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ABSTRACT

Recent years have seen significant advances in techniquep-fo
timally solving multiagent problems represented as deaénéd
partially observable Markov decision processes (Dec-P@8)DA
new method achieves scalability gains by converting DetAPBs
into continuous state MDPs. This method relies on the assamp
of a centralized planning phase that generates a set of lelized
policies for the agents to execute. However, scalabilimams
limited when the number of agents or problem variables besom
large. In this paper, we show that, under certain sepatgbindi-
tions of the optimal value function, the scalability of thaisproach
can increase considerably. This separability is preseatwiere is
locality of interaction, which — as other approaches (sithase

based on the ND-POMDP subclass) have already shown — can

be exploited to improve performance. Unlike most previogshm
ods, the novel continuous-state MDP algorithm retainsnaglity
and convergence guarantees. Results show that the extarsio
ing separability can scale to a large number of agents ancitiom
variables while maintaining optimality.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence—
Multiagent systems

Keywords

Planning under uncertainty, cooperative multiagent sysielecen-
tralized POMDPs, ND-POMDPs

1. INTRODUCTION

There is a growing interest in research for solving multigge
problems represented as decentralized partially obsleridorkov
decision processes (Dec-POMDRS) 1, €, 24]. This formafiabr
sumes many multiagent models including multiagent Markesi-d
sion processes (MMDPSs)|[8.117.131], transition independengen-
tralized MDPs|[[4[ 13 14,"30], networked distributed pdistiab-
servable MDPs (ND-POMDPS) [118.140.]123] 35] and more recently
transition decoupled decentralized MDPs|[28, 36]. Unfoately,
the NEXP-hardness of the Dec-POMDP formalism has restricte
its scalability; yet, many practical applications haveracture that
should allow greater scalability while preserving optiitya]2] [3,
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[B,[7,[26]. Algorithms that exploit the domain structure wlieis
present are particularly successful. However, even thgseitims
cannot scale to realistic domains since the number of agsatss,
observations and actions will often be quite large.

Separability conditions can occur when optimal value fiomst
are the sum of linear functions over factors associated avitmall
subset of problem variables. These value functions are Rrasv
additive weakly-separable and linear functions (AWSL),rapp
erty that is present in the optimal value functions of margcpr
tical multi-robot coordination applicationsl[4, 113,114, 3broad-
cast channel protocols|[6.134] and target tracking by a telasem-
sors [18,20[23,°35]. The idea of exploiting the additive kvea
separability and linearity in MDP-based models is not neveah
be traced back to Koller and Pafr]17], who explored the use of
this property as an approximation for accelerating dynapni
gramming in MDPs. Since then, numerous authors have refined
the approach, exploiting value function approximationesohs|[8,
[15,[16/21-20]; locality of interaction, in which agents dimited
interactions with one another [118,]123.]1 35]; or the valueddza-
tion used in approximate inference based approa¢hés [@Qhid
paper, we target domains represented as ND-POMDPs [23thwhi
are a subclass of Dec-POMDPs that exhibit locality of int&ca.

A recent method has demonstrated a scalability increaseron g
eral Dec-POMDPs by recasting them as continuous-state end d
terministic MDPs[[12]. This centralized method is possityeus-
ing the common assumption that planning can be centraliteie w
preserving decentralized execution. The states of thisragus-
state and deterministic MDP, called occupancy states, iatg-d
butions over Dec-POMDP states and agent histories. Theiasso
ated feature-based heuristic search value iteration (EB4AHalgo-
rithm preserves the ability to converge to an optimal sotutnd
illustrates significant scalability gains on a number of {F&@MDP
benchmarks. FB-HSVI's performance relies on its abilityepre-
sent and compute the value function in a compact form, génera
ing values from a small subset of occupancy states to theeest.
Unfortunately, for domains with a large number of agentatest,
observations and actions, this is typically not possiblenewhen
structure such as the locality of interaction exists.

This paper combines the benefits of transforming Dec-POMDPs
into continuous-state MDPs and the locality of interacfiaumd in
ND-POMDPs. The primary contribution is a demonstratiort,tha
with the locality of interaction, optimal value functionseaAWSL
functions of occupancy states. Even more importantly, voser
that AWSL functions depend on occupancy states only through

on Autonomous Agents and Multiagent Systems (AAMAS 2014)marginal probability distributions over factors. The AW$top-
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erty permits us to introduce new value function representathat
can accelerate both action selection and information ingciteps
in FB-HSVI, thus enhancing performance by several ordensagf-



nitude while still retaining accuracy and convergence gogges.
We demonstrate the scalability of the proposed approachanym
ND-POMDP benchmark domains, showing the ability to optlgnal
solve problems that include up to fifteen agents.

2. BACKGROUND

In this section, we briefly discuss Dec-POMDPs, ND-POMDPs
and the conversion of Dec-POMDPs into continuous-state 81DP

2.1 Dec-POMDPs and ND-POMDPs

A Dec-POMDPP = (S, A, Z,p,r,n0,T) with N agents is
given by: a finite set of stateS; a finite set of joint actionsi =
A1 x Az x ... x An; an action setd; for agenti; a finite set
7 = Z1 X Zyx...x Zy of joint observations; an observation skt
for agenti ; a system dynamics model= {p**: a € A,z € Z};
state-to-state transition matrice$*, wherep®~(s, s’) describes
the probability of transiting to stat€, upon receiving joint obser-
vation z and after taking joint action in states; a reward model
r = {r*: a € A}, wherer® is a reward vector and(s) is the
immediate reward to be gained by executing joint action state
s; an initial probability distribution® over states; and finally, a
planning horizoril".

In this model, each agent receives its own observationsit but
receives neither observations nor actions of the othertagés a
result, it has to reason about what the other agents obsened
plan to do in order to optimize a joint stream of rewards. This
property is at the core of the high complexity of Dec-POMDRS.
such, the behavioral strategies of each agent — local psliet
depend only upon local information of that agent. Henceyisgl
Dec-POMDPs requires determiniig local policies, which jointly
maximize the total expected stream of rewards starting in

In the following, we writef1: N] = {1,..., N}, and for a given
subsetu C [1: N] referred to as a factor (or neighborhood), we
denote—u the complement of.. Thatis—u = [1: N]\u. We also
define|ul, the cardinality ofu.

DEeFINITION 1. An ND-POMDP is a Dec-POMDEPP that ex-
hibits the following properties:

1. Afactored state space S = Sy x S1 X ... X Sn, whereSy
denotes local states that agents cannot affect, Sncepre-
sents alocal-state set of agenie denote,, = (so, Si)icu,
ay = (a:)iew, andzy = (zi)icu, the state, action and ob-
servation relative to facton C [1: N].

2. A multiplicative weakly-separable dynamics model p, that
is, there exists dynamics models p1, . . ., pn such that:
Do (Su, Slu) = po(so, 36) Hieu p?i’Zi (si, s0, SIL)

for any factoru C [1: N]ands, = (so, Si)icu-
3. Anadditive weakly-separable reward model r, that is, there
exists reward models,, , 7u,, . . ., Tu,, such that:

Ziw:1 Tuy, (Suk7 auk)7

whereuy, C [1: NJ, sq,

r(s,a)

(807 Si)iEuk-

4. Amultiplicativefully-separabledistribution n°, that is, there
exists independent distribution§, n), - - - , 7% such that:

n°(s) = m8(s0) [T, n¥(s0).

Unlike general Dec-POMDPs, agents in ND-POMDPs interact
only with a small subset of their neighbors, demonstratouglity
of interaction. For a thorough introduction, motivatingaexples
and a graphical notation of factors, the reader can ref&3p [

2.2 Policies and Value Functions

In this section, we discuss policies in Dec-POMDPs (and ND-
POMDPs) as well as the objective criteria. In the followingg
distinguish between local and joint policies.

A T-step local policy of agent, denotedr;, is a length?” se-
quence of local decision rules = (d%,...,d; ~"). Alocal de-
cision rule at step, denotedi?, is a mapping from-step action and
observation histories of agehtdenoted! = (a?, 2}, ..., al ™1, 2f),
to local actions of agent In many restricted settings, decision
rules depend only upon state features rather than histdties
is mainly because agents can directly observe these stiteds
[13]. In general, however, decision rules depend on actimhad-
servation histories.

A T-step joint policy, denotedr, is an N-tuple of T-step lo-
cal policies(r1,...,mn), one for each agent. It is also a length-
T sequence of joint decision rulg¢d’, ..., d” ). A joint deci-
sion rule at step, denotedi’, is anN-tuple of local decision rules
(dt,...,dY), one for each agent. Itis also a mapping frowstep
joint action and observation histories to joint actionst-gtep joint
action and observation history, denot#d is an N-tuple of local
action and observation historiég, . . ., 6% ), one for each agent.

We consider finite-horizon Dec-POMDPs, where the optimalit
criterion is to maximize the expected sum of rewards ovetefini
stepsT. Let 7 be a joint policy. The value function at step
denotedv’., maps state and joint history pairs to reals:

Ur(s', 0") E[Y75 r " (s7) a7 = d7(67), 7],

for any stept states’ and joint history§’. An optimal joint pol-
icy 7, starting at;°, satisfies equationt™ € arg max, v2(n°).
Value functionsvl., ..., v ! are optimal value functions with
respect ton®. At first glance, these value functions exhibit no
structural restrictions on their shapes. A recent anaglysisever,
reveals that they are linear over some high-dimensionalespa

2.3 Dec-POMDPs as Continuous-State MDPs

A common assumption in many Dec-POMDPs is that planning
takes place in a centralized (offline) manner even thoughtage-
ecute actions in a decentralized fashion (online). In sydarmning
paradigm, a centralized algorithm maintains, at each tieye, she
total available information it has about the process to lg¢rotied.

We call the information collected at the end of time step 1, the
stept information state

A stept information state, is a sequen¢g’, d’,...,d" ") of
past joint decision rules starting with the initial distrtton ,° and
is denoted by!. It further satisfies the following recursion’ =
(n°) and /= (uf,d") fort € [1: T — 1]. With the stept in-
formation state’ as a background, a centralized algorithm selects
the stept joint decision ruled?, transititions to the next-step in-
formation state’™* = (.*, d"), and finally collects the immediate
reward. If we repeat this process ovErsteps starting with infor-
mation state®, it describes a deterministic MDP that represents the
original Dec-POMDPP.

DEFINITION 2. LetP’ = (I, D, F, R, ") be the deterministic
MDP with respect ta® where: I = {I‘: t € [0: T — 1]} is the
information state set7’ defines the step information state set;
D = {D": t € [0: T — 1]} is the joint decision rule set, wherg'
denotes the stepjoint decision rule setF' specifies the next-step
information state! ™! after taking joint decision rulel* in infor-
mation state’: F(.!,d") = (.!,d"); R specifies the immediate
expected reward to be gained by executing a joint decisitedu
in information state’: R(.',d") = 32, , P(s,0") - ¥ (s);
and " is the initial information state.



It is worth noting that in constructin®’, we use the transition,
observation and reward models frdfh In particular, we need to
compute the entire multivariate probability distributiét(s, 0].")
over all states and joint histories, in order to estimateirtimaedi-
ate rewards. This operation is often time-consuming bexans
practice, it involves a large number of variables. As thieragion
occurs every time step, it is important to reduce the timeired.
To this end, Dibangoye et al. [13,114.]12] and Oliehdek [2&jin
duced sulfficient statistics with respect to informatiorteta Such
a statistic can retain problem features that are importantéal-
culating rewards. Informally, a sufficient statistic withspect to
information state andP’ is a statistic that summarizesnd pre-
serves the ability to find an optimal solution Bf. Given a suffi-
cient statistic with respect to the current informatiortes@nd the
problem at hand, no additional data about the current irdion
state would provide any further information about the peafl A
formal definition follows.

THEOREM1 ([12]). A t-step sufficient statistic with respect
to information state®, which we call aroccupancy state and de-
noten’, is a probability distribution over all states and joint his
ries,n'(s,0) = P(s,6|.), for any states and joint history6.

The next-step occupancy stalign’, d’) = n'™* depends on the
current occupancy statg and joint decision rulel’:

nt+1 (3,7 (97 a, Z)) = l{a} (dt (9)) Zses 77t (87 9) : pa’z(& S,)v
where1lr is the indicator function, and for all statese .S, joint
actionsa € A, joint observationg € Z, and joint historie®.

DEFINITION 3. LetP” = (A, D, F, R,n°) be the MDP with
respect toP’, which we call theoccupancy Markov decision pro-
cess: where A = {At:t € [0: T — 1]} is the set of occupancy
states, A" is the stept occupancy state set; anB, F, R, n° are
identical to?” or eventuallyP.

Relative toP’, the occupancy MDFP” is a deterministic and
continuous-state MDP. An optimal joint policy fdp”, together
with the correct estimation of the occupancy states, wik gise to
an optimal behavior foP’ andP [12]. One can solve eithé?’ or
P”, and nevertheless provide an optimal solution for the oabji

problemP [27,,[12].
2.4 Solving Occupancy MDPs

POMDPs can be cast into continuous-state MDPs with pieeewis
linearity and convexity structure of the optimal value ftions [32].
As we discuss next, because the occupancy MDP represertesa de
ministic and continuous-state MDP with a piecewise-lineaivex
value function, POMDP theory and algorithms can be used.

2.4.1 Properties of Optimal Value Functions

In this section, we review the property of the optimal valued-
tions in general Dec-POMDP settings. We start with the reargs
condition for optimality in occupancy MDPs.

LEMMA 1. Theoptimality equation for any occupancy statg
is written as follows: for alkk € [0: T' — 1],

vi(n®) = maxgye (R(nt7dt) + ol (P (nf dt))) .
Fort = T, we add a boundary condition! = 0.

T—-1

Dibangoye et al[[12] proved that value functiars . . ., vT 1,
which are solutions of the optimality equations (Lemiha g a
piecewise-linear and convex functions of the occupanagstd hat
is, there exist finite sets of linear function$, . . ., AT~! such that:
vi(n') = maxaicpe{at,n') (Where notation(-,-) is the inner-
product), for any arbitrary-step occupancy statg.

Algorithm 1: The FB-HSVI Algorithm.
function FB-HSVI ()
initialize v, ando, forall t € {0,--- ,7 — 1}.
| while =Stop(no, 0) do Expl or e( 7o, 0)

function Expl ore(n:,g:)
7t <— Compact(n; ).
if ~Stop(7, g¢) then
di € argmaxy, R(7e,de) + Oey1 (F (e, de)).
Updateo:.
Expl or e( F(ﬁt7 dt*)7 R(ﬁtv d:) + gt) .
Updatev,.
| return g¢

function Stop(n:,g:)
L if 0 (n:) > v, (n:) then return g, + o:(n:) < v, (10)
return true

2.4.2 The FB-HSVI Algorithm

Theheuristic search value iteratiofHSVI) algorithm is a lead-
ing POMDP solver which performs well on many POMDP do-
mains, while preserving the ability to eventually find anioyat
solution [33]. By recasting Dec-POMDPs as occupancy MDis, t
HSVI algorithm (as well as other POMDP algorithms) can be ex-
tended to solve Dec-POMDPs.

Dibangoye et al[T12] introduced feature-based HSVI (FBYHS
which is shown in Algorithni1l, to improve the efficiency of the
HSVI algorithm in occupancy MDPs. It uses a trial-based-fiest
search and finds an optimal path from a given initial occupanc
state to onél’-step occupancy state. It traverses the search space
by creating trajectories of occupancy states, each of wsiiatts
with the initial occupancy state. For each visited occugasiate,
such trajectories always follow the best joint decisior rties are
broken arbitrarily) specified by the upper bourlds):cqo,....7}-

As the algorithm traverses the search space, it updatespiber u
bounds of the occupancy states along the way. Once thettrajec
ries are finished, it maintains lower boun@s ),co,...,r} Of vis-
ited occupancy states in reverse order.

The FB-HSVI algorithm provably converges to optimal value
functions with respect to the initial occupancy state. Aseieks
the occupancy states where the upper bound is the larges$t, an
maintains both upper and lower bounds, it reduces the gayebet
bounds over the initial occupancy state at each iteratiorce@he
gap is zero, the algorithm has converged. Moreover, the SBAH
algorithm guarantees termination after a finite numberevétions,
although this number is (in the worst case) doubly expoaéirti
the maximal length of a trajectory.

2.4.3 Key Limitations of FB-HSVI

The FB-HSVI algorithm demonstrated a significant improveme
in performance on many domains, while preserving the ghitit
eventually find an optimal solution. Its scalability is ntmeess
limited when the number of agents or problem variables isequi
large. To better understand this, notice that the complefithe
FB-HSVI algorithm depends essentially on two operatiohede-
cision rule selectionand theinformation tracking In either case,
the FB-HSVI algorithm is not geared to exploit the localityit-
teraction, and thus, it will typically have to consider dsan rules
and occupancy states over exponentially many variablesigth
multiple variables have little influence on one another.

In order to improve the scalability in the number of ageritere
has been a growing interest in research for solving Dec-POMD



that exhibit locality of interaction [18."20,85]. This preqy ap-
pears in many practical applications, including domaipsesented
as ND-POMDPs[[23]. Unfortunately, the expressiveness isf th
framework comes with a price, solving finite-horizon ND-PORs
optimally is also NEXP-completé[6, 23]. This partially dxins
why the only optimal algorithm, namelthe global optimal al-
gorithm (GOA) [23], can often solve problems with a couple of
agents, but cannot handle domains with larger number oftagen
The other reason for this poor scaling behavior residesarett
plicit enumeration of exponentially many policies, whitiotigh it
ensures optimality, is often unnecessary or redundant.

Recently, approximate algorithms have been used to solve ND
POMDPs using ideas such as locally optimal heuristic sef@2h
[23,[35], and constraint-based dynamic programming[[19, Z6]
the best of our knowledge, none of these approaches candprovi
tight performance guarantees (error bounds or potentiasks),
features that are critical in a large range of real-world dja-
tions related to the military, environment, medical donsaim so-
cial services In the remainder of this paper, we discuss an exten-
sion of FB-HSVI so it can exploit locality of interaction, leaincing
its performance on domains with larger numbers of agentdewh
preserving optimality.

3. LEVERAGING SEPARABILITY

In this section, we discuss how locality of interaction tigh
separability assumptions (Definitidas 1) influences thecstire of
value functions and occupancy states.

3.1 Separable Value Functions

The primary contribution is a proof that the optimal valuadu
tion is the sum of linear functions over factors, a propeefgired
to as the additive weak separability and linearity. A formefini-
tion of this property follows.

DEFINITION 4. Value functiory is additively weakly separable
and linear, if there exist linear functiongu., , gus, - - -, gu,, such
that: ¢g(s,0) = Zk 1 Guy, (Sup, s 0uy )y wa,...,un € [1: NJ.
Value functiory is said to beadditively fully separable and linear,
if ug Ny = 0forall k, k" € [1: M].

An optimization problem with an additively fully separalaad
linear objective functiory can be reduced td/ independent op-
timization problems with lower dimensionalities. dfis not fully
separable, we often search the whaledimensional space all at
once. However, algorithms that exploit the weak sepatghilhen
it is present have been particularly successful, notaldenples in-
clude weighted constraint satisfaction algorithims[[9, [IT)]. In
the following, we present the proof that optimal value fimcs
are AWSL functions of the occupancy states. Before proceedi
any further, we introduce short-hand notatigy) o, to represent

a function over states,, S.t.:gu,o,, (Suy) = Guy, (Suy,, 0uy)-

THEOREM 2. Valuefunctionivi)te[l: 7—1), for any joint pol-
icy 7, are additively weakly separable and linear functions of oc
cupancy states. That is, there exist vec(@rgk‘euk )o.kep1: M S-t.

2w L 26, Ml (5u) - @ (su),

wherer, o, (su) = >, 5 n'(s,0)foranyn" andu C [1: NJ.

PROOF The statement trivially holds far= T, as there is no
future rewards. Assume it holds for> , that is, for any arbitrary
T-Step occupancy statg, the following holds:

)N Zsu Zeu Uﬂ\eu (8u) -

vr(n') =

t
U 0wy

i) = ATy j0,, (50).

Lett = 7 — 1. We first show that reward vectors+irare additively
weakly separable and linear functions of occupancy staidsed,
the following holds:R(n™ !, d" 1)

S X 0 S, (s,
= XS Yo, (e, S s 0) i ),
= LT S e s i (s).

Next, we exploit the fact that the value functiedl is an AWSL
function of occupancy states. We havlg(F(n™ ', d" 1))

Dou 2 20, Yulo, (5u) e, (S4),
A7, (0u),
5 S M 6 S 0 () O ),
1
Zu Zsu Zeu ueu( )O‘Z eu(su)v
\ \

T ’ d7,
Wherea |0y ( u) = Zsa,zu Qy o1, (8u) *Pu Suy S u) and
', = (0u,dy *(04), 2.). Finally, by combining immediate and
future rewards we obtaimz ' (n™ )

R( T—1 dT71)+UT(F(77771,dT71))7

T—1 O
= LY S (s ).(,«ﬁu o)
which ends the proof. O

-1 (Qu)vzu(

su) g (s1))

This theorem demonstrates that value functions can be-repre
sented using a finite set of low-dimensional vectors,|6hélength
vectora,, g, for each joint historyd,,. This result extends a previ-
ous separability property of the value function for ND-PORD
[23], which stated that value functions of a specified joialiqy
can be decomposed into the sum of value functions over factor
Relative to the PWLC property of value function solutionstiod
optimality equations, the AWSL property provides a sigaificre-
strictive structure in the shape of value functions. It igartheless
unclear how this property can improve efficiency of the FBWS
algorithm. In addition, this theorem yields interestingights. It is
worth noticing that this result holds even when there existsique
factoru = [1: NJ, thatis, in general DecPOMDPs.

COROLLARY 1. Value functiong(v’ )iep: T—1, for any joint
policy 7, are additively weakly separable and ||near functions of
occupancy states. That s, there existvec(ofg )o,tc[0: T—1] Such

thatur (') = 32, 35, no(s) - g (s), wherenjy(s) = ' (s, 0) for
any arbitrary occupancy state.

PROOF. The proof holds directly from Theorelm 2 with a single
factoru = [1: N]. O

3.2 Separable Sufficient Statistics

Another important result from Theorelmh 2 is a proof that value
functions depend on occupancy states only through margioat
ability distributions over factors. This is a significansuét as
it allows us to maintain marginal probability distribut®inde-
pendently from one another, which saves non-negligible tmd
memory, while preserving optimality.

THEOREM 3. For any ND-POMDP with factorsy, . .., uar,
marginal occupancy state{g)uk‘gu )us,6., Collectively constitute
a sufficient statistic of occupancy sta;telvlarglnal occupancy state
.10, Can be updated at each step to incorporate the latest action
a, and observation,,, where:

S Dujo (1) - P (s, 81).

Su

)0 tas 20, (S



ProOF A careful look at Theorerfl2 reveals that value func-
tions depend on occupancy states only through marginapacay
states. In addition, the multiplicative weak separabiitdynamics

modelp allows us to maintain marginal occupancy states indepen-

dently from one another. Initially;;) (su) = 76 (so) [T;c,, 7¢(5:);

thenn = 746, q.,-, Satisfies the following recursive formula:
n(st) = P(s4y;0u, au, Zu|773)

= P((S/07ngeivaivzi)iEuh]g),
= Zsu P((Zi)i€u|(80, Siy Qi 8/07 S;)iEU) : P((SO7 Siy 92)z€u|778)7
= Zsu i (Su) ' pO(SO: 36) HiEu p?wzm(siv 50, 82)7

which ends the proof. O

This theorem permits us to circumvent unnecessary or rethind
operations when maintaining the occupancy states. Incodati
we can maintain marginal occupancy states independentily éne
another, and reuse pre-computed ones when it is possibéefolFh
lowing describes a novel representation of bounds in thedS84
algorithm based on the AWSL property. To this end, the maigin
occupancy state@;ukm% Juy.0., are collectively referred to as a
separable occupancy state

4. AWSL BOUND REPRESENTATIONS

To address the key limitations in the FB-HSVI algorithm (see
Section 2.4B), we exploit the AWSL property. In particuleae
introduce representations that can significantly redueertemory
required to maintain lower and upper bounds. We further sthaiv
these novel representations permit the FB-HSVI algorithisciale

Like the standard representation, detan accurately represent
value functions of any optimal joint policy. Our representation
is nevertheless more compact. Where the standard repaésent
keeps track of value functions associated with many diffej@nt
policies, our representation maintains only the valuetionof the
current best joint policy. In addition, the associated updale is
more efficient, since it involves only states and histoniea single
factor. It is worth noting that this representation comethwaine
drawback: it often yields lower-bound values that are we#kan
those from the standard representation. This loosenesssioay
down the rate of convergence.

4.2 Upper-Bound Value Functions

The standard upper-bound representation is a mapping fi®m v
ited occupancy states to upper-bounds. It distinguishésees
cornerandnon-corneroccupancy states. A corner occupancy state
is a degenerate distribution, that is, the probability nikscalized
at a single state and joint history pair, and zero otherwAgeoccu-
pancy state that is not a corner occupancy state, is a nomicoc-
cupancy state. We use point $é4° — 5°): ¢ € [1: L]} to denote
mapping from non-corner occupancy state to upper-boumas3%
to represent the mapping from corner occupancy states terupp
bounds. Every time FB-HSVI encounters an occupancy state, i
uses the point-set representation to estimate the uppewhaf the
current occupancy state. Giverstep occupancy staig the saw-
tooth interpolation[[1Z,-33] yields an upper-bound valug:at

ming (8°(n) +d(n,n°) - (B° — B°(")))
whered(n, 1) = min{n(s, 8)/n°(s,6): n°(s,0) > 0} is referred

o'(n) =

up to ND-POMDPs of unprecedented size; enhancing the gener-t0 as the interpolation coefficient. Notice that lower iptation

alization of the bounds over unvisited regions of the seapzte;
and speeding up the convergence to an optimal solution.

4.1 Lower-Bound Value Functions

The standard lower-bound representation uses 4éjs. o: 1]
of linear functions, where each linear functiod € A® maps
from state and joint history pairs to reals [12]. In this forawer
bounds are updated as follows. Each trajectory of the FBHHSV
algorithm generates a joint poliey, which in turn produces linear
functions(vﬁ)te[o: r—1)- When a trajectory is finished, the algo-
rithm adds linear functionsvfr)te[(): -1 into the current repre-
sentation. This update rule ensures a monotonic improvenfen
lower-bounds at the initial occupancy state over trialgs hever-

coefficients lead to weaker bounds. The update rule consists
adding a new point in the point set, using the greedy joini-dec
sion rule selection and the sawtooth interpolation. In gaper,
we demonstrate that by using the AWSL property together thith
sawtooth interpolation, one can produce tighter uppentotal-
ues.

4.2.1 The Novel Representation

In this section, we extend the standard representationgimiex
the AWSL property. In particular, we use separable occupanc
statesn’ = (nﬁ‘eu)u,gu instead of full occupancy states; and re-
place upper bounds by point sgts= {(n;, 5, — Bu,): Vi, 0u}.
Like the standard representation, we distinguish betweenec

theless time and memory demanding to compute and maintain th and non-corner separable occupancy states. A corner bépara

standard representation.

cupancy state corresponds to a corner occupancy state. We ca

To reduce the overwhelming time and memory requirements of any separable occupancy state that is not a corner separable

the standard representation, we exploit the AWSL propémtgar-
ticular, our lower-bound representation uses a finite sétmafth-
|Su| vectorsA = {ay, : Yu, 8.} associated with a single joint
policy 7, such that, fot-step occupancy statg we obtainv®(n) =
vh(n) =32, > 6., {Qulo, s Mujo,, )- The update rule we use to main-
tain our lower-bound representation follows.

For any joint policyr, we compute vectora,, g, using back-
ward induction: for any state,,

w (0w w(Ow),zu
e, (su) = i@ (s0) + X2, pi O (su, sh) e, (s1)

where, = (0u,du(0u), zu). We Setay g, = oy, for t-step
historiesd;, that are unreachable when following Vector a,,
maps from states, to any trivial lower-boundge.g., o, 1 (su) =
ming,, (I' — t)ry* (s.). If the value at the initial occupancy state
v2(n?) is greater than the current lower-boun(n°), then we

replace(gt)te[ot -1y by (Ufr)te[o: T-1]-

cupancy state a non-corner separable occupancy statee Heac
use3° to represent a mapping from corner separable occupancy
states to upper bounds; unlike the standard representat®nse
point setl’ = {(n* — B%): ¢ € [1: L]} to represent a map-
ping from separable occupancy states to point sets. Thdse po
setsB’ = {(19, — Buje,): Yu, 0.} represent mappings from
marginal occupancy states to upper bounds, one point seaftir
separable occupancy state

Initially, the point sef” contains only corner points, that is, map-
pings from corner separable occupancy states to upperdsolio
construct the initial point set, a general rule of thumb isuse
the optimal value functions of a relaxation of the problerhatd.
Here, we use the optimal value functiohﬁmp)tem: 7—1) Of the
underlying MDP. Thus, the initial upper-bound values awegiby:
B%(s,0) = vipe(s), for any states and joint history. Notice that
mapping’ = >, >, Bgm, that is, 8° is AWSL. Next, we
extend the sawtooth interpolation to exploit the AWSL pirtype



4.2.2 Enhancing Evaluations

This section extends the sawtooth interpolation using ppet
bound representation. In particular, we explore applyheygaw-
tooth interpolation to marginal occupancy states instdddllooc-
cupancy states. That is, we demonstrate how to compute an-upp
bound of a marginal occupancy state based on another onhisTo t
end, we introduce the conceptdlicy equivalenceTwo histories

4.2.3 Constraint-Based Decision Rule Selections

In this section, we extend the greedy joint decision rulect@n
to exploit our upper-bound representation. Similar to ta@dard
FB-HSVI algorithm, we formulate and solve a weighted caaistr
satisfaction problem (WCSP).

AWCSP refers to a tuplgV, X, C') where:V = {V1, ..
is the set ofM domains;X = {Xi,..

.,VM}
., X} is the set ofM

6., andd,, that are different, can nonetheless have the same future variables, taking values from their domains! is the set of re-

optimal policy. In this case, we say théat andd,, are policy equiv-
alent. For a thorough discussion on policy equivalenceiogis,
the reader can refer to_[12,]27]. Policy-equivalent hig®rtan
extrapolate their upper-bound values from one another. [O2]r
extension of the sawtooth interpolation follows.

LEMMA 2. Let oy, be the optimal linear function relative
to factor u and history6.,,, (ﬂﬁ\gwﬂﬁ‘eu) be a non-corner point,
andn, s, be a marginal occupancy state. For each marginal oc-
cupancy statey, s, , the following holds:vrx (1,6,) < Buja,:
where for all factoru and historyd,, that is policy equivalent té,,,

Buig, = Buojon (Mug,) + 6(7]u‘(§u7n£‘9u)(6ﬁ‘@u — Bojon (Uﬁ\eu)%
. Nu|d, (Su)
andfs(ﬂu\éuﬂ]ﬁ\eu) = min,, { A= Uﬁ\eu (8u) > 0}.

PROOF We first note that marginal occupancy stafgs, can
be written as a linear combination between tj#q|-dimensional
and positive vectorg and Uﬁwuv and some positive number.

That is, 7,5, = vy + 9 - ”ﬁwu- We further note that inequali-

ties aujo, (11410,) < Bajo, andaw, (y) < Bojo, (y) hold. By
linearity of o, 9, , we know the following holds:

Boion () + 6 Bla, -

If we replacey by (1,5, — J - 740, ), @nd rearrange terms:

o, (Mug,) <

ulo, (Mua,) < 52\% (Mg, —0- ﬁﬁ\eu) +9d- Bﬁ\ew
< Bl (Nwja,) + 8(Bujon, — Bujow (Mujo.))-

ward functions used to declare preferences among posshle s
tions. Each reward function € C is defined over a subset of
variables,var(c) C X, called the scope. The objective func-
tion f is defined as the sum of all reward functions@h that
is, f(X) = > .cc c(Xvar(ey)- When variables are correctly as-
signed, finite rewards are received that express their degnaref-
erence (higher value equates to higher preference) and varen
ables are not correctly assigned a rewarsb is received. The goal
of this problem is to find a mapping from variables to valuesich
maximizes the objective function.

As we demonstrate later, to select the greedy joint decisita
we considerL different WCSPs, each of which relies on a sin-
gle non-corner poinfn® — 3*) from our point-set representation
I' = {(n* = B%: £ € [1: L]}. Each WCSP returns a joint de-
cision rule, but the greedy decision rule is the one with tighést
objective value (ties are broken arbitrarily). A formal aétfon of
the WCSP relative to non-corner poiat’ — 3°) follows.

DEFINITION 5. Let (n° — $°) be a non-corner point ang
be a separable occupancy state. Thth WCSP(X,V, cY) in-
volves: V' = {V, 5, : u,0.} consists of set¥, 5 of mappings
from histories to actiongf,, > a.); X = {X, 5, : u, 0.} is the
set of variablesX, 4, , taking values from their domains, s, ;
C* = {nogood, ¢, 5, : u,0,} is a set of reward functions, for any
arbitrary mapping(@., — a.,), we have:
ooy Ourran) = i (ua,) + ., Buign.aw.cn

The objective functiorf’ is defined as the sum of all reward func-
tions inC*, that is, f*(X) = >, 325, ¢tja. (Xuja,)-

To get the best upper-bound value, we wish to find the maximum e following theorem states that the greedy decision rofieee

value of §, that is consistent with our assumptions. In particular,

we need findd consistent withy(s.) > 0 andnﬁwu (su) >0, for
any states,. Sincey(su) = 1,4, (5u) — 9 - ﬁﬁ\eu (sw), we obtain

expressions = minsu{:’e‘LESu;: Najp, (su) >0} O
)0y, S "

This lemma presents a formula that assigns an upper bound to

any specified marginal occupancy state. However, to presasr
oretical guarantees, it is crucial to perform the assigrimehup-
per bounds to marginal occupancy states all at once. Thigiisiyn
because marginal occupancy states in separable occup@tey s

sponds to the solution of one of these WCSPs.

THEOREM 4. A greedy joint decision rule for separable occu-
pancy state; = (1,3, )u,a,, IS the solution with the maximum

rewards among the solutions of WCSB§, V, 05)56[1: -

PROOF. We start with the standard joint decision rule selection

for a specified occupancy stajé
dt = argmax, R(y',d") + 0" (F(n',d")).

Next, we exploit the additive weak separability and lingeof the

have values that depend on one another. The assignmenbrule f value functions. Using this property, we know tlitis given by

separable occupancy stafe= (1,4, ).,4, 9iven point setA =
{(n* = B%: £ € 1: L]} follows:

(Bujg,)u.o., arg min > Yo, B
(Bﬁ\éu)u,éu : 0e(1: L]
Whereﬁﬁ‘éu denotes the upper-bound valuerpfig, extrapolated

based on pointn‘ — 4°). Thus, the upper-bound valuetastep
separable occupancy stajés given by: v'(n) = Zu’éu B -
Notice that our upper bound is tighter or equal to that of tia@-s
dard representation, &n, n°) = min,, 5(77u\éu7777€\9u)-

t
argmaxg, ming ), 5 ru"

u,

t 14
(nu‘éu) + Zzu /Bu‘éuﬂiz (éu)azu7

Y ,
wheres, 5, 4t (.,),-, cOrresponds to the upper-bound value of marginal

occupancy state,’;‘ 3.4t (3.),=, EXtrapolated based on theh non-
corner point(n — A°) in . By Definition[3, we have that

d. = argmax, ming)_, >4, Cﬁ\éu (0 — d.(64)),

= argmaxge. f'(d""), s.t. fA(d5) < fL(dWY), Vi e [1: L)\ {¢}

whered"! = arg max . f*(d"). Which ends the proof. (]



5. EXPERIMENTS

We compare our extension of FB-HSVI for ND-POMDPs with
the standard FB-HSVI algorithm [12], a state-of-the-ara@xal-
gorithm for solving general Dec-POMDPs. We call our exten-
sion, the separable feature-based heuristic search Vatation
(SFB-HSVI) algorithm. We could not compare to the global op-
timal algorithm (GOA), as it quickly runs out of memory evennr f
the smallest benchmarks. We nonetheless compare withatee st
of-the-art approximate algorithms for solving ND-POMDRs;
cluding constraint based dynamic programming (CBDP) [48H
FANS [22]. CBDP constructs joint policies based on a smadise
tion of distributions over states. We set the number of ithistions
to 5 as advised in Kumar and Zilberstein [18]. FANS relies on var-
ious heuristics to build approximate joint policies. Focledench-
mark, we consider only the heuristic with the best perforoean

T Algorithms
CBDP FANS FB-HSVI
EV CPU | EV CPU EV CPU (ext)  CPU (std.)
5-P domain -S| =12; N =5,[Z;| = 2,and2 < [4;[ < 3
3 198.1 2 [ 1981 20 | 332.0 2.03 3.77
4 | 2537 3 | 2539 70 | 4712 3.65 10.4
5 302.0 4 | 355.1 80 605.0 9.36 32.3
6 | 3395 5 | 3763 90 | 7358 35.4 125
7 | 4105 6 | 4105 100 | 869.2 231.4
10 | 558.6 9 | 569.4 400
7-Hdomain —|S| =12, N =7,|Z;] =2,and2 < [A;] < 3

3 2555 2 | 1758 05 4180 15 1.7
4 | 3310 4 | 1848 1.0 | 5818 2.3 5.7
5 404.6 6 | 2747 700 | 765.8 4.7 18.3
6 | 462.7 7 | 327.8 800 | 940.4 12.0 50.4
7 507.5 8 | 376.8 900 | 1082.8 40.4 162.6
8 561.4 9 1206.6 261
10 | 658.1 10

11-helix domain S| =49; N =11, [Z;] = 2,and2 < [A4;] < 4
3 328.8 20 | 255.0 135 554.4 3.1
4 - - 777.2 6.4
5 - - 1057.6 21.7
6 - - 1347.7 140.7
7 - -
10 - -

15-3D domain — S| = 60; N = 15, [Z;] = 2,and2 < [A;] < 4
3 529.0 50 [ 514.2 3000 814.0 4.6
4 | 616.9 60 1167.0 7.9
5 831.5 70 1587.1 22.4
6 996.2 80 2008.0 78.3
7 | 11247 90 2353.9 272.7
10 | 1493.6 110

15-Mod domain —S| = 16; N = 15, |Z;| = 2,and2 < [4;] <4
3 [ 5159 60 [ 367.6 200 814.0 2.0
4 - - 1142.5 35
5 - - 1553.2 8.6
6 - - 1971.2 26.6
7 - - 2336.5 103.8
EV=v7(n") CPU(sec.) ‘’=time (000s)expired ‘' =no results available

Table 1: Performance of FB-HSVI (extended and standard ver-
sions), CBDP, and FANS. Blank spaces represent over the time
or memory limits.

The experiments of FB-HSVI and SFB-HSVI were run on a Mac
with a 2.2GHz Intel Core i7 CPU, 1GB of RAM available, and a

based on the sensor network domain [23[22, 18], which range f
five to fifteen agents. For a thorough discussion on the né&tsen-
sor domain, the reader can refer[tol[23]. The other purpotizese
experiments was to highlight the necessity of exact solivecen-
trast to approximate methods. On each benchmark, we reglog v
v2(n°) relative to the best joint policy each algorithm found. We
also report running time in seconds for different planningzons.

Results can be seen in Table 1. In all tested benchmarks-as de
picted in column CPU (ext.), the SFB-HSVI algorithm can fimd a
optimal joint policy for short planning horizons. In padler, it can
optimally solve the largest benchmark (15-Mod) at planriog-
zonT = 7 in about one hundred seconds. The results show that the
standard FB-HSVI algorithm can also find an optimal jointigol
but only for medium-sized benchmarks. For instance, in 54 a
7-H, both standard and extended FB-HSVI algorithms can find a
optimal joint policy forT' < 6. But SFB-HSVI is about three times
faster than the standard FB-HSVI algorithm. Since the time r
quired to compute an optimal joint policy increases withr@asing
planning horizons, the standard FB-HSVI algorithm alwayssr
out of time before our extension, as illustrated in benchntaP
atT = 6, and benchmark 7-H & = 7. In larger benchmarks
11-helix, 15-3D, and 15-Mod, which involve a dozen of agents
the standard FB-HSVI algorithm quickly runs out of memoryjta
cannot exploit the locality of interaction.

We further compare SFB-HSVI with approximate ND-POMDP
solvers CBDP and FANS. Experiments demonstrate that, wtino
approximate methods can scale up with respect to plannirig ho
zon, they often produce poor solution quality. To illustrahis,
consider benchmark 7-H dt = 7: CBDP takes 8 seconds and re-
turns a joint policy with a return of 507.5; and FANS takesw@bo
900 seconds and returns a joint policy with a return of 376.8;
SFB-HSVI takes about 40 seconds to find an optimal joint golic
with return1082.6. Our extension provides solution quality three
times higher than that of FANS, and two times higher than dfiat
CBDRP. It is worth noting that CBDP can improve solution qual-
ity by increasing the number of state distributions considebut
it cannot provide any guarantees since these distribuaoasot
sufficient for optimal planning in ND-POMDPs.

To summarize, our experiments illustrate the scalabilitgeB-
HSVI with respect to the number of agents. Our algorithm-opti
mally solves all ND-POMDP benchmarks with up to fifteen agent
These results also highlight the necessity of the exactitdhgas,
especially in critical domains where theoretical guarest@rror-
bounds or potential losses) are required.

6. CONCLUSION

This paper has demonstrated that under a locality of intierac
assumption, a property that is exploited in models such as ND
POMDPs, the optimal value functions are additively wealdp-s
arable and linear functions. This special structure cartibizad in
the context of a recent method for transforming Dec-POMDRs i
continuous-state MDPs, which has shown significant sdéhabi
gains over previous Dec-POMDP methods. This problem strect
allows us to introduce a novel representation of lower angkeup
bounds of the optimal value functions. This representdtmsmtwo
properties: first, it preserves convergence to an optimlaitisa;
but even more importantly, it significantly reduces the mgnre-

time limit of one thousand seconds. We solved the WCSPs using quirement of standard representations, thereby incrgasialabil-

toulbar2 [9]. The other experiments were conducted on a mach
with 2.4GHz Intel dual core CPU and 1GB of RAM available. The
main purpose of these experiments was to show the scajadilit

ity. With this representation as background, we extendedcthte-
of-the-art algorithm for solving Dec-POMDPs as continustegte
MDPs to optimally solve ND-POMDPs. The resulting algoritlen

SFB-HSVI with respect to the number of agents. To do so, we the first exact algorithm for ND-POMDPs that can solve protse

conducted the experiments on the largest ND-POMDP bendtsmar

with up to fifteen agents. In the future, we plan to explorelypg



the additive weak separability and linearity property togyal fac-
tored Dec-POMDPs. Furthermore, the scalability with respe
the number of agents of our algorithm is encouraging, and e w
pursue additional improvements to also scale up with régpehe
planning horizon.
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