
Optimizing Fixed-Size Stochastic Controllers for POMDPs

Christopher Amato and Daniel S. Bernstein and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

Abstract

In this paper, we discuss a new approach that represents
POMDP policies as finite-state controllers and formulates
the optimal policy of a desired size as a nonlinear pro-
gram (NLP). This new representation allows a wide range
of powerful nonlinear programming algorithms to be used
to solve POMDPs. Although solving the NLP optimally
is often intractable, the results we obtain using an off-the-
shelf optimization method are competitive with state-of-the-
art POMDP algorithms. Our approach is simple to imple-
ment and it opens up promising research directions for solv-
ing POMDPs using nonlinear programming methods.

Introduction
Developing effective algorithms for partially observable
Markov decision processes (POMDPs) is an active research
area that has seen significant progress (Cassandra 1998;
Hansen 1998; Ji et al. 2007; Littman, Cassandra, & Kael-
bling 1995; Pineau, Gordon, & Thrun 2003; Poupart 2005;
Poupart & Boutilier 2003; Smith & Simmons 2004; 2005;
Spaan & Vlassis 2005). Despite this progress, it is gener-
ally accepted that exact solution techniques are limited to
toy problems due to high memory requirements. Conse-
quently, approximation algorithms are often necessary. Ap-
proximation methods perform well in many problems, but
have some known disadvantages. For instance, point-based
methods (Ji et al. 2007; Pineau, Gordon, & Thrun 2003;
Spaan & Vlassis 2005; Smith & Simmons 2004; 2005) per-
form better with a small reachable belief space. Other al-
gorithms rely on linear programming (Poupart & Boutilier
2003) or require fine tuning of heuristic parameters to pro-
duce high-valued solutions (Poupart 2005).

In this paper, we explore a solution technique for
POMDPs that optimizes fixed-size controllers. Our ap-
proach formulates the optimal memory-bounded solution as
a nonlinear program (NLP), and can provide a solution by
utilizes existing nonlinear optimization techniques. Non-
linear programming is an active field of research that has
produced a wide range of techniques that can efficiently
solve a variety of large problems (Bertsekas 2004). Parame-
ters are optimized for a fixed-size controller which produces
the policy. The formulation provides a new framework for
which future algorithms can be developed. We discuss how
to solve these problems optimally, but as this would often

be intractable in practice, we also evaluate an effective ap-
proximation technique using standard NLP solvers. Our ap-
proach facilitates scalability as it offers a tradeoff between
solution quality and the available resources. That is, for a
given amount of memory, we can search for a controller that
is optimal for that size. Large controllers may be needed to
provide a near optimal solution in some problems, but our
experiments suggest that smaller controllers produce high
quality solutions in a wide array of problems.

The rest of the paper is organized as follows. We first
give an overview of the POMDP model and explain how
infinite-horizon solutions can be represented as stochastic
controllers. We discuss some previous work and then show
how to define optimal controllers using a nonlinear pro-
gram. We then provide experimental results using a generic
off-the-shelf NLP solver in various POMDP domains. Our
approach is competitive with other state-of-the-art solution
methods in terms of solution quality and running time, but
it generally produces higher quality when given less mem-
ory. Our results show that by using the NLP formulation,
concise, high-valued controllers can be efficiently found for
a large assortment of POMDPs. Furthermore, performance
is likely to improve as more specialized and scalable NLP
solvers are developed that can take advantage of the struc-
ture of the controller optimization problem.

Background
We begin with an overview of the POMDP model and then
discuss the relevant POMDP approximate algorithms.

The POMDP model
A POMDP can be defined with the following tuple: M =
〈S,A, P,R,Ω, O〉, with
• S, a finite set of states with designated initial state distri-

bution b0
• A, a finite set of actions
• P , the state transition model: P (s′|s, a) is the probability

of transitioning to state s′ if action a is taken in state s
• R, the reward model: R(s, a) is the immediate reward for

taking action a in state s
• Ω, a finite set of observations
• O, the observation model: O(o|s′, a) is the probability of

observing o if action a is taken and the resulting state is s′

We consider the case in which the decision making pro-
cess unfolds over an infinite sequence of stages. At each
stage the agent selects an action, which yields an immedi-
ate reward and an observation. The agent must choose an
action based on the history of observations seen. Note that
because the state is not directly observed, it may be ben-
eficial for the agent to remember the observation history.
This will help the agent to identify the set of possible states
at any step. The objective of the agent is to maximize the
expected discounted sum of rewards received. Because we
consider the infinite-horizon problem, we use a discount fac-
tor, 0 ≤ γ < 1, to maintain finite sums.

Finite-state controllers can be used as an elegant way of
representing POMDP policies using a finite amount of mem-
ory (Hansen 1998). The state of the controller is based on
the observation sequence seen, and in turn the agent’s ac-
tions are based on the state of its controller. To help distin-
guish states of the finite-state controller from states of the
POMDP, we will refer to controller states as nodes. These
controllers address one of the main causes of intractability in
POMDP exact algorithms by not storing whole observation
histories. Thus states of the controller can encapsulate key
information about the observation history in a fixed number
of nodes. We also allow for stochastic transitions and action
selection, as this can help to make up for limited memory
(Singh, Jaakkola, & Jordan 1994).

The finite-state controller can formally be defined by
the tuple 〈Q,ψ, η〉, where Q is the finite set of controller
nodes, ψ : Q → ∆A is the action selection model for
each node, mapping nodes to distributions over actions, and
η : Q × A × O → ∆Q represents the node transition
model, mapping nodes, actions and observations to distri-
butions over the resulting nodes. The value of a node q at
state s, given action selection and node transition probabili-
ties P (a|q) and P (q′|q, a, o), is given by the following Bell-
man equation:

V (q, s) =
∑

a

P (a|q)
[
R(s, a)+

γ
∑
s′

P (s′|s, a)
∑

o

O(o|s′, a)
∑
q′

P (q′|q, a, o)V (q′, s′)
]

Previous work
A controller-based approach was developed by Poupart and
Boutilier (Poupart & Boutilier 2003) called bounded pol-
icy iteration (BPI). BPI uses a one step dynamic program-
ming lookahead to attempt to improve a POMDP controller
without increasing its size. Like PI, this approach also alter-
nates between policy improvement and evaluation. It iterates
through the nodes in the controller and uses a linear program
to examine the value of probabilistically taking an action and
then transitioning into the current controller. If an improve-
ment can be found for all states, the action selection and
node transition probabilities are updated accordingly. The
controller is then evaluated and the cycle continues until no
further improvement can be found. BPI guarantees to at least
maintain the value of a provided controller, but it also does
not use start state information resulting in larger than neces-
sary controllers that are not likely to be optimal. A heuristic

was also added in biased BPI (Poupart 2005) which incor-
porates start state knowledge and allows value to be lost at
some state-node pairs.

Other approximation approaches that have recently
gained a high level of popularity are point-based methods
such as point-based value iteration (PBVI) (Pineau, Gordon,
& Thrun 2003), PERSEUS (Spaan & Vlassis 2005), heuris-
tic search value iteration (HSVI) (Smith & Simmons 2004)
and point-based policy iteration (PBPI) (Ji et al. 2007).
These techniques are approximations of value iteration for
finite-horizon POMDPs, but they can find solutions for suf-
ficiently large horizons that they can effectively produce
infinite-horizon policies.

PBVI, PERSEUS, HSVI and PBPI use value iteration
while fixing the number of belief points considered at each
step. That is, at each step, the value vector of each belief
point under consideration is backed up and the vector that
has the highest value at that point is retained. This per-
mits the number of vectors to remain constant and the value
function is still defined over the entire belief space. If the
right points are chosen, it may help concentrate the value
iteration on certain regions in the belief space. PBVI se-
lects the set of belief points by sampling from the action
and observation sets of the problem while PERSEUS backs
up only a randomly selected subset of these points. Thus,
PERSEUS is often faster and produces a more concise solu-
tion than PBVI. PBVI has been shown to be optimal for suf-
ficiently large and well constructed belief point sets, but this
is intractable for reasonably sized problems. HSVI chooses
points based on an additional upper bound that is incorpo-
rated into the algorithm. This algorithm will also converge
to the optimal solution, but again this often requires an in-
tractable amount of resources. PBPI uses Hansen’s PI, but
with PBVI rather than exact improvement over the whole
belief space in the improvement phase. This allows faster
performance and sometimes higher values than PBVI.

Optimizing fixed-size controllers
Unlike other controller based approaches, our formulation
defines an optimal controller for a given size. This is done
by creating a set of new variables that represent the values of
each node and state pair. Intuitively, this allows changes in
the controller probabilities to be reflected in the values of the
nodes of the controller. This is in contrast to backups used
by other methods which iteratively improve the probabilities
and easily get stuck in local optima. Our approach allows
both the values and probabilities in the controller to be op-
timized in one step, thus representing the optimal fixed-size
controller. To ensure that these values are correct given the
action selection and node transition probabilities, nonlinear
constraints (based on the Bellman equation) must be added.
The resulting NLP is generally harder to solve, but many
robust and efficient algorithms can be applied.

One premise of our work is that an optimal formulation of
the problem facilitates the design of solution techniques that
can overcome the limitations of previous controller-based
algorithms and produce better stochastic controllers. The
general nature of our formulation allows a wide range of so-
lution methods to be used. This results in a search that is

more sophisticated than previously used in controller-based
methods. While no existing technique guarantees global op-
timality in a finite amount of time, experimental results show
that our new formulation is advantageous. For instance, our
results suggest that many POMDPs have small optimal con-
trollers or can be approximated concisely with finite state-
controllers. Thus, it is often unnecessary to use a large
amount of memory in order to represent a good approxima-
tion. Our NLP is also able to take advantage of the start
distribution of the problem, thus making better use of lim-
ited controller size. Lastly, because our method searches for
stochastic controllers, it is able to find higher-valued, more
concise controllers than search in the space of deterministic
controllers.

Compared to point-based approaches, our formulation
does not need to choose a set of points and may be able
to cover the belief space better in some problems. That
is, while point-based methods work well when there is a
small reachable belief space or when the chosen points are
very representative of the whole space, the NLP approach
seeks to optimize the value of a controller for a specific ini-
tial point. For domains in which point-based methods can-
not find representative belief points, our approach may still
be able to construct high quality controllers. Also, since
point-based methods rely on finite-horizon dynamic pro-
gramming, it may be difficult for these methods to complete
the number of backups necessary to approximate the value
function well. As our approach uses finite-state controllers,
it is more suitable for finding infinite-horizon policies.

NLP formulation
Unlike BPI, which alternates between policy improvement
and evaluation, our nonlinear program improves and evalu-
ates the controller in one phase. The value of an initial node
is maximized at an initial state distribution using parameters
for the action selection probabilities at each node P (a|q),
the node transition probabilities P (q′|q, a, o), and the val-
ues of each node in each state V (q, s). To ensure that the
value variables are correct given the action and node tran-
sition probabilities, nonlinear constraints must be added to
the optimization. These constraints are the Bellman equa-
tions given the policy determined by the action selection and
node transition probabilities. Linear constraints are used to
maintain proper probabilities.

To reduce the representation complexity, the action
selection and node transition probabilities are merged
into one, with P (q′, a|q, o) = P (a|q)P (q′|q, a, o) and∑

q′ P (q′, a|q, o) = P (a|q) This results in a quadratically
constrained linear program. QCLPs may contain quadratic
terms in the constraints, but have a linear objective func-
tion. They are a subclass of general nonlinear programs that
has structure which algorithms can exploit. This produces
a problem that is often more difficult than a linear program,
but simpler than a general nonlinear program. The QCLP
formulation permits a large number of algorithms to be ap-
plied. Because the QCLP is a subclass of the general NLP,
we will refer to the QCLP formulation as an NLP.

Table 1 describes the NLP which defines an optimal fixed-
size controller. The value of a designated initial node is

maximized given the initial state distribution and the neces-
sary constraints. The first constraint represents the Bellman
equation for each node and state which maintains correct
values as probability parameters change. The second and
third constraints ensure that the x variables represent proper
probabilities and the last constraint guarantees that action se-
lection does not depend on the resulting observation which
has not yet been seen.

Theorem 1 An optimal solution of the NLP in Table 1 re-
sults in an optimal stochastic controller for the given size
and initial state distribution.

Proof The optimality of the controller follows from the one-
to-one correspondence between the objective function of the
NLP and the value of the POMDP at the initial state distri-
bution. The Bellman equation constraints restrict the value
variables to be consistent with the chosen action selection
and transition probabilities. The remaining constraints guar-
antee that the action selection and transition probabilities are
selected from valid distributions. Hence, the optimal solu-
tion of this NLP represents the value of a fixed-size con-
troller that is optimal for the given POMDP. �

Methods for solving the NLP
Many efficient constrained optimization algorithms can be
used to solve large NLPs. When the objective function and
all constraints are linear, this is called a linear program (LP).
As our formulation has a linear objective function, but con-
tains some quadratic constraints, it is a quadratically con-
strained linear program. Unfortunately, this problem is non-
convex. Essentially, this means that there may be multiple
local maxima as well as global maxima, thus finding glob-
ally optimal solution is often very difficult.

It is worth noting that global optimization techniques can
be applied to our NLP by reformulating it as a DC (differ-
ence of convex functions) programming problem. Global
optimization algorithms can then be used, but because of the
large size of the resulting DC program, it is unlikely that cur-
rent optimal solvers can handle even small POMDPs. Nev-
ertheless, it would be interesting to identify classes of prob-
lems for which DC optimization is practical. Details of the
transformation from our NLP to DC optimization problem
can be found in (Amato, Bernstein, & Zilberstein 2007).

Since it may not be possible or feasible to solve the NLP
optimally, locally optimal methods are often more useful
in practice. A wide range of nonlinear programming algo-
rithms have been developed that are able to efficiently solve
nonconvex problems with many variables and constraints.
Locally optimal solutions can be guaranteed, but at times,
globally optimal solutions can also be found. For exam-
ple, merit functions, which evaluate a current solution based
on fitness criteria, can be used to improve convergence and
the problem space can be made convex by approximation or
domain information. These methods are much more robust
than simpler methods such as gradient ascent, while retain-
ing modest efficiency in many cases.

For this paper, we used a freely available nonlinearly
constrained optimization solver called snopt on the NEOS
server (www-neos.mcs.anl.gov). The algorithm finds solu-

For variables: x(q′, a, q, o) and z(q, s), Maximize
∑

s

b0(s)z(q0, s), subject to

The Bellman constraints:

z(q, s) =
∑

a

∑
q′

x(q′, a, q, o)

R(s, a) + γ
∑
s′

P (s′|s, a)
∑

o

O(o|s′, a)
∑
q′

x(q′, a, q, o)z(q′, s′)

 ,∀q, s
Probability constraints:

∑
q′,a

x(q′, a, q, o) = 1,∀q, o x(q′, a, q, o) ≥ 0,∀q′, a, q, o∑
q′

x(q′, a, q, o) =
∑
q′

x(q′, a, q, ok),∀q, o, a

Table 1: The NLP defining an optimal fixed-size controller. Variable x(q′, a, q, o) represents P (q′, a|q, o), variable z(q, s)
represents V (q, s), q0 is the initial controller node and ok is an arbitrary fixed observation.

tions by a method of successive approximations called se-
quential quadratic programming (SQP). SQP uses quadratic
approximations which are then solved with quadratic pro-
gramming (QP) until a solution to the more general prob-
lem is found. A QP is typically easier to solve, but must
have a quadratic objective function and linear constraints.
In snopt, the objective and constraints are combined and ap-
proximated to produce the QP. A merit function is also used
to guarantee convergence from any initial point.

Experiments
For experimental comparison, we present an evaluation of
the performance of our formulation using an off-the-shelf
nonlinear program solver, snopt, as well as leading POMDP
approximation techniques. In these experiments we seek to
determine how well our formulation performs when used in
conjunction with a generic solver such as snopt. The formu-
lation is very general and many other solvers may be applied.
We are currently developing a customized solver that would
take further advantage of the inherent structure of the NLPs
and increase scalability.

To improve scalability, we also use a version of our NLP
formulation in which the action at each node is fixed. As the
transitions between the nodes remain stochastic, this only re-
duces the expressiveness of the controller by a small amount
due to the first action being chosen deterministically. While
we could have allowed this first action to be stochastic, it
was found that choosing this action greedily based on imme-
diate reward at the initial belief often performed reasonably
well. To set the other actions of the controller, we cycled
through the available actions and assigned the next avail-
able action to the next node. That is, if a problem has 4
actions and 9 nodes then each action is represented twice
in the controller except for the greedy first action which is
represented 3 times. Given a fixed controller size, fixing the
action selection will usually perform worse than allowing
stochastic actions, but the problem is simpler and thus larger
controller sizes can be solved. When there were multiple
highest-valued actions, one of these actions is randomly as-
signed to the first node. The hope is that although fixing
actions will result in less concise controllers, higher-valued,
larger controllers may be found. Throughout this section,

we will refer to the optimization of our NLP using snopt as
NLO for the fully stochastic case and as NLO fixed for the
optimization with fixed actions.

In this section, we compare the results obtained us-
ing our new formulation with those of biased BPI, PBVI,
PERSEUS, HSVI and PBPI. Each of our NLP methods was
initialized with ten random deterministic controllers and we
report mean values and times after convergence. To slightly
increase the performance of the solver upper and lower
bounds were added. These represent the value of taking the
highest and lowest valued actions respectively for an infinite
number of steps. All results were found by using the NEOS
server which provides a set of machines with varying CPU
speeds and memory limitations.

Benchmark problems
We first provide a comparison of our NLP formulations
with leading POMDP approximation methods on common
benchmark problems. The first three domains, which were
introduced by Littman, Cassandra and Kaelbling (1995), are
grid problems in which an agent must navigate to a goal
square. The other benchmark problem is a larger grid prob-
lem in which the goal is for the agent to catch and tag an
opponent which attempts to move away (Pineau, Gordon, &
Thrun 2003). Following the convention of previously pub-
lished results, we consider the versions of these problems
that stop after the goal has been reached and a discount fac-
tor of 0.95 was used.

Table 2 shows the results from previously published al-
gorithms and our NLP formulations. We provide the mean
values and times for the largest controller size that is solv-
able with less than (approximately) 400MB of memory and
under eight hours on the NEOS server. The values of PBPI
in the table are the highest values reported for each problem,
but the authors did not provide results for the Hallway prob-
lem. Because the experiments were conducted on different
computers, solution times give a general idea of the speed
of the algorithms. It is also worth noting that while most of
the other approaches are highly optimized, a generic solver
is used with our approach in these experiments.

In general, we see that the nonlinear optimization ap-
proach is competitive both in running time and value pro-
duced, but does not outperform the other techniques. Our

Tiger-grid |S| = 36, |A| = 5, |Ω| = 17
value size time

HSVI 2.35 4860 10341
PERSEUS 2.34 134 104

HSVI2 2.30 1003 52
PBVI 2.25 470 3448
PBPI 2.24 3101 51

biased BPI 2.22 120 1000
NLO fixed 2.20 32 1823

BPI 1.81 1500 163420
NLO 1.79 14 1174

QMDP 0.23 n.a. 2.76

Hallway |S| = 60, |A| = 5, |Ω| = 21
value size time

PBVI 0.53 86 288
HSVI2 0.52 147 2.4
HSVI 0.52 1341 10836

biased BPI 0.51 43 185
PERSEUS 0.51 55 35

BPI 0.51 1500 249730
NLO fixed 0.49 24 330

NLO 0.47 12 362
QMDP 0.27 n.a. 1.34

Hallway2 |S| = 93, |A| = 5, |Ω| = 17
value size time

PERSEUS 0.35 56 10
HSVI2 0.35 114 1.5
PBPI 0.35 320 3.1
HSVI 0.35 1571 10010
PBVI 0.34 95 360

biased BPI 0.32 60 790
NLO fixed 0.29 18 240

NLO 0.28 13 420
BPI 0.28 1500 274280

QMDP 0.09 n.a. 2.23

Tag |S| = 870, |A| = 5, |Ω| = 30
value size time

PBPI -5.87 818 1133
PERSEUS -6.17 280 1670

HSVI2 -6.36 415 24
HSVI -6.37 1657 10113

biased BPI -6.65 17 250
BPI -9.18 940 59772

PBVI -9.18 1334 180880
NLO fixed -10.48 5 2117

NLO -13.94 2 5596
QMDP -16.9 n.a. 16.1

Table 2: Values, representation sizes and running times (in sec-
onds) for the set of benchmark problems. Results for other al-
gorithms were taken from the following sources: BPI (Poupart &
Boutilier 2003), biased BPI (Poupart 2005), HSVI (Smith & Sim-
mons 2004), HSVI2 (Smith & Simmons 2005), PERSEUS (Spaan
& Vlassis 2005), PBPI (Ji et al. 2007), PBVI (Pineau, Gordon, &
Thrun 2003), QMDP (Spaan & Vlassis 2005)

method achieves 94%, 92%, 83% of max value in the first
three problems, but does so with much smaller representa-
tion size. A key aspect of the NLP approach is that high
quality solutions can be found with very concise controllers.
Thus, limited representation size is very well utilized, likely

Machine |S| = 256, |A| = 4, |Ω| = 16
value size time

HSVI2 63.17 575 317
NLO fixed 62.65 20 3963

NLO 61.74 10 7350
biased BPI 59.75 20 30831
PERSEUS 39.28 86 2508

Aloha 30 |S| = 90, |A| = 29, |Ω| = 3
value size time

HSVI2 1212.15 2909 1841
NLO 1211.67 6 1134

NLO fixed 1076.49 26 2014
biased BPI 993.22 22 5473
PERSEUS 853.24 114 2512

Table 3: Values, representation sizes and running times (in sec-
onds) for the machine maintenance and aloha problems.

better than the other approaches in most problems.
The values in the table as well as those in Figure 1 show

that our approach is currently unable to find solutions for
large controller sizes. For example, in the Tag problem, a
solution could only be found for a two node controller in
the general case and a five node controller when the actions
were fixed. As seen in the figures, there is a near monotonic
increase of value in the Hallway problem when compared
with either controller size or time. As expected, fixing the
actions at each node results in faster performance and in-
creased scalability. This allows higher valued controllers to
be produced, but scalability remains limited. As improved
solvers are found higher values and larger controllers will
be solvable by both approaches. The other benchmark prob-
lems display similar trends of near monotonic improvement
and the need for increased scalability to outperform other
methods on these problems.

Other domains
We also examined the approximate approaches in two other
domains, the machine maintenance and aloha problems
(Cassandra 1998). The machine maintenance domain has
256 states, 4 actions and 16 observations and the the aloha
problem is a simplified networking problem using the slotted
Aloha protocol with 90 states, 30 actions and 3 observations.
Discount factors of 0.99 and 0.999 were used for the two
problems respectively. For HSVI2 and PERSEUS, software
was used from web sites of Trey Smith and Matthijs Spaan
respectively. For biased BPI results, we used our own im-
plementation and like our NLP results, the mean values and
times of optimizing ten fixed-size deterministic controllers
are reported. The heuristic parameters were found experi-
mentally by choosing a wide range of values and reporting
the best results. Similarly, for PERSEUS, several methods
for choosing a set of belief points of size 10000 were used
and again, the best results are reported.

On these problems, which we provide results for in Table
6, our NLP formulation provides results that are nearly iden-
tical (over 99% of the value) on the machine problem (NLO
fixed) and the aloha problem (NLO). Both of our methods
also outperform our versions of biased BPI and PERSEUS in

almost all evaluation criteria in both problems. While these
two algorithms may be able to increase their performance
by adjusting heuristics, we believe that our approach will
continue to produce results that will match this performance
without the need to adjust heuristics. One reason for this is
that these problems are difficult for point-based approaches
to solve optimally. This is due to the high discount factor
causing many backups to be required and the need for many
vectors to closely approximate the optimal value function.
For instance, in the aloha domain, after 15 hours HSVI2
was able to produce a value of 1212.92 which required over
15000 vectors to represent. In contrast, while the mean value
produced by our nonlinear optimization was 1211.67, a con-
troller with value 1217.11 was found with only six nodes
in about 20 minutes. This shows the value of our controller-
based technique as a more efficient alternative to point-based
methods in problems such as these.

Conclusions
In this paper, we introduced a new approach for solving
POMDPs by defining optimal fixed-size solutions as non-
linear programs. This permits a wide range of powerful
NLP solution methods to be applied to these problems. As a
controller-based approach, our method may be able to pro-
vide solutions that are higher quality than point-based meth-
ods such as those with high discount rate or periodic opti-
mal policies. Because our approach optimizes a stochastic
controller it is able to make efficient use of the limited rep-
resentation space. Thus, this new formulation is simple to
implement and may allow very concise high quality solu-
tions to a large number POMDPs.

We showed that by using a generic NLP solver, our for-
mulation can provide solutions that are competitive with
leading POMDP approximation techniques in terms of run-
ning time and solution quality. Given the complexity of the
problems that we considered, it is not surprising that no sin-
gle approach dominates all the others. Nevertheless, our ap-
proach can produce good value with significantly smaller
memory. And because the controller is more compact, in
some cases the approach uses less time despite the use of
nonlinear optimization. This opens up new promising re-
search directions that could produce further improvement in
both quality and efficiency. As the solver in our experiments
has not been optimized for our NLP it is likely that even
higher performance can be achieved in the future.

It is also worth noting that we have extended this NLP ap-
proach to the multiagent DEC-POMDP framework (Amato,
Bernstein, & Zilberstein 2007). A set of fixed-size indepen-
dent controllers is optimized, which when combined, pro-
duce the policy for the problem. We demonstrated that our
approach is able to produce solutions that are often signif-
icantly higher-valued than the other infinite-horizon DEC-
POMDP algorithms for a range of problems.

In the future, we plan to explore more specialized algo-
rithms that can be tailored for our optimization problem.
While the performance achieved with a standard nonlinear
optimization algorithm is good, specialized solvers might be
able to further increase solution quality and scalability. Dif-
ferent methods may be able to take advantage of the specific

structure inherent in POMDPs. Also, important subclasses
could be identified for which globally optimal solutions can
be efficiently provided. These improvements may allow op-
timal or near optimal fixed-size solutions to be found for
important classes of POMDPs.

Acknowledgments
An earlier version of this paper without the fixed action ex-
tension and additional discussion and experiments appeared
in UAI-07. More details and an extension to the multiagent
DEC-POMDP framework can be seen in the tech report.
Support for this work was provided in part by the National
Science Foundation under Grant No. IIS-0535061 and by
the Air Force Office of Scientific Research under Agreement
No. FA9550-05-1-0254.

References
Amato, C.; Bernstein, D. S.; and Zilberstein, S. 2007. Optimiz-
ing fixed-size stochastic controllers for POMDPs and decentral-
ized POMDPs. Technical Report CS-07-70, University of Mas-
sachusetts, Department of Computer Science, Amherst, MA.
Bertsekas, D. P. 2004. Nonlinear Programming. Athena Scien-
tific.
Cassandra, A. R. 1998. Exact and Approximate Algorithms for
Partially Observable Markov Decision Processes. Ph.D. Disser-
tation, Brown University, Providence, RI.
Hansen, E. A. 1998. Solving POMDPs by searching in policy
space. In Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, 211–219.
Ji, S.; Parr, R.; Li, H.; Liao, X.; and Carin, L. 2007. Point-based
policy iteration. In Proceedings of the Twenty-Second National
Conference on Artificial Intelligence.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning policies for partially observable environments: Scaling
up. Technical Report CS-95-11, Brown University, Department
of Computer Science, Providence, RI.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: an anytime algorithm for POMDPs. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intel-
ligence.
Poupart, P., and Boutilier, C. 2003. Bounded finite state con-
trollers. In Advances in Neural Information Processing Systems,
16.
Poupart, P. 2005. Exploiting Structure to Efficiently Solve Large
Scale Partial ly Observable Markov Decision Processes. Ph.D.
Dissertation, University of Toronto.
Singh, S.; Jaakkola, T.; and Jordan, M. 1994. Learning without
state-estimation in partially observable Markovian decision pro-
cesses. In Proceedings of the Eleventh International Conference
on Machine Learning.
Smith, T., and Simmons, R. 2004. Heuristic search value iteration
for POMDPs. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence.
Smith, T., and Simmons, R. 2005. Point-based POMDP algo-
rithms: Improved analysis and implementation. In Proceedings
of the Twenty-First Conference on Uncertainty in Artificial Intel-
ligence.
Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of AI Research
24:195–220.

