . .× B(n) × Xe is the underlying belief
space, where B(i) is the set of belief milestones of the
i-th robot’s MAs

• T̄ = T(1)×T(2) . . .×T(n) is MA space, where T(i) is the
set of MAs for the i-th robot. Each MA is automatically
generated using the procedure outlined in [22].

• P (b̄′, xe
′
, k|b̄, xe; π̄) is the transition probability under

MAs π̄ from (b̄, xe) to (b̄′, xe
′
) as described below.

• R̄τ(b̄, xe; π̄) denotes the generalized reward of taking a
joint MA π̄ at (b̄, xe) as described further below.

• P (¯̆oe|b̄, xe) denotes the joint observation likelihood
model, where the joint observation vector is ¯̆oe =
{ŏe(1), ŏe(2), · · · , ŏe(n)}.

•
¯̆Oe = {¯̆oe} is the set of all joint MA-observations.

• γ ∈ [0, 1] is a discount factor on rewards.

The MA-history for the i-th robot is then defined as the

Fig. 2: Overview of the Dec-POSMDP sequential decision-
making process. The i-th robot moves from state x0 through
a sequence of MAs, π0, π1, · · · , πk. Under each MA, it exe-
cutes primitive actions u1, · · · , ut−1 and perceives primitive
observations o1, · · · , ot. At the end of each MA, it also
obtains environmental observations oe0, · · · , oek.

history of executed MAs and received MA-observations,

ξ
(i)
k = {ŏe(i)0 , π

(i)
0 , ŏ

e(i)
1 , π

(i)
1 , · · · , ŏe(i)k−1, π

(i)
k−1, ŏ

e(i)
k }. (4)

Ξ(i) denotes the space of MA-histories for the i-th robot.
Extending the notion of state transition probabilities from

the Dec-POMDP, the transition probability from (b̄, xe) to
(b̄′, xe

′
) under joint MA π̄ in k timesteps is derived,

P (b̄′, xe
′
, k|b̄, xe; π̄) = P (xe

′

k , b̄
′
k|xe0, b̄0; π̄) (5)

=
∑

xe
k−1,b̄k−1

[P (xe
′

k |xek−1; π̄(b̄k−1))·

P (b̄′k|xek−1, b̄k−1; π̄(b̄k−1))P (xek−1, b̄k−1|xe0, b̄0; π̄(b̄0))].

Similarly extending the one-step joint reward R̄ of the
Dec-POMDP, the generalized reward of joint MA π̄ taken at
initial joint belief b̄ and e-state xe is defined as

R̄τ(b̄, xe; π̄)=E

[
τ−1∑
t=0

γtR̄(x̄t, x
e
t , ūt)|P (x̄0)= b̄, xe0 =xe; π̄

]
(6)

where τ = mini mint{t : b
(i)
t ∈ B(i),goal} is the timestep at

which any robot i completes its current MA, π(i).
The solution to the Dec-POSMDP is a joint high-level

decentralized policy, φ̄ = {φ(1), · · · , φ(n)}, where φ(i) :
Ξ(i) → T(i) is the high-level policy for the i-th robot,
mapping its MA-history to a subsequent MA to be executed.

The joint value of the decentralized policy φ̄, starting from
joint belief b̄ and e-state xe is

V̄ φ̄(b̄, xe) = E

[∞∑
k=0

γtkR̄τ (b̄tk , x
e
tk

; π̄tk)|b̄0, xe0; φ̄

]
(7)

= R̄τ (b̄, xe; π̄)+

∞∑
k=1

∑
b̄′,xe′

γtkP (b̄′, xe
′
, k|b̄, xe; π̄)V̄ φ̄(b̄′, xe

′
).

The optimal Dec-POSMDP policy is then,

φ̄∗ = argmax
φ̄

V̄ φ̄(b̄, xe). (8)

Fig. 1 provides a visual summary of the hierarchical
Dec-POSMDP decision-making scheme. Solving the Dec-
POSMDP results in the high-level joint policy, φ̄, dictating

the MA each robot should take based on its MA-history
(the history of executed MAs and received MA-observations).
The selected MA, π(i), for each robot i is itself a low-level
policy mapping the robot’s history of action-observations H(i)

to its next low-level (primitive) action, u(i) ∈ U (Fig. 1a).
Thus, the Dec-POSMDP solves the same base Dec-POMDP
problem and results in a sequential decision-making process
eventually leading to low-level actions and observations
(Fig. 2). However, its efficacy comes from solving the problem
in a hierarchical manner — first selecting the MA for each
robot, and then selecting the low-level action.

Although Dec-POSMDPs significantly reduce the Dec-
POMDP problem through the use of MAs and the resulting
hierarchical decision-making scheme, the optimization prob-
lem in (8) is still challenging to solve. Section II-C outlines
a graph-based policy representation for infinite-horizon Dec-
POSMDPs. Section III presents a probabilistic algorithm to
search for the optimal joint policy.

C. Policy Representation as FSAs

Recall that the joint policy φ̄ is the collection of the
individual policies of the robots {φ(1), · · · , φ(n)}. Policy
execution is done sequentially (yet asynchronously) by the
robots. Specifically, the i-th robot executes MA π

(i)
k at the

k-th timestep. The robot will then receive its MA-observation,
ŏ
e(i)
k+1, which it uses to select its next MA, π(i)

k+1.
Each robot can represent its policy using a tree or graph-

based controller (Fig. 1), where the nodes represent the
MAs the robot should execute and edges represent the
MA-observation the robot receives after the MA execution.
Formally, given controller node q(i), the decision tree/graph
output function π(i) = λ(i)(q(i)) designates MA π(i) to the
i-th robot (Fig. 1b and 1c). Following this MA, the robot
transitions to the next decision node as determined by the
transition function q′(i) = δ(i)(q(i), ŏe(i)).

Note that a tree with infinite levels is required to store
the policy for an infinite-horizon Dec-POSMDP (Fig. 1a),
making trees feasible only for finite-horizon problems. On
the other hand, graphs or Finite State Automata (FSAs) allow
solving of infinite-horizon Dec-POSMDPs since loops in the
policy graph allow it to be executed indefinitely (Fig. 1c). The
number of nodes, Nn, in the FSA can be chosen a priori in
order to constrain the policy size, alleviating out-of-memory
issues which are prevalent in domains with long time horizons
[25]. Although an optimal policy may require an infinite-sized
graph for full representation [16], it has been shown that a
finite-sized FSA can be used to represent a policy within ε
of the optimal value [8].

III. SOLVING DEC-POSMDPS USING
PROBABILISTIC OPTIMIZATION

This section introduces a probabilistic algorithm for solving
Dec-POSMDPs using a graph-based policy representation.
Existing methods for solving Dec-POSMDPs include Masked
Monte Carlo Search (MMCS), which is heuristics-based and
has no probabilistic guarantees, and Monte Carlo Search
(random sampling of the joint policy space), which has poor
empirical performance for large domains [22].

(a) Iteration 0. Since Vw,0 is initialized to −∞, all Nb = 6 samples
(red dots) are used to estimate θ1 for the next iteration.

(b) Iteration 1. Note that one of the current iteration’s Nb samples
has a value lower than Vw,1 (the minimum value from the previous
iteration’s Nb samples). Thus, this iteration only uses the best 5
samples (not 6) to estimate θ2 for the next iteration.

(c) Iteration 2. f(x; θk) incrementally converges towards a Dirac
delta distribution centered at the optimal value.

Fig. 3: Overview of the CE method, with f(x; θk) and V (x)
plotted in green and blue, respectively. In this example, Nk =
3 (number of iterations), Ns = 12 (number of samples per
iteration), and Nb = 6 (number of best samples used to
update θk in each iteration). The circles anchored to the
x axis indicate the samples drawn from f(x; θk) in each
iteration, with the Nb best samples highlighted in red.

A. Cross-Entropy Method
The Cross-Entropy (CE) method is a probabilistic approach

to stochastic optimization, targeted towards combinatorial
optimization problems [23]. It performs well in large search
spaces with many local optima, and has previously been
used for policy search in MDPs [17] and Dec-POMDPs [19],
where it was named the Direct CE Method (DICE) due to
its direct search of the un-pruned joint policy space.

For a given optimization problem,

x∗ = argmax
x

V (x), (9)

the CE method maintains a sampling distribution f(x; θ),
parameterized by θ, which it uses to sample solutions x in the

search space. To solve (9), the CE method iteratively updates
f(x; θ) such that samples drawn from it get progressively
closer to the global optimum. This process is summarized as
follows (see Fig. 3):

1) Generate a set of samples X from f(x; θk), where k
is the iteration number and θ0 is the initial parameter
vector. Fig. 3 shows samples as circles on the x axis.

2) Use the best Nb samples Xb to calculate the Maximum
Likelihood Estimate (MLE) of the parameter vector,
θk+1 = argmaxθ f(Xb; θ). Note that samples with
value V (x) less than Vw,k (the worst-performing sample
from the previous iteration’s best Nb samples) are
rejected to counter convergence towards local optima.
Fig. 3b illustrates an example of sample rejection.

3) Apply smoothed update to θk+1 (to further counter
convergence towards local optima)

θk+1 ← αθk+1 + (1− α)θk, (10)

where α ∈ (0, 1] is the learning rate.
4) Repeat until convergence, return best sample xb.
This process minimizes the KL-divergence between indi-

cator function I(V (x)≥Vw,k) and f(x; θk),

DKL(I(V (x)≥Vw,k)||f(x; θk)), (11)

and empirically causes f(x; θk) to converge towards a Dirac
delta distribution centered at the optimal value [23] (Fig. 3c).

B. G-DICE
The CE method is extended to solve Dec-POSMDPs while

using FSAs for policy representation. The resulting algorithm
is called Graph-based Direct Cross Entropy (G-DICE).

Recall that the FSA for each robot, i, is characterized
by two functions, the output function λ(i)(q(i)) and the
transition function δ(i)(q(i), ŏe(i)). Thus, G-DICE maintains
two probability distributions at each FSA node q(i):

1) MA output function f(π(i)|q(i); θ
(i)(π|q)
k), parameter-

ized by θ(i)(π|q)
k .

2) FSA transition function f(q(i)′ |q(i), ŏe(i); θ
(i)(q′|q,ŏe)
k),

parameterized by θ(i)(q′|q,ŏe)
k .

For a simple implementation, a categorical underlying sam-
pling distribution can be used (although more complex
distributions may benefit certain domains). For each robot,
both parameters are updated using the CE method. The result
is a policy dictating deterministic selection of MAs π(i) and
node transitions based on each robot’s MA-observations.

G-DICE is outlined Alg. 1. To search for the joint policy
using G-DICE, an initial FSA with Nn nodes and | ¯̆Oe|
outgoing edges from each node is created (Alg. 1, Line 4),
where Nn is chosen empirically based on system memory
limitations and desired accuracy of the joint policy. The
best-joint-value-so-far, V̄b, and worst-joint-value-so-far, V̄w,
are initialized to −∞ (Alg. 1, Lines 5-6). The parameter
vectors θ(i)(π|q)

k and θ(i)(q′|q,ŏe)
k are initialized either using a

priori knowledge, or more typically such that their associated
distributions are uniform (Alg. 1, Lines 8-9).

In each iteration, batches of Ns policies are sampled using
parameter vectors θ(i)(π|q)

k and θ(i)(q′|q,ŏe)
k (Alg. 1, Line 14).

Algorithm 1: G-DICE

1 Procedure : G-DICE(T̄, ¯̆Oe, I, Nn, Nk, Ns, Nb, α)

2 Input : MA space T̄, MA-observation space ¯̆Oe, robots
I, number of nodes in graph Nn, number of iterations
Nk, number of samples per iteration Ns, number of best
samples retained Nb, learning rate α

3 Output : best joint policy φ̄b
4 For each robot, initialize policy graph with Nn nodes

and | ¯̆Oe| edges per node;
5 V̄b ← −∞;
6 V̄w,0 ← −∞;
7 for i = 1 to n do
8 Initialize θ(i)(π|q)

0 ∀q;
9 Initialize θ(i)(q′|q,ŏ)

0 ∀q, ŏ;

10 for k = 0 to Nk − 1 do
11 φ̄list ← ∅;
12 for s = 1 to Ns do
13 for i = 1 to n do
14 φ(i) ← sample π from f(π|q; θ(i)(π|q)

k) ∀q,
sample q′ from f(q′|q, ŏe; θ(i)(q′|q,ŏe)

k) ∀q, ŏ;

15 V̄ φ̄ ← Evaluate φ̄={φ(1), · · ·, φ(n)};
16 if V̄ φ̄ ≥ V̄w,k then
17 φ̄list ← φ̄list ∪ φ̄;
18 V̄list ← V̄list ∪ V̄ φ̄;

19 if V̄ φ̄ > V̄b then
20 V̄b ← V̄ φ̄;
21 φ̄b ← φ̄;

22 φ̄b,list, V̄b,list ← best Nb policies in φ̄list;
23 V̄w,k+1 ← min(V̄b,list);
24 for i = 1 to n do
25 θ

(i)(π|q)
k+1 ← MLE of θ(i)(π|q) using φ̄b,list ∀q;

26 θ
(i)(π|q)
k+1 ← αθ

(i)(π|q)
k+1 + (1− α)θ

(i)(π|q)
k ;

27 θ
(i)(q′|q,ŏ)
k+1 ← MLE of θ(i)(q′|q,ŏ) using
φ̄b,list ∀q, ŏ;

28 θ
(i)(q′|q,ŏ)
k+1 ← αθ

(i)(q′|q,ŏ)
k+1 + (1− α)θ

(i)(q′|q,ŏe)
k ;

29 return φ̄b;

The policies are then evaluated using (7). Policies with value
lower than the previous iteration’s worst value, V̄w,k, are
rejected (Alg. 1, Lines 17-18) and the best-policy-so-far, φ̄b,
is noted (Alg. 1, Line 21). This process can be performed
very efficiently through parallelization, since each sampled
joint policy φ̄ is evaluated independently.

Following this, the best Nb policies from the list of sampled
policies, φ̄list, are used to calculate MLEs of parameter
vectors (Alg. 1, Line 25 and Line 27). Parameter vectors
are then updated in a smooth manner (Alg. 1, Line 26 and
Line 28) and the process is repeated until Nk iterations are
completed. Since the parameters and the best-policy-so-far, φ̄b,
are updated in each iteration, G-DICE can be stopped at any
point to produce an approximation of the optimal joint policy
as φ̄b ≈ φ̄∗. G-DICE is an anytime algorithm offering several

advantages to the tree-based approaches utilized previously for
Dec-POMDPs [19]. Usage of graphs allows solving infinite-
horizon Dec-POSMDPs, since loops in the policy graph allow
it to be executed indefinitely. Additionally, the number of
nodes in the graph, Nn, can be fixed a priori to impose
memory bounds on the policy, alleviating the memory issues
that are prevalent in problems with long time horizons [25].

C. Complexity Analysis
For a Dec-POMDP with n robots and finite horizon h, the

total number of possible joint policies is

O
[
(|U∗|

|Ω∗|h−1
|Ω∗|−1)n

]
, (12)

where |U∗| = max{|U|(1), · · · , |U(n)|} and |Ω∗| =
max{|Ω(1)|, · · · , |Ω(n)|}, the largest action-set and
observation-set for any robot [19]. In [19], the cost of
evaluating each policy using (2) is shown to be

O
[
|S̄| · |Ω

∗|nh − 1

|Ω∗|n − 1

]
. (13)

For comparison, the complexity of solving Dec-POSMDPs
using G-DICE can be considered by analyzing the joint
policy sampling and evaluation steps, which are the most
computationally-intensive portions of Alg. 1.

In Alg. 1, Line 14, a joint policy (FSA) is constructed by
sampling a MA from f(π(i)|q(i); θ

(i)(π|q)
k), which has com-

plexity O[Nn · |T∗|], where |T∗| = max{|T|(1), · · · , |T(n)|}.
Additionally, in each FSA node, the transition to the next
node is sampled from f(q(i)′ |q(i), ŏe(i); θ

(i)(q′|q,ŏe)
k) based on

each robot’s MA-observation history, which has complexity

O
[
(Nn)2 · |Ŏ

e∗|h − 1

|Ŏe∗| − 1

]
. (14)

For most domains, this term dominates FSA construction. In
each of the Nk iterations in G-DICE, Ns FSAs are constructed
for each of the n robots. Therefore, the computational
complexity of FSA construction in G-DICE is

O
[
n ·Nk ·Ns · (Nn)2 · |Ŏ

e∗|h − 1

|Ŏe∗| − 1

]
. (15)

In Alg. 1, Line 15, the joint policy is evaluated, which
involves considering all possible state-observation histories of
n robots. This evaluation occurs in each of the Ns samples
for each of the Nk iterations, resulting in complexity

O
[
Nk ·Ns · |S̄| ·

|Ŏe∗|nh − 1

|Ŏe∗|n − 1

]
. (16)

IV. EXPERIMENTS

This section presents a constrained multi-robot package
delivery domain, as well as experimental results comparing
G-DICE and MMCS [22] joint policy quality. The considered
domain poses significant challenges for decentralized decision-
making, due to its use of joint MAs requiring cooperation
between multiple robots. The significant size of the policy
search space (5.622e + 17 cardinality when using a FSA
with Nn = 13 nodes) makes this problem extremely difficult
for existing Dec-POMDP methods, thus making it a useful
benchmark domain for Dec-POSMDPs.

A. Domain Overview

The constrained package delivery domain considered was
introduced in [22] and a single-robot POMDP variant was
considered in [2]. This domain involves a team of robots
retrieving packages from 2 base locations and transporting
them to 3 delivery destinations. The team consists of two
aerial robots (e.g., quadrotors) and one ground robot. The
aerial robots can handle pickup and deliveries outside a
regulated airspace, whereas the ground robot is restricted
to deliveries within the regulated airspace. The aerial robots
can transfer packages to the ground robot at a rendezvous
destination. Each package has a size and delivery destination
descriptor, which is observed by the robots as an environment
observation oe. The team is rewarded only when a package
is delivered to the correct delivery destination.

Single and multi-robot MAs are used in this domain, and
can be generated automatically using the procedure outlined
in [22]. Due to the underlying sources of uncertainty in
the domain, the MAs have probabilistic success rate and
completion times. The MAs are summarized as follows:
• Go to base Basej for j ∈ {1, 2}
• Go to delivery destination Destj for j ∈ {1, 2, r}, where
Destr is the destination in the regulated airspace.

• Jointly go to delivery destination Destj for j ∈ {1, 2}
• Individually/jointly pick up package
• Individually/jointly put down package
• Go to rendezvous location
• Place package on ground robot
• Wait at current location for 1 timestep
Refer to [22] for detailed domain and MA descriptions.

B. Results

Existing Dec-POSMDP solution methods such as MMCS
[22] are heuristics-based and generally have no probabilistic
guarantees. In this section, MMCS is used as a baseline
for comparisons with the proposed algorithm in this paper,
G-DICE, applied to the constrained package delivery domain.

Table I presents an overview of joint policy value for G-
DICE (14.44), MMCS (4.53), and Monte Carlo Search (2.07).
Parameter values used for G-DICE results in this table were
Nk = 100, Ns = 100, Nb = 10, Nn = 13, and α = 0.1.
G-DICE significantly outperforms MMCS in policy quality.
Due to the large cardinality of the policy space, an exhaustive
search for the optimal policy is infeasible.

G-DICE policy value as a function of learning rate, α, is
shown in Fig. 4a. As the learning rate increases, the policy
tends to converge to a local optima and therefore suffers in
quality. This is illustrated in Fig. 4b, which shows convergence
characteristics for G-DICE with varying learning rates. Lower
learning rates increase convergence time, although with near-
optimal policy value. The trade-off between policy quality and
convergence time is prevalent in stochastic search algorithms,
and recent research has focused on developing adaptive
learning rates or removing them altogether for algorithms such
as stochastic gradient descent [24]. In the package delivery
domain, a learning rate of α = 0.2 was empirically found
to provide a suitable balance between solution quality and
convergence time. This analysis, however, motivates future

Algorithm Max Policy Value
Monte Carlo Search 2.07

MMCS 4.53
G-DICE 14.44

TABLE I: Comparison of the maximum policy values.

work in the area of developing adaptive learning rates for G-
DICE, which would be highly beneficial for online planning
with limited computational resources.

Fig. 5a shows G-DICE policy values as a function of the
number of FSA nodes, Nn. Increasing the number of FSA
nodes improves solution quality, primarily since the policy
fidelity is improved. Larger policy graphs are able to store
more accurate representation of action-observation histories
for the robots, improving the decision-making. However, as
Fig. 5b illustrates, graphs with more nodes require longer time
for convergence, since the cardinality of the policy search
space increases. Once a large enough Nn is chosen, increasing
the number of nodes does not lead to significant improvement
in the policy value. In the package delivery example, Nn ≥ 10
results in policies with similar values. These plots suggest
a trade-off related to the graph size, similar to the one
presented for learning rate, where increasing policy size
improves solution quality at the expense of convergence time.
Investigation of automatic determination of graph size using
a Bayesian nonparametric approach was done in [15]. A
key advantage of the FSA representation is that for a given
problem, the number of nodes can be automatically selected
in order to adhere to memory limitations.

Case studies of varying policies as a function of controller
size can be done using Fig. 5b. For instance, the Nn =
2 policy has zero joint value, since there are not enough
nodes to perform the sequence of MAs required for even a
single package delivery (which needs at least 3 MAs: pickup,
transport, and dropoff). The Nn = 3 graph, as expected, yields
a policy with positive value. This policy involves each robot
picking up a package, delivering it to one of the destinations,
dropping it off, and remaining at the delivery destination.
Once the delivery is completed using the Nn = 3 policy, the
combination of MAs possible in a 3-node graph have been
exhausted, and the robot does not have the ability to travel
to a base location for an additional pickup. This policy is a
direct result of the constraints imposed on graph size, and
serves as a check to ensure that the joint policies produced
by G-DICE are intuitively valid.

To further quantify the performance advantage of G-DICE
over MMCS and Monte Carlo Search, Fig. 6 compares
success probability of delivering a given minimum number
of packages for all methods, within a fixed mission time
horizon. Results were generated over 250 simulated runs with
randomly-generated packages and initial conditions. Using
the Monte Carlo Search policy, probability of successfully
delivering 3 or more packages given a fixed time horizon is
near-zero. The MMCS policy successfully delivers a larger
number of packages, although struggling to deliver more than
4 or 5. The G-DICE policy (with Nn = 13 and α = 0.2)
clearly outperforms the other methods, delivering up to 3
packages with probability 1.0, and up to 6 packages with
probability of approximately 0.8. The probability of delivering

α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
ax

 v
al

ue

2

4

6

8

10

12

14

(a) Max joint value obtained for the package delivery domain
using G-DICE, with varying learning rate α.

Iteration
0 50 100 150 200 250 300

V
al

ue

-2

0

2

4

6

8

10

12

14

α = 0.1
α = 0.2

α = 0.3
α = 0.5
α = 0.8

(b) Effect of learning rate, α, on convergence.

Fig. 4: G-DICE policy results for constrained package delivery
domain, with varying learning rate α.

9 or more packages becomes near-zero, due to the imposed
time cutoff constraining the number of deliveries possible.
These results indicate that G-DICE significantly outperforms
MMCS in terms of policy quality. This is primarily due to
the greedy policy selection process used in MMCS, which
often results in the algorithm getting stuck in local optima.
In contrast, G-DICE takes specific steps to avoid this, by
applying a smoothed update to its parameter vectors (Alg. 1,
Line 26 and Line 28) while tracking performance of the worst
policies using V̄w,k. While the approach used in [3] can be
used for this problem domain, we believe that G-DICE will be
more scalable (but without the same convergence guarantees).
A direct comparison to [3] will be considered in future work.

V. CONCLUSION

This paper proposed a probabilistic method for solving
multi-robot planning under uncertainty problems posed as
Dec-POSMDPs. It motivated the solving of Dec-POSMDPs
from a combinatorial optimization perspective, presenting
a cross-entropy based algorithm, G-DICE, and associated
complexity analysis. For the constrained package delivery
under uncertainty problem, G-DICE was shown to signifi-
cantly outperform existing Dec-POSMDP solution methods,
resulting in a high-quality joint policy despite the very large
cardinality of the policy search space.

REFERENCES

[1] A.-a. Agha-mohammadi, S. Chakravorty, and N. Amato, “FIRM:
Sampling-based feedback motion planning under motion uncertainty
and imperfect measurements,” International Journal of Robotics
Research (IJRR), vol. 33, no. 2, pp. 268–304, 2014.

N
n

2 4 6 8 10 12 14

M
ax

 v
al

ue

0

2

4

6

8

10

12

14

(a) Max joint value obtained for the package delivery domain
using G-DICE, with varying policy controller size Nn.

Iteration
0 50 100 150 200 250 300

V
al

ue

-2

0

2

4

6

8

10

12

14

 N
n
 = 2

 N
n
 = 3

 N
n
 = 4

 N
n
 = 5

 N
n
 = 7

 N
n
 = 8

N
n
 = 13

(b) Effect of policy controller size, Nn, on convergence.

Fig. 5: G-DICE policy results for constrained package delivery
domain, with varying policy controller sizes Nn.

Packages
1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Monte Carlo Search
MMCS
G-DICE

Fig. 6: Success probability of delivering a specified number
of packages or more within a fixed time horizon, for G-DICE,
MMCS [22], and Monte Carlo Search.

[2] A.-a. Agha-mohammadi, N. K. Ure, J. P. How, and J. Vian, “Health
aware stochastic planning for persistent package delivery missions
using quadrotors,” in International Conference on Intelligent Robots
and Systems (IROS), Chicago, September 2014.

[3] C. Amato, G. Konidaris, A. Anders, G. Cruz, J. How, and L. Kaelbling,
“Policy search for multi-robot coordination under uncertainty,” in
Robotics: Science and Systems XI (RSS), 2015. [Online]. Available:
http://lis.csail.mit.edu/pubs/amato-konidaris-rss15.pdf

[4] C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J. Kochen-
derfer, “Decentralized control of partially observable Markov decision
processes,” in Proceedings of the Fifty-Second IEEE Conference on
Decision and Control, 2013, pp. 2398–2405.

[5] C. Amato, J. S. Dibangoye, and S. Zilberstein, “Incremental policy
generation for finite-horizon Dec-POMDPs.” in ICAPS, A. Gerevini,
A. E. Howe, A. Cesta, and I. Refanidis, Eds. AAAI, 2009.

[6] C. Amato, G. D. Konidaris, G. Cruz, C. A. Maynor, J. P. How, and
L. P. Kaelbling, “Planning for decentralized control of multiple robots
under uncertainty,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[7] C. Amato, G. D. Konidaris, and L. P. Kaelbling., “Planning with macro-

actions in decentralized POMDPs,” in International Conference on
Autonomous Agents and Multiagent Systems, 2014.

[8] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein, “Policy
iteration for decentralized control of Markov decision processes,”
Journal of Artificial Intelligence Research, vol. 34, pp. 89–132, 2009.

[9] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840,
2002.

[10] D. S. Bernstein, E. A. Hansen, and S. Zilberstein, “Bounded policy
iteration for decentralized POMDPs,” in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI-05),
2005, pp. 1287–1292.

[11] A. Boularias and B. Chaib-draa, “Exact dynamic programming for
decentralized POMDPs with lossless policy compression.” in ICAPS,
J. Rintanen, B. Nebel, J. C. Beck, and E. A. Hansen, Eds. AAAI,
2008, pp. 20–27.

[12] A. Carlin and S. Zilberstein, “Value-based observation compression
for Dec-POMDPs.” in AAMAS (1), L. Padgham, D. C. Parkes, J. P.
Mller, and S. Parsons, Eds. IFAAMAS, 2008, pp. 501–508.

[13] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238 – 1274, September 2013.

[14] Z. Lim, L. Sun, and D. J. Hsu, “Monte carlo value iteration with macro-
actions,” in Advances in Neural Information Processing Systems 24,
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
Eds. Curran Associates, Inc., 2011, pp. 1287–1295.

[15] M. Liu, C. Amato, X. Liao, J. P. How, and L. Carin, “Stick-
Breaking Policy Learning in DEC-POMDPs,” in Proceedings of the
24rd International Joint Conference on Artificial Intelligence (IJCAI),
Buenos aires, Argentina, 2015.

[16] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov
decision problems,” in Proceedings of the Sixteen Conference on
Artificial Intelligence (AAAI), 1999, pp. 541–548.

[17] S. Mannor, R. Y. Rubinstein, and Y. Gat, “The cross entropy
method for fast policy search.” in ICML, T. Fawcett and N. Mishra,
Eds. AAAI Press, 2003, pp. 512–519. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icml/icml2003.html#MannorRG03

[18] F. A. Oliehoek, “Decentralized POMDPs,” in Reinforcement Learn-
ing: State of the Art, ser. Adaptation, Learning, and Optimization,
M. Wiering and M. van Otterlo, Eds. Springer, 2012, vol. 12, pp.
471–503.

[19] F. A. Oliehoek, J. F. Kooi, and N. Vlassis, “The cross-entropy method
for policy search in decentralized POMDPs,” Informatica, vol. 32, pp.
341–357, 2008.

[20] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate
Q-value functions for decentralized POMDPs,” Journal of Artificial
Intelligence Research, vol. 32, no. 1, pp. 289–353, 2008.

[21] F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan, “Lossless clustering
of histories in decentralized POMDPs.” in AAMAS (1), C. Sierra,
C. Castelfranchi, K. S. Decker, and J. S. Sichman, Eds. IFAAMAS,
2009, pp. 577–584.

[22] S. Omidshafiei, A. akbar Agha-mohammadi, C. Amato, and J. P.
How, “Decentralized Control of Partially Observable Markov Decision
Processes using Belief Space Macro-actions,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[23] Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified
Approach to Monte Carlo Simulation, Randomized Optimization and
Machine Learning. Springer-Verlag, 2004.

[24] T. Schaul, S. Zhang, and Y. LeCun, “No More Pesky Learning Rates,”
in International Conference on Machine Learning (ICML), 2013.

[25] S. Seuken, “Memory-bounded dynamic programming for Dec-
POMDPs,” in In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI, 2007, pp. 2009–2015.

[26] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[27] D. Szer, F. Charpillet, and S. Zilberstein, “Maa*: A heuristic search
algorithm for solving decentralized POMDPs,” in In Proceedings of
the Twenty-First Conference on Uncertainty in Artificial Intelligence,
2005, pp. 576–583.

[28] D. Szer and F. Charpillet, “An optimal best-first search algorithm for
solving infinite horizon Dec-POMDPs.” in ECML, ser. Lecture Notes
in Computer Science, J. Gama, R. Camacho, P. Brazdil, A. Jorge, and
L. Torgo, Eds., vol. 3720. Springer, 2005, pp. 389–399.

http://lis.csail.mit.edu/pubs/amato-konidaris-rss15.pdf
http://dblp.uni-trier.de/db/conf/icml/icml2003.html#MannorRG03

	Introduction
	Problem Statement
	Dec-POMDPs
	Dec-POSMDPs
	Policy Representation as FSAs

	Solving Dec-POSMDPS using Probabilistic Optimization
	Cross-Entropy Method
	G-DICE
	Complexity Analysis

	Experiments
	Domain Overview
	Results

	Conclusion
	References

