
Dynamic Programming for Partially Observable Stochastic Games

Daniel S. Bernstein
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
bern@cs.umass.edu

Eric A. Hansen
Dept. of CS and Engineering
Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Shlomo Zilberstein,
Christopher Amato

Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
{shlomo,cjamato}@cs.umass.edu

Abstract

We develop an exact dynamic programming algorithm for
partially observable stochastic games (POSGs). The algo-
rithm is a synthesis of dynamic programming for partially ob-
servable Markov decision processes (POMDPs) and iterative
elimination of dominated strategies in normal form games.
We prove that it iteratively eliminates very weakly dominated
strategies without first forming the normal form representa-
tion of a finite-horizon POSG. This is the first dynamic pro-
gramming algorithm for iterative strategy elimination in these
types of games. For the special case in which agents share the
same payoffs, the algorithm can be used to find an optimal so-
lution. We present preliminary empirical results and discuss
ways to further exploit POMDP theory in solving POSGs.

Introduction
The theory of stochastic games forms the basis of much re-
cent work on multi-agent planning and learning (Littman
1994; Boutilier 1999; Brafman & Tennenholtz 2002). A
stochastic game can be viewed as an extension of a Markov
decision process (MDP) in which there are multiple agents
with possibly conflicting goals, and the joint actions of
agents determine state transitions and rewards. Much of
the literature on stochastic games assumes that agents have
complete information about the state of the game; in this re-
spect, it generalizes work on completely observable MDPs.
In fact, exact dynamic programming algorithms for stochas-
tic games closely resemble exact dynamic programming al-
gorithms for completely observable MDPs (Shapley 1953;
Filar & Vrieze 1997).

Although there is considerable literature on the partially
observable Markov decision process (POMDP), correspond-
ing results for the partially observable stochastic game
(POSG) are very sparse, and no exact dynamic programming
algorithm for solving POSGs has been previously described.
Algorithms for POSGs could prove to be useful in solving
complex, multi-agent problems, such as those arising from
the coordination of robot teams. In particular, they could
help in extending previous work on applying POMDPs to
single robot problems (Pineau, Gordon, & Thrun 2003).

In this paper, we show how to generalize the dynamic pro-
gramming approach to solving POMDPs in order to develop
a dynamic programming algorithm for POSGs. The diffi-
culty in developing this generalization is that there is nota

shared belief state that can be used to define a dynamic pro-
gramming recursion; each agent can have a different belief
state. Our approach is to combine dynamic programming
for POMDPs with iterative elimination of dominated strate-
gies in normal form games. We generalize the notion of
belief state to include uncertainty about the other agents’fu-
ture plans. This allows us to define amulti-agent dynamic
programming operator.

We show that the resulting dynamic programming algo-
rithm corresponds to a type of iterative elimination of dom-
inated strategies in the normal form representation of finite-
horizon POSGs. This is the first dynamic programming al-
gorithm for iterative strategy elimination. For the special
case where all agents share the same payoff function, our
dynamic programming algorithm can be used to find an op-
timal solution.

Related work

A finite-horizon POSG can be viewed as a type of exten-
sive game with imperfect information (Kuhn 1953). Though
much work has been done on such games, very little of it
is from a computational perspective. This is understand-
able in light of the negative worst-case complexity results
for POSGs (Bernsteinet al. 2002). A notable exception
is the work in (Koller, Megiddo, & von Stengel 1994). In
this work, the authors take advantage of thesequence form
representation of two-player games to find mixed strategy
Nash equilibria efficiently. In contrast to their work, ours
applies to any number of players. Furthermore, our algo-
rithms are focused on eliminating dominated strategies, and
do not make any assumptions about which of the remaining
strategies will be played.

For the special case of cooperative games, several algo-
rithms have been proposed. However, none of the previous
algorithms guarantee optimality in general. In (Hsu & Mar-
cus 1982), a dynamic programming algorithm is presented
for the case in which the agents observe each others’ pri-
vate information after a one-step delay. Becker et al. (2003)
present an algorithm that works for problems in which the
agents’ dynamics are loosely coupled. Finally, the algo-
rithms of Peshkin et al. (2000) and Nair et al. (2003) can
be applied to the general problem, but are only guaranteed
to converge to local optima.

Background
We first review the POSG model and two algorithms that we
generalize to create a dynamic programming algorithm for
POSGs: dynamic programming for POMDPs and elimina-
tion of dominated strategies in solving normal form games.

Partially observable stochastic games
A partially observable stochastic game(POSG) is a tuple
〈I,S, {b0}, {Ai}, {Oi},P , {Ri}〉, where

• I is a finite set of agents (or controllers) indexed1, . . . , n

• S is a finite set of states

• b0 ∈ ∆(S) represents the initial state distribution.

• Ai is a finite set of actions available to agenti and ~A =
×i∈IAi is the set of joint actions (i.e., action profiles),
where~a = 〈a1, . . . , an〉 denotes a joint action

• Oi is a finite set of observations for agenti and ~O =
×i∈IOi is the set of joint observations, where~o =
〈o1, . . . , on〉 denotes a joint observation

• P is a set of Markovian state transition and observation
probabilities, whereP(s′, ~o|s,~a) denotes the probability
that taking joint action~a in states results in a transition
to states′ and joint observation~o

• Ri : S × ~A → < is a reward function for agenti

A game unfolds over a finite or infinite sequence of stages,
where the number of stages is called thehorizonof the game.
In this paper, we consider only finite-horizon POSGs; the
challenges involved in solving the infinite-horizon case are
discussed further on in the paper. At each stage, all agents
simultaneously select an action and receive a reward and ob-
servation. The objective, for each agent, is to maximize the
sum of rewards it receives during the game.

Whether agents compete or cooperate in seeking reward
depends on their reward functions. The case in which the
agents share the same reward function is called adecentral-
ized partially observable Markov decision process (DEC-
POMDP)(Bernsteinet al. 2002).

Dynamic programming for POMDPs
A POSG with a single agent corresponds to a POMDP. We
briefly review an exact dynamic programming algorithm for
POMDPs that provides a foundation for our exact dynamic
programming algorithm for POSGs. We use the same nota-
tion for POMDPs as for POSGs, but omit the subscript that
indexes an agent.

The first step in solving a POMDP by dynamic program-
ming (DP) is to convert it into a completely observable MDP
with a state setB = ∆(S) that consists of all possible be-
liefs about the current state. Letba,o denote the belief state
that results from belief stateb, after actiona and observation
o. The DP operator can be written in the form,

V
t+1(b) = max

a∈A

8

<

:

X

s

R(s, a) +
X

s′,o

P(s′, o|s, a)V t(ba,o)

9

=

;

,

(1)

a1

o1

s1 s2

o1 o1

o2

o2o2

a2 a1

a3 a1 a2 a3

a3

o1

o1 o1

o2

o2o2

a2 a2

a1 a1 a3 a2

Figure 1: Two policy trees, along with their value function
for a POMDP with two states.

where the updated value function is computed for all be-
lief statesb ∈ B. Exact DP algorithms for POMDPs rely
on Smallwood and Sondik’s (1973) proof that the DP oper-
ator preserves the piecewise linearity and convexity of the
value function. This means that the value function can be
represented exactly by a finite set of|S|-dimensional value
vectors, denotedV = {v1, v2, . . . , vk}, where

V (b) = max
1≤j≤k

∑

s∈S

b(s)vj(s). (2)

As elucidated by Kaelbling et al. (1998), each value vec-
tor corresponds to a complete conditional plan that speci-
fies an action for every sequence of observations. Adopting
the terminology of game theory, we sometimes refer to a
complete conditional plan as astrategy. We use this inter-
changeably withpolicy tree, because a conditional plan can
be viewed as a tree. A set of policy trees along with their
value function over belief-state space are shown in Figure 1.

The DP operator of Equation (1) computes an updated
value function, but can also be interpreted as computing an
updated set of policy trees. In fact, the simplest algorithm
for computing the DP update has two steps, which are de-
scribed below.

In the first step, the DP operator is given a setQt of depth-
t policy trees and a corresponding setVt of value vectors
representing the horizon-t value function. It computesQt+1

andVt+1 in two steps. First, a set of deptht + 1 policy
trees,Qt+1, is created by generating every possible depth
t + 1 policy tree that makes a transition, after an action and
observation, to the root node of some depth-t policy tree in
Qt. This operation will hereafter be called anexhaustive
backup. Note that|Qt+1| = |A||Qt||O|. For each policy tree
qj ∈ Qt+1, it is straightforward to compute a corresponding
value vector,vj ∈ V

t+1.
The second step is to eliminate policy trees that need not

be followed by a decision maker that is maximizing expected
value. This is accomplished by eliminating (i.e., pruning)
any policy tree when this can be done without decreasing
the value of any belief state.

Formally, a policy treeqj is considered dominated and
can be removed from the current setQt+1

i if for all b ∈ B

there exists avk ∈ V
t+1

i \vj such thatb ·vk ≥ b ·vj . When a
policy tree is removed, its corresponding value vector is also
removed. The test for dominance can be performed using
linear programming. The dual linear program corresponding
to this test is to prune any policy treeqj for which there is

a probability distributionp over the other policy trees, such
that ∑

k 6=j

p(k)vk(s) ≥ vj(s), ∀s ∈ S. (3)

This dual LP plays a role in iterative strategy elimination,as
we will see in the next section, and was recently applied in
the context of POMDPs (Poupart & Boutilier 2004).

Iterative elimination of dominated strategies
Techniques for eliminating dominated strategies in solving a
POMDP are very closely related to techniques for eliminat-
ing dominated strategies in solving games in normal form.
A game in normal form is a tupleG = {I, {Di}, {Vi}},
whereI is a finite set of agents,Di is a finite set of strate-
gies available to agenti, andVi : ~D → < is the value (or
payoff) function for agenti. Unlike a stochastic game, there
are no states or state transitions in this model.

Every strategydi in Di is apure strategy. Letδi ∈ ∆(Di)
denote amixed strategy, that is, a probability distribution
over the pure strategies available to agenti, whereδi(di) de-
notes the probability assigned to strategydi ∈ Di. Let d−i

denote a profile of pure strategies for the other agents (i.e.,
all the agents except agenti), and letδ−i denote a profile
of mixed strategies for the other agents. Since agents select
strategies simultaneously,δ−i can also represent agenti’s
belief about the other agents’ likely strategies. If we define
Vi(di, δ−i) =

∑
d−i

δ−i(d−i)V (di, d−i), then

Bi(δ−i) = {di ∈ Di|Vi(di, δ−i) ≥ Vi(d
′
i, δ−i) ∀d

′
i ∈ Di}

(4)
denotes thebest response functionof agenti, which is the
set of strategies for agenti that maximize the value of some
belief about the strategies of the other agents. Any strategy
that is not a best response to some belief can be deleted.

A dominated strategydi is identified by using linear pro-
gramming. The linear program identifies a probability dis-
tributionσi over the other strategies such that

Vi(σi, d−i) > Vi(di, d−i), ∀d−i ∈ D−i. (5)

This test for dominance is very similar to the test for
dominance used to prune strategies in solving a POMDP.
It differs in using strict inequality, which is calledstrict
dominance. Game theorists also useweak dominance
to prune strategies. A strategydi is weakly dominated
if Vi(σi, d−i) ≥ Vi(di, d−i) for all d−i ∈ D−i, and
Vi(σi, d−i) > Vi(di, d−i) for somed−i ∈ D−i. The test
for dominance which does not require any strict inequality
is sometimes calledvery weak dominance, and corresponds
exactly to the test for dominance in POMDPs.

There are a couple other interesting differences between
the tests for dominance in Equations (3) and (5). First, there
is a difference in beliefs. In normal-form games, beliefs are
about the strategies of other agents, whereas in POMDPs,
beliefs are about the underlying state. Second, elimination
of dominated strategies is iterative when there are multiple
agents. When one agent eliminates its dominated strategies,
this can affect the best-response function of other agents (as-
suming common knowledge of rationality). After all agents

take a turn in eliminating their dominated strategies, they
can consider eliminating additional strategies that may only
have been best responses to strategies of other agents that
have since been eliminated. The procedure of alternating
between agents until no agent can eliminate another strategy
is callediterative elimination of dominated strategies.

In solving normal-form games, iterative elimination of
dominated strategies is a somewhat weak solution concept,
in that it does not (usually) identify a specific strategy foran
agent to play, but rather a set of possible strategies. To select
a specific strategy requires additional reasoning, and intro-
duces the concept of a Nash equilibrium, which is a profile
of strategies (possibly mixed), such thatδi ∈ Bi(δ−i) for
all agentsi. Since there are often multiple equilibria, the
problem ofequilibrium selectionis an important one. (It has
a more straightforward solution for cooperative games than
for general-sum games.) In this paper, we focus on the issue
of elimination of dominated strategies.

Dynamic programming for POSGs
We now describe a DP algorithm for POSGs that is a syn-
thesis of DP for POMDPs and iterative elimination of very
weakly dominated strategies in normal-form games. To mo-
tivate the algorithm, we first point out that every horizon-t
POSG can be given a normal form representation. The strat-
egy sets include all depth-t policy trees, and the value of a
strategy profile is thet-step reward achieved from the start
state distribution. If a horizon-t POSG is represented this
way, iterative elimination of dominated strategies could be
used in solving the game.

The problem is that this representation can be much larger
than the original representation of a POSG. In fact, the size
of the strategy set for each agenti is greater than|Ai|

|Oi|
t

,
which is doubly exponential int. Because of the large sizes
of the strategy sets, it is usually not feasible to work di-
rectly with the normal form representation of a POSG. The
dynamic programming algorithm we present addresses this
problem by performing iterative elimination of dominated
strategies without first constructing the normal form repre-
sentation.

In the dynamic programming approach, a POSG is solved
in stages. The key step of our algorithm is amulti-agent
dynamic programming operatorthat generalizes the DP op-
erator for POMDPs, and is defined as follows. First, the
DP operator is given a set of depth-t policy treesQt

i, and a
corresponding set of value vectorsVt

i for each agenti. The
operator performs an exhaustive backup on each of the sets
of trees, to formQt+1

i for each agenti. It then recursively
computes the value vectors inVt+1

i for each agenti.
The second step of the multi-agent DP operator consists

of pruning dominated strategies. As in the single agent case,
an agenti policy tree can be pruned if its removal does not
decrease the value of any belief state for agenti. As with
normal form games, removal of a policy tree reduces the
dimensionality of the other agents’ belief state spaces, and
it can be repeated until no more policy trees can be pruned
from any agent’s set. (Note that different agent orderings
may lead to different sets of policy trees and value vectors.

Input: Sets of depth-t policy treesQt
i and corresponding

value vectorsVt
i for each agenti.

1. Perform exhaustive backups to getQt+1

i for eachi.

2. Recursively computeVt+1

i for eachi.

3. Repeat until no more pruning is possible:

(a) Choose an agenti, and find a policy treeqj ∈ Qt+1

i

for which the following condition is satisfied:
∀b ∈ ∆(S×Qt+1

−i), ∃vk ∈ V
t+1

i \vj s.t. b·vk ≥ b·vj .

(b) Qt+1

i ← Qt+1

i \ qj .

(c) Vt+1

i ← Vt+1

i \ vj .

Output: Sets of depth-t + 1 policy treesQt+1

i and corre-
sponding value vectorsVt+1

i for each agenti.

Table 1: The multi-agent dynamic programming operator.

The question of order dependence in eliminating dominated
strategies has been extensively studied in game theory, and
we do not consider it here.) Pseudocode for the multi-agent
DP operator is given in Table 1.

The algorithm depends crucially on how a belief state is
defined. Our definition of a belief state is a simple synthesis
of the definition of a belief state for POMDPs (a distribu-
tion over possible states) and the definition of a belief state
in iterative elimination of dominated strategies (a distribu-
tion over the possible strategies of the other agents). For
each agenti, a belief state is defined to be a distribution over
S ×Qt

−i. From this perspective, each agent treats the other
agents’ current policy trees as part of its state space. A value
vector inVt

i assigns value to each element ofS ×Qt
−i, and

the set of value vectors is a piecewise linear and convex rep-
resentation of the value function for the agent’s belief space.

There is an important difference between this algorithm
and the single agent algorithm, in terms of implementation.
In the single agent case, only the value vectors need to be
kept in memory. At execution time, an optimal policy can
be extracted using one-step lookahead. We do not currently
have a way of doing this when there are multiple agents.
Thus, the policy tree sets must also be remembered. Of
course, some memory savings is possible by realizing that
the policy trees for an agent share subtrees.

The dynamic programming algorithm can be viewed as
performing strategy elimination in the POSG without first
forming the normal-form representation. On iterationk ≤ t,
when a depth-k policy tree is pruned by the multi-agent DP
operator, every depth-t policy tree containing it as a subtree
is effectively eliminated. In fact we can prove that the al-
gorithm performs iterative elimination ofvery weakly domi-
natedstrategies.

Theorem 1 Dynamic programming applied to a finite-
horizon POSG corresponds to iterative elimination of very
weakly dominated strategies in the normal form of the
POSG.

Proof: Let t be the horizon of the POSG, and suppose that
iterationk ≤ t of dynamic programming has thus far pro-

duced a policy tree setQk
i for each agenti. Equivalently, it

has pruned strategies in the normal form of the game down
to all those whose only depth-k subtrees are inQk

i . Suppose
further that the next policy tree to be pruned isqj ∈ Qk

i . Ac-
cording to the dual formulation of the pruning rule, there
exists a distributionp over policy trees inQk

i \ qj such
that

∑
k 6=j p(k)vk(s, q−i) ≥ vj(s, q−i) for all s ∈ S and

q−i ∈ Qk
−i.

Consider any depth-t policy treeq′ with qj as a subtree.
We can replace instances ofqj in q′ with the distribution
p to get abehavioral strategy, which is a stochastic policy
tree. From the pruning rule given above, it follows that the
value of this behavioral strategy is at least as high as that of
q′, regardless of the initial state distribution and strategies
executed by the other agents. Since a POSG is a game with
perfect recall, every behavioral strategy can be represented
by a distribution over pure strategies (Kuhn 1953). Thus,
in the normal form representation of the POSG,q′ is very
weakly dominated.�

In the case of cooperative games, removing very weakly
dominated strategies preserves at least one optimal strategy
profile. Thus, the multi-agent DP operator can be used to
solve finite-horizon DEC-POMDPs optimally. When dy-
namic programming reaches stept, we can simply extract
the highest-valued strategy profile from the start state distri-
bution.

Corollary 1 Dynamic programming applied to a finite-
horizon DEC-POMDP yields an optimal strategy profile.

In general-sum games, it may be undesirable to remove cer-
tain very weakly dominated strategies. It is still an open
question whether we can define DP operators that prune
only weakly dominated or strongly dominated strategies. In
the strongly dominated case, it may seem reasonable simply
to make the inequality in the pruning rule strict. However,
sometimes a strategy that is not strongly dominated will have
a strongly dominated, but unreachable subtree. This is re-
ferred to as anincredible threatin the game theory literature.

Example
We ran initial tests on a cooperative game involving control
of a multi-access broadcast channel (Ooi & Wornell 1996).
In this problem, nodes need to broadcast messages to each
other over a channel, but only one node may broadcast at a
time, otherwise a collision occurs. The nodes all share the
common goal of maximizing the throughput of the channel.

The process proceeds in discrete time steps. At the start
of each time step, each node decides whether or not to send
a message. The nodes receive a reward of 1 when a message
is successfully broadcast and a reward of 0 otherwise. At the
end of the time step, each node receives a noisy observation
of whether or not a message got through.

The message buffer for each agent has space for only one
message. If a node is unable to broadcast a message, the
message remains in the buffer for the next time step. If a
nodei is able to send its message, the probability that its
buffer will fill up on the next step ispi. Our problem has
two nodes, withp1 = 0.9 andp2 = 0.1. There are 5 states,
2 actions per agent, and 2 observations per agent.

d

s

s

d

s d s d

d

d

d

s d d d

n c

n c

n c n c

n c

n c n c

d

d

d

s

d d d d

d

d

d

s d d d

n c

n c

n c n c

n c

n c n c

Agent 1 Agent 2

s = send message
d = donÕt send message
c = collision
n = no collision

Figure 2: A pair of policy trees that is optimal when both
message buffers start out full. The policy trees achieve a
total reward of 3.89.

We compared our dynamic programming algorithm with a
brute force algorithm, which also builds sets of policy trees,
but never prunes any of them. On a machine with 2 giga-
bytes of memory, the brute force algorithm was able to com-
plete iteration 3 before running out of memory, while the
dynamic programming algorithm was able to complete iter-
ation 4. At the end of iteration 4, the number of policies
for the dynamic programming algorithm was only about 1%
of the number that would have been produced by the brute
force algorithm, had it been able to complete the iteration.
This shows that the multi-agent DP operator can prune a sig-
nificant number of trees. However, even with pruning, the
number of policy trees grows quickly with the horizon. This
issue is discussed in the next section.

Figure 2 shows a pair of depth-4 trees constructed by the
dynamic programming algorithm. In the case where the
message buffers both start out full, this pair is optimal, yield-
ing a total reward of 3.89.

Future work
Development of an exact dynamic programming approach to
solving POSGs suggests several avenues for future research,
and we briefly describe some possibilities.

Improving efficiency
A major scalability bottleneck is the fact that the number of
policy trees grows rapidly with the horizon and can quickly
consume a large amount of memory. We may be able to
avoid this if we are willing to prune strategies that areal-
mostvery weakly dominated. Aggressive pruning has al-
ready been tried with POMDPs, with some success (Feng &
Hansen 2000). Furthermore, we may be able to reduce the
number of policy trees if we allow for stochastic policies,
as in (Poupart & Boutilier 2004). We may also be able to
extend work on compactly represented POMDPs and value
functions to the multi-agent case (Boutilier & Poole 1996;
Hansen & Feng 2000).

There may also be ways to reduce the amount of time that
the multi-agent DP backup takes. There has been a lot of
work in the POMDP literature on pruning policy trees incre-
mentally, so that an exhaustive backup never has to be done
(Cassandra, Littman, & Zhang 1997). Whether this can be
extended to the multi-agent case remains an open problem.

Finally, there exist POMDP algorithms that leverage a
known start state distribution for greater efficiency. These
algorithms perform a forward search from the start state and
are able to avoid unreachable belief states. Whether some
kind of forward search can be done in the multi-agent case
is an important open problem.

Eliminating Pareto dominated strategies
The pruning technique that we described deals with only one
agent at a time. By considering multiple agents at the same
time, we may be able to eliminate more strategies. In par-
ticular, we can eliminate strategies that are part of aPareto-
dominatedstrategy profile. A strategy profile is Pareto dom-
inated when there is another strategy profile that yields at
least as much reward for all agents. In some cases—most
notably the fully cooperative case—it is sensible to elimi-
nate such strategy profiles.

We would like to define a multi-agent DP operator that
eliminates only Pareto dominated strategy profiles. The fol-
lowing is an intuitive explanation of how this might be done.
Consider iterationt of dynamic programming for a two-
agent POSG. First, an exhaustive backup is performed, and
the resulting policy trees are evaluated. Next, the algorithm
identifies two pairs of policy trees,(q1, q2) and(q′1, q

′
2), sat-

isfying the following two conditions. First, for all states,
q′1 yields at least as much reward asq1 over t steps when
paired with any agent 2 tree, with the possible exception of
q2. Second, for all states,q′2 yields at least as much reward
asq2 over t steps when paired with any agent 1 tree, with
the possible exceptionq1. At this point,q1 andq2 can be
eliminated because replacing them withq′1 andq′2 does not
lead to a decrease in value for either agent in any situation.

It should be possible to generalize the reasoning above to
more than two agents and more than two policy trees at a
time. The first step in this line of work will be to derive a
general condition for pruning policy trees, and the second
step will be to develop an efficient algorithm for checking
whether the condition is satisfied.

Extension to infinite-horizon POSGs
It should be possible to extend our dynamic programming
algorithm to apply to infinite-horizon, discounted POSGs,
and we are currently exploring this possibility. In this case,
the multi-agent DP operator is applied to infinite trees. One
possibility for representing a set of infinite trees is as a finite-
state controller (FSC). In the case of single-agent POMDPs,
some interesting algorithms have been based on this repre-
sentation (Hansen 1998; Poupart & Boutilier 2004), and we
believe that these can be extended.

Many questions remain regarding the infinite-horizon
case, however. It seems more difficult to describe what an
infinite-horizon version of the algorithm would be doing in
game-theoretic terms. In a sense, it would still be elimi-
nating dominated strategies, but unlike in the finite-horizon
case, this process would be heavily biased by the choice of
initial FSCs.

Restricting attention to the cooperative case clears up the
picture quite a bit. In that case, we would want to be able
to claim that an algorithm returns a set of controllers that is

ε-optimal in a finite number of iterations. This gives rise to
interesting questions regarding the existence of some type
of Bellman equation and the difficulty of computing error
bounds.

Conclusion
We presented an algorithm for solving POSGs that gener-
alizes both dynamic programming for POMDPs and itera-
tive elimination of very weakly dominated strategies for nor-
mal form games. The key component of the algorithm is a
generalization of belief states to include uncertainty about
the other agents’ future behavior. This makes it possible
to define a multi-agent dynamic programming operator for
POSGs that performs stage-wise elimination of dominated
strategies. There are many avenues for future research, in
both making the algorithm more time and space efficient and
extending it beyond finite-horizon POSGs.

Acknowledgements
This work was supported in part by the National Science
Foundation under grants IIS-0219606 and IIS-9984952, and
by NASA under cooperative agreement NCC-2-1311 and
grant NAG-2-1463. Daniel Bernstein was supported by a
NASA GSRP Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not reflect the views of the NSF
or NASA.

References
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2003. Transition-independent decentralized Markov deci-
sion processes. InProceedings of the Second International
Conference on Autonomous Agents and Multi-agent Sys-
tems.
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of
Markov decision processes.Mathematics of Operations
Research27(4):819–840.
Boutilier, C., and Poole, D. 1996. Computing optimal
policies for partially observable decision processes using
compact representations. InProceedings of the Thirteenth
National Conference on Artificial Intelligence, 1168–1175.
Boutilier, C. 1999. Sequential optimality and coordination
in multiagent systems. InProceedings of the International
Joint Conference on Artificial Intelligence.
Brafman, R., and Tennenholtz, M. 2002. R-MAX–a gen-
eral polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research
3:213–231.
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997.
Incremental pruning: A simple, fast, exact method for par-
tially observable Markov decision processes. InProceed-
ings of the Thirteenth Annual Conference on Uncertainty
in Artificial Intelligence, 54–61.
Feng, Z., and Hansen, E. 2000. Approximate planning for
factored POMDPs. InProceedings of the Sixth European
Conference on Planning.

Filar, J., and Vrieze, K. 1997.Competitive Markov Deci-
sion Processes. Springer-Verlag.
Hansen, E., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. InPro-
ceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling, 130–139.
Hansen, E. 1998. Solving POMDPs by searching in policy
space. InProceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence (UAI-98), 211–219.
Hsu, K., and Marcus, S. I. 1982. Decentralized control
of finite state Markov processes.IEEE Transactions on
Automatic ControlAC-27(2):426–431.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence101:99–134.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th ACM Symposium on Theory of
Computing, 750–759.
Kuhn, H. 1953.Contributions to the Theory of Games II.
Princeton University Press. chapter Extensive Games and
the Problem of Information, 193–216.
Littman, M. 1994. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of the
11th International Conference on Machine Learning, 157–
163.
Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence.
Ooi, J. M., and Wornell, G. W. 1996. Decentralized con-
trol of a multiple access broadcast channel: Performance
bounds. InProceedings of the 35th Conference on Deci-
sion and Control, 293–298.
Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P.
2000. Learning to cooperate via policy search. InProceed-
ings of the Sixteenth International Conference on Uncer-
tainty in Artificial Intelligence, 489–496.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Policy-
contingent abstraction for robust robot control. InPro-
ceedings of the Nineteenth Conference on Uncertainty in
Artificial Intelligence.
Poupart, P., and Boutilier, C. 2004. Bounded finite state
controllers. InAdvances in Neural Information Processing
Systems 16: Proceedings of the 2003 Conference. Vancou-
ver, Canada: MIT Press.
Shapley, L. 1953. Stochastic games.Proceedings of
the National Academy of Sciences of the United States of
America39:1095–1100.
Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon.Operations Research21:1071–1088.

