
Planning for Decentralized Control of Multiple Robots Under Uncertainty

Christopher Amato, George Konidaris, Gabriel Cruz, Christopher A. Maynor,
Jonathan P. How and Leslie P. Kaelbling

Abstract— This paper presents a probabilistic framework for
synthesizing control policies for general multi-robot systems
that is based on decentralized partially observable Markov
decision processes (Dec-POMDPs). Dec-POMDPs are a general
model of decision-making where a team of agents must coop-
erate to optimize a shared objective in the presence of uncer-
tainty. Dec-POMDPs also consider communication limitations,
so execution is decentralized. While Dec-POMDPs are typically
intractable to solve for real-world problems, recent research
on the use of macro-actions in Dec-POMDPs has significantly
increased the size of problem that can be practically solved.
We show that, in contrast to most existing methods that are
specialized to a particular problem class, our approach can
synthesize control policies that exploit any opportunities for
coordination that are present in the problem, while balancing
uncertainty, sensor information, and information about other
agents. We use three variants of a warehouse task to show that
a single planner of this type can generate cooperative behavior
using task allocation, direct communication, and signaling, as
appropriate. This demonstrates that our algorithmic framework
can automatically optimize control and communication policies
for complex multi-robot systems.

I. INTRODUCTION

Most multi-robot systems are controlled by hand-built
special-purpose algorithms that are difficult to design, im-
plement and verify. For single robots, automatic planning
systems provide a flexible general-purpose strategy for con-
structing plans given high-level declarative domain speci-
fications, even in the presence of substantial stochasticity
and partial observability [1]. We show that this strategy
can be effectively extended to multi-robot systems. Our
methods allow automatic off-line construction of robust
multi-robot policies that support coordinated action. As a
natural consequence of the approach, they can even generate
communication strategies that exploit the domain dynamics
to share critical information in service of achieving the
group’s overall objective.

Specifically, we are interested in problems where the
robots share the same objective function and each individual
robot (and, in fact, the collection of robots) can only make
noisy, partial observations of the environment. The decen-
tralized partially observable Markov decision process (Dec-

C. Amato is with the Department of Computer Science at the University
of New Hampshire, Durham, NH. G. Konidaris is with the Department of
Computer Science and the Department of Electrical and Computer Engineer-
ing at Duke University, Durham, NC. G. Cruz and L. P. Kaelbling are with
CSAIL at MIT, Cambridge, MA. C. A. Maynor and J. P. How are with LIDS
at MIT, Cambridge, MA. Email: camato@cs.unh.edu, gdk@cs.duke.edu,
gcruz@csail.mit.edu, maynorc@mit.edu, jhow@mit.edu, lpk@csail.mit.edu.
Work for this paper was completed while all authors were at MIT and the
research was supported in part by AFOSR MURI project #FA9550-091-
0538 and and ONR MURI project #N000141110688.

Fig. 1. The warehouse domain with three robots.

POMDP) is a general framework for representing these prob-
lems and by solving them, we can automatically derive near-
optimal control strategies. Dec-POMDPs have been studied
in fields such as control [2], [3], operations research [4] and
artificial intelligence [5]. Like the POMDP [6] models that
they extend, Dec-POMDPs consider general probabilistic
dynamics, sensor and cost models. To make better use of
cooperation and computational resources, we consider the
case where we produce a cooperative solution of the problem
off-line which results in separate policies for individual
robots that are executed online in a decentralized manner.
These decentralized policies optimize movement, sensing
and communication actions while considering uncertainty in
outcomes, sensors and information about the other agents.

For example, consider the multi-robot warehousing prob-
lem (shown in Figure 1) that we present in the experiments. A
team of robots is tasked with finding a set of large and small
boxes in the environment and returning them to a shipping
location. Large boxes require multiple robots to push. As a
result, coordination is needed not just for assigning robots
to push specific boxes, but also requires that two robots
push the larger box at the same time. There is stochasticity
in the movements of robots and partial observability with
respect to the location of the boxes and other robots (both
can be only be detected when they are within range). We
also consider cases where the robots can send communication
signals to each other, but we do not define the meaning of
the messages. Therefore, our planner must determine where
the robots should navigate, what boxes they should push and
what communication messages should be sent (if at all) at
each step of the problem to optimize the solution for the
team. The robots must make these decisions based solely on
the information they individually receive during execution
(e.g., each robot’s estimate of its own location as well as
where and when boxes and other robots have been seen).

This multi-robot warehousing problem — as well as any
other problem where multiple robots share a single overall
reward or cost function — can be formalized as a Dec-
POMDP. Therefore, a Dec-POMDP solver could potentially
automatically generate control policies (including policies
over when and what to communicate) for very rich decen-
tralized control problems, in the presence of uncertainty.
Unfortunately, this generality comes at a cost: Dec-POMDPs
are typically infeasible to solve except for very small prob-
lems [4], [7].

One reason for the intractability of solving large Dec-
POMDPs is that current methods model problems at a low
level of granularity, where each robot’s actions are primitive
operations lasting exactly one time step. Recent research has
addressed the more realistic MacDec-POMDP case where
each robot has macro-actions: temporally extended actions
which may require different amounts of time to execute [7].
Macro-actions enable systems to be modeled at a higher
level of abstraction so that coordination decisions only occur
at the level of deciding which macro-actions to execute.
MacDec-POMDPs retain the ability to coordinate robots
while allowing near-optimal solutions to be generated for
significantly larger problems than would have been possible
using other Dec-POMDP-based methods.

Macro-actions are a natural model for the modular con-
trollers often sequenced to obtain robot behavior. The macro-
action approach leverages expert-designed or learned con-
trollers for solving subproblems (e.g., navigating to a way-
point or grasping an object), bridging the gap between
traditional robotics research and work on Dec-POMDPs.
This approach has the potential to produce high-quality
general solutions for real-world heterogeneous multi-robot
coordination problems by automatically generating control
and communication policies.

This paper presents a general framework for solving
decentralized cooperative partially observable robotics prob-
lems and provides the first demonstration of such method
running on real robots. We extend previously developed
approaches [7] and apply them to a real robotics problem.
We begin by formally describing the Dec-POMDP model,
its solution and relevant properties as well as the MacDec-
POMDP extension. We then describe a process for converting
a robot domain into a MacDec-POMDP model, solving it,
and using the solution to produce a set of SMACH [8]
finite-state machine task controllers that can be executed on
the robots. Finally, we use three variants of the warehouse
problem to show that a MacDec-POMDP planner generates
appropriate emergent behaviors by optimizing the available
macro-actions (i.e., allocating tasks, using direct communica-
tion, and employing signaling, as appropriate). The MacDec-
POMDP represents a foundational algorithmic framework for
generating solutions for a wide range of probabilistic multi-
robot systems.

II. DEC-POMDPS

Dec-POMDPs [4] generalize POMDPs to the multiagent,
decentralized setting. As depicted in Fig. 2, multiple agents

Environment

a1

o1
an

on

r

Fig. 2. Representation of an n-agent Dec-POMDP with actions ai and
observations oi for each agent i along with a single reward r.

(e.g., robots) operate under uncertainty based on partial and
local views of the world, with execution unfolding over
a sequence of steps. At each step, every agent chooses
an action (in parallel) based purely on locally observable
information (i.e., one agent does not necessarily observe what
the others are seeing or doing), resulting in an immediate
reward and an observation being obtained by each individual
agent. The agents share a single reward or cost function,
making the problem cooperative, but their local views mean
that operation is decentralized during execution.

We focus on solving sequential decision-making problems
with discrete time steps and stochastic models with finite
states, actions, and observations, but the model can be
extended to continuous problems. A key assumption is that
state transitions are Markovian, meaning that the state at time
t depends only on the state and events at time t − 1. Note
that the robots do not perceive the state itself (only their
streams of observations). The reward is used as a way to
specify the objective of the problem and is not observed
during execution. A Dec-POMDP is described by a tuple
〈I, S, {Ai}, T,R, {Ωi}, O, h〉, where

• I is a finite set of agents.
• S is a finite set of states with designated initial state

distribution b0.
• Ai is a finite set of actions for each agent i with A =
×iAi the set of joint actions.

• T is a state transition probability function, T : S×A×
S → [0, 1], that specifies the probability of transitioning
from state s ∈ S to s′ ∈ S when actions ~a ∈ A are taken
by the agents. Hence, T (s,~a, s′) = Pr(s′|~a, s).

• R is a reward function: R : S×A→ R, the immediate
reward for being in state s ∈ S and taking actions ~a ∈
A.

• Ωi is a finite set of observations for each agent, i, with
Ω = ×iΩi the set of joint observations.

• O is an observation probability function: O : Ω× A×
S → [0, 1], the probability of seeing observations ~o ∈ Ω
given actions ~a ∈ A were taken which results in state
s′ ∈ S. Hence O(~o,~a, s′) = Pr(~o|~a, s′).

• h is the number of steps until the problem terminates,
called the horizon.

Note that while the actions and observations are factored
with one factor per agent, the state need not be. Because
the full state is not directly observed, generating optimal
or approximately optimal behavior generally requires each
agent to remember a history of its observations. We can con-

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

(a)

o1

o1 o2

o2

a2a1

(b)

Fig. 3. A single agent’s policy represented as (a) a policy tree and (b) a
finite-state controller with initial state shown with a double circle.

sider an action-observation history for agent i representing
the actions taken and observations seen at each step (up to
step t) as hAi = (a0i , o

0
i , . . . , a

t
i, o

t
i). Unlike in POMDPs, it is

not typically possible to calculate an estimate of the system
state from the observation history of a single agent, because
the system state depends on the behavior of all of the agents.

A solution to a Dec-POMDP is a joint policy—a set of
policies, one for each agent. Each agent’s policy maps its
own history of actions and observations to its next action.
It is typically represented as either a policy tree, where the
vertices indicate actions to execute and the edges indicate
transitions conditioned on an observation, or as a finite state
controller which executes in a similar manner. An example
of each is given in Figure 3.

As in the POMDP case, the goal is to maximize the total
cumulative reward, beginning at some initial distribution over
states b0. We assume that the model is known.

The value of a joint policy, π, from state s is V π(s) =

E

[
h−1∑
t=0

γtR(~at, st)|s, π

]
, which represents the expected

value of the immediate reward for the set of agents summed
for each step of the problem given the action prescribed by
the policy until the horizon is reached. In the finite-horizon
case (which we consider in this paper), the discount factor,
γ, is typically set to 1. An optimal policy beginning at state
s is π∗(s) = argmaxπ V

π(s).
Unfortunately, large problem instances remain intractable.

Some advances have been made in optimal algorithms [9],
[10], [11], but optimally solving a Dec-POMDP is NEXP-
complete [4]. Most approaches that scale well make very
strong assumptions about the domain (e.g., a large amount
of independence between agents) [12], [13], [14], [15].

III. MACRO-ACTIONS FOR DEC-POMDPS

Dec-POMDPs require synchronous decision-making: ev-
ery agent determines which action to execute, and then
executes it within a single time step. This restriction is
problematic in robot domains for two reasons. First, robot
systems typically possess a set of controllers, and planning
consists of sequencing the execution of those controllers.
However, due to both environmental and controller complex-
ity, the controllers will almost always execute for an extended
period, taking differing amounts of time to run. Synchronous
decision-making would require waiting until all robots have
completed their controller execution (and achieve common

knowledge of this fact) before performing the next action
selection, which is suboptimal and generally infeasible. Sec-
ond, the planning complexity of a Dec-POMDP is doubly
exponential in the horizon. A planner that reasons about all
of the robots’ possible policies at every time step will only
ever be able to make very short plans.

The MacDec-POMDP formulation models a group of
robots that must plan by sequencing an existing set of
controllers, enabling planning at the appropriate level to
compute near-optimal solutions for problems with signifi-
cantly longer horizons and larger state-spaces [7]. We can
gain additional benefits by exploiting known structure in
the multi-robot problem. For instance, most controllers only
depend on locally observable information and do not re-
quire coordination. For example, consider a controller that
navigates to a waypoint. Only local information is required
for navigation—the robot may detect other robots but their
presence does not change its objective, and it simply moves
around them—but choosing the target waypoint likely re-
quires the planner to consider the locations and actions of
all robots. Macro-actions with independent execution allow
coordination decisions to be made only when necessary (i.e.,
when choosing macro-actions) rather than at every time
step. Because MacDec-POMDPs are built on top of Dec-
POMDPs, macro-action choice may depend on history, but
during execution macro-actions may depend only on a single
observation or on any number of steps of history, or even
represent the actions of a set of robots. That is, macro-actions
are very general and can be defined in such a way to take
advantage of the knowledge available to the robots during
execution.

It is also worth noting that our approach can incorporate
state-of-the-art solution methods for solving more restricted
scenarios. The widespread use of techniques for solving
much more restricted scenarios has led to a plethora of usable
algorithms for specific problems, but no way to combine
these in more complex scenarios. Our approach can build
on the large amount of research in single and multi-robot
systems that has gone into solving difficult problems such
as navigation in a formation [16], cooperative transport of
an object [17], coordination with signaling [18] or com-
munication under various limitations [19]. The solutions to
these problems could be represented as macro-actions in our
framework, building on existing research to solve even more
complex multi-robot problems.

A. Model

While more complex macro-actions are possible, the
MacDec-POMDP model used here considers macro-actions
that only depend on a single robot’s information [7]. This
is an extension of the options framework [20] to multi-
agent domains while dealing with the lack of synchronization
between agents. The options framework is a formal model
of macro-actions [20] that has been very successful in aiding
representation and solutions in single robot domains [21].

A MacDec-POMDP with local options is defined as a Dec-
POMDP where we also assume Mi represents a finite set of

options for each agent, i, with M = ×iMi the set of joint
options [7]. A local option is defined by:

Mi = (βmi , Imi , πmi),

with stochastic termination condition βmi : HA
i → [0, 1],

initiation set Imi ⊂ HA
i and option policy πmi : HA

i ×Ai →
[0, 1]. Note that this representation uses action-observation
histories in the termination and initiation conditions as well
as the option policy. Initiation and terminal conditions can
also depend on states (e.g., ending execution based on
unobserved events) or single observations.

MacDec-POMDP policies consider option histories (as
opposed to action-observation histories) because it may
be beneficial for agents to remember their histories when
choosing options. An option history, which includes both
the action-observation histories where an option was chosen
and the selected options themselves, is defined as hMi =
(h0i ,m

1
i , . . . , h

t−1
i ,mt

i). Here, h0i may be a null observation
or an initial observation produced from the initial belief state
b0. The option history also provides a nice representation
for using histories within options by allowing initiation
conditions to depend on the histories of options already
taken and their results. Alternatively, it is more natural
for option policies and termination conditions to depend
on histories that begin when the option is first executed
(action-observation histories). While histories over primitive
actions provide the number of steps that have been executed
(because they include actions and observations at each step),
an option history may require many more steps to execute
than the number of options listed. A (stochastic) local policy,
µi : HM

i × Mi → [0, 1] then depends on these option
histories and a joint policy for all agents is given as µ.

Because option policies are built from primitive actions,
policies can be evaluated in a way that is similar to other
Dec-POMDP-based approaches. Given a joint policy, the
primitive action at each step is determined by the (high-
level) policy, which chooses the option, and the option
policy, which chooses the action. The joint policy and option
policies can then be evaluated as:

V µ(s) = E

[
h−1∑
t=0

γtR(~at, st)|s, π, µ

]
Additional details about a slightly simpler case are given in
previous work [7].

The goal of MacDec-POMDP planning is to obtain a
hierarchically optimal policy: µ∗(s) = argmaxµV

µ(s). This
policy produces the highest expected value that can be
obtained by sequencing the agent’s given options. This policy
may have a lower value than the optimal policy for the Dec-
POMDP, because it does not include all possible history-
dependent low-level policies—the policies are restricted to
be sequences of macro-actions.

B. Algorithms

We use the macro-action-based memory bounded dynamic
programming (MBDP) approach [7] to solve the warehouse

m1 m2

(a) Step 1

m1

m1 m1

βs1 βs2

m1

m1 m2

βs1 βs2

m2

m1 m1

βs1

βs2

m1

βs3

m2

m1 m2

βs1

βs2

m1

βs3

(b) Step 2 of DP

Fig. 4. Policies for a single agent after (a) one step and (b) two steps
of dynamic programming using options m1 and m2 and (deterministic)
terminal states as βs.

Op#mized	 controllers	 for	 each	 robot	
(in	 SMACH	 format)	

System	 descrip#on	
(macro-‐ac#ons,	 dynamics,	 sensor	 uncertainty,	 rewards/costs)	

Planner	
(solving	 the	 MacDec-‐POMDP)	

Fig. 5. A high-level system diagram.

problems. This approach is the extension of a standard
Dec-POMDP algorithm [22] to consider options instead of
primitive actions. MBDP searches through the space of
possible policies from the last problem step back to the first.
The extension is non-trivial since macro-actions may use
different amounts of time, requiring the consideration of the
horizon being reached during execution of a macro-action.

The key modification (as shown in Figure 4) is that
nodes in a policy tree now select macro-actions (rather
than primitive actions) and edges correspond to terminal
conditions (or, more generally, high-level observations). That
is, policy trees are generated for each agent that can be
executed based on that agent’s possible option histories. The
root node defines the option to choose in the known initial
state, and options are assigned to each of the legal terminal
states of that option; this continues for the depth of the tree.
This tree can be evaluated up to any (primitive) horizon using
the policy evaluation given above.

Our MBDP-based algorithm bounds the number of pos-
sible policies that are considered at each step. Without this
bound, dynamic programming methods can guarantee that
a hierarchically optimal policy is found, but when a bound
is imposed the result may be suboptimal [7]. Policies are
chosen that have the highest value at states that are sampled
from the initial state. Because the number of policies at each
step is bounded, MBDP has time and space complexity linear
in the horizon. As a result, this approach works well in some
relatively large MacDec-POMDPs [7].

IV. SOLVING MULTI-ROBOT PROBLEMS WITH
MACDEC-POMDPS

The MacDec-POMDP framework is a natural way to rep-
resent and generate behavior for general multi-robot systems.
A high-level description of this process is given in Figure
5. To use the MacDec-POMDP model as described above,
we would assume an abstract model of the system is given

in the form of macro-action representations, which include
the associated policies as well as initiation and terminal
conditions. These macro-actions are controllers operating
in (possibly) continuous time with continuous actions and
feedback, but their operation is discretized for use with
the planner. This discretization represents an underlying
discrete Dec-POMDP which consists of the primitive actions,
states of the system and the associated rewards. While the
complexity of our method primarily depends on the size
of the MacDec-POMDP model, and not the size of the
underlying Dec-POMDP, it is often difficult to generate and
represent a full Dec-POMDP model for real-world systems.

We extend this model to use a simulator rather than
a full model of the problem. In many cases, a simulator
already exists or is easier to construct than the full model.
Our planner still assumes a model of the macro-actions,
but while the initiation and terminal sets are known, the
policies of the macro-actions as well as the underlying Dec-
POMDP are not explicitly known. Instead, we make the
more realistic assumption that we can simulate the macro-
actions in an environment similar to the real-world domain.
As such, the algorithm for generating a policy over macro-
actions remains the same (since constructing policies of
macro-actions only requires knowledge of the set of macro-
actions and their initiation and terminal conditions), but all
evaluation is conducted in the simulator (through sampling)
rather than through use of the Bellman equations (which
requires enumeration over all reachable states at each step).

Specifically, a fixed policy can be evaluated by sampling
starting at an initial state (or belief state), choosing an
action for each agent according to the policy, sampling an
observation from the system, updating the current position
in the policy (i.e., the current node in each agent’s policy
tree) and then continuing this process until some maximum
time step has been reached. The value of the k-th sample-
based trajectory starting at s0 and using policy π is given
by V π,k(s0) = rk0 + . . . + γT rkT , where rkt is the reward
given to the team on the t-th step. After K trajectories,
V̂ π(s0) =

∑K
k=1

V π,k(s0)
K . As the number of samples in-

creases, the estimate of the policy’s value will approach the
true value. This sample-based evaluation is necessary in large
or continuous state spaces.

Given the macro-actions and simulator, our off-line plan-
ner can automatically generate a solution which optimizes the
value function with respect to the uncertainty over outcomes,
sensor information and other robots. The planner generates
the solution in the form of a set of policy trees (as in Figure
4) which are parsed into a corresponding set of SMACH
controllers [8], one for each robot. SMACH controllers are
hierarchical state machines for use in a ROS [23] environ-
ment. Just like the policy trees they represent, each node
in the SMACH controller represents a macro-action which
is executed on the robot and each edge corresponds to a
terminal condition. Our system is thus able to automatically
generate SMACH controllers, which are typically designed
by hand, for complex, general multi-robot systems.

V. MACDEC-POMDPS IN THE WAREHOUSE DOMAIN

We test our methods in a warehousing scenario using
a set of iRobot Creates (Figure 1) where we will vary
communication capabilities. This is the first time that Dec-
POMDP-based methods have been used to solve large multi-
robot domains, and we do not compare with other Dec-
POMDP-based methods because they cannot solve problems
of this size. The results demonstrate that our methods can
automatically generate the appropriate motion and communi-
cation behavior while considering uncertainty over outcomes,
sensor information and other robots.

A. The Warehouse Domain

We consider three robots in a warehouse that are tasked
with finding and retrieving boxes of two different sizes: large
and small. Robots can navigate to known depot locations
(rooms) to retrieve boxes and bring them back to a designated
drop-off area. The larger boxes can only be moved effectively
by two robots (if a robot tries to pick up the large box by
itself, it will move to the box, but fail to pick it up). While the
locations of the depots are known, the contents (the number
and type of boxes) are unknown. Our planner generates a
SMACH controller for each of the robots off-line which are
then executed online in a decentralized manner.

In each scenario, we assumed that each robot could
observe its own location, see other robots if they were within
(approximately) one meter, observe the nearest box when in
a depot and observe the size of the box if it is holding one.
In the simulator used by the planner to evaluate solutions,
the resulting state space includes the location of each robot
(discretized into nine possible locations) and the location of
each of the boxes (in a particular depot, with a particular
robot or at the goal). The primitive actions are to move
in four different directions as well as pickup, drop and
communication actions. Note that this primitive state and
action representation is used for evaluation purposes and not
actually implemented on the robots (which just utilize the
SMACH controllers). Higher fidelity simulators could also
be used, but running time may increase if the simulations
are computationally intensive (average solution times for
the policies presented below were approximately one hour).
The three-robot version of this scenario has 1,259,712,000
states, which is several orders of magnitude larger than
problems typically solvable by Dec-POMDP approaches.
These problems are solved using the option-based MBDP
algorithm initialized with a hand coded heuristic policy.

Navigation has a small amount of noise in the amount of
time required to move to locations (reflecting the real-world
dynamics): this noise increases when the robots are pushing
the large box (reflecting the need for slower movements and
turns in this case). We defined macro-actions that depend
only on the observations above, but option selection depends
on the history of options executed and observations seen as
a result (the option history). Note that the MacDec-POMDP
framework is very general so other types of macro-actions
and observations could also be used (including observation
of other failures).

d2

m ps

d1

d1 m

d1 m

d1 m

goal

g m

, D2

m dr

m pl

goal

g m

, D1

m dr

, D2

, goal

, , D1

, goal

m pl

 goal

g m

, D1

m dr

, , D1

, goal

, D1

, D1

d1

[repeat for 6 more steps]

Macro-actions
d1=depot 1
d2=depot 2

g=goal (drop-off area)
ps=pick up small box
pl=pick up large box

dr=drop box

Fig. 6. Path executed in policy trees
by the white robot (left) and the green
robot (right). Only macro-actions ex-
ecuted (nodes) and observations seen
(edges, with box sizes and robots given
pictorially) are shown.

(a) The white robot waits at
the large box while green robot
pushes the small box.

(b) The green robot goes to de-
pot 1 and sees the other robot
and large box.

(c) The green robot moves to
the box and the two robots push
it back to the goal.

Fig. 7. Scenario 1 video cap-
tures (no communication).

B. Scenario 1: No Communication

In the first scenario, the robots cannot communicate with
each other. Therefore, all cooperation is based on the con-
trollers that are generated by the planner (which generates
controllers for all robots when planning off-line) and ob-
servations of the other robots (when executing online). The
macro-actions were: Go to depot 1, Go to depot
2, Go to the drop-off area, Pick up the
small box, Pick up the large box, and Drop
off a box.

The depot macro-actions are applicable anywhere and
terminate when the robot is within the walls of the appro-
priate depot. The drop-off and drop macro-actions are only
applicable if the robot is holding a box, and the pickup
macro-actions are only applicable when the robot observes
a box. Picking up the small box was assumed to succeed
deterministically, but the model could easily be adjusted
if the pickup mechanism is less robust. The macro-actions
correspond to natural choices for robot controllers.

This case1 (seen in Figure 7 along with a depiction of
the executed policy in Figure 6) uses only two robots to
more clearly show the optimized behavior in the absence of
communication. The policy generated by the planner begins
by assigning one robot to go to each of the depots. The
robots then observe the contents of the depots they are in. If
there is only one robot in a depot and there is a small box to
push, the robot will push the small box (Figure 7(a)). If the

1All videos can be seen at http://youtu.be/fGUHTHH-JNA

robot is in a depot with a large box and no other robots, it
will stay in the depot, waiting for another robot to come and
help push the box (also Figure 7(a)). In this case, once the
other robot is finished pushing the small box, it goes back to
the depots to check for other boxes or robots that need help
(Figure 7(b)). When it sees another robot and the large box
in the depot on the left (depot 1), it attempts to help push the
large box and the two robots are successful pushing the large
box to the goal (Figure 7(c)). The planner has automatically
derived a strategy for dynamic task allocation—two robots
go to each room, and then search for help needed after
pushing any available boxes. This behavior was generated by
an optimization process that considered the different costs of
actions and the uncertainty involved (in the current step and
into the future) and used those values to tailor the behavior
to the particular problem instance.

C. Scenario 2: Local Communication

In scenario 2, robots can communicate when they
are within one meter of each other. The macro-
actions are the same as above, but we added ones
to communicate and wait for communication. The re-
sulting macro-action set is: Go to depot 1, Go
to depot 2, Go to the drop-off area, Pick
up the small box, Pick up the large box,
Drop off a box, Go to an area between the
depots (the "waiting room"), Send signal
#1, Send signal #2, and Wait in the waiting
room for another robot.

Here, we allow the robots to choose to go to a “waiting
room” which is between the two depots. This permits the
robots to possibly communicate or receive communications
before committing to one of the depots. The waiting-room
macro-action is applicable in any situation and terminates
when the robot is between the waiting room walls. The
depot macro-actions are now only applicable in the waiting
room, while the drop-off, pick up and drop macro-actions
remain the same. The wait macro-action is applicable in
the waiting room and terminates when the robot observes
another robot in the waiting room. The signaling macro-
actions are applicable in the waiting room and are observable
by other robots that are within approximately a meter of the
signaling robot. Note that we do not specify what sending
each communication signal means.

The results for this three-robot domain are shown in Figure
8. The robots go to the waiting room and then two of the
robots go to depot 2 (the one on the right) and one robot
goes to depot 1 (the one on the left) (Figure 8(a)). Because
there are three robots, the choice for the third robot is random
while one robot will always be assigned to each of the depots.
Because there is only a large box to push in depot 1, the
robot in this depot goes back to the waiting room to try
to find another robot to help it push the box (Figure 8(b)).
The robots in depot 2 see two small boxes and they choose
to push these back to the goal (also Figure 8(b)). Once the
small boxes are dropped off, one of the robots returns to
the waiting room and then is recruited by the other robot to

(a) One robot goes to depot 1 and
two robots go to depot 2. The depot
1 robot sees a large box.

(b) The robot saw a large box, so it
moved to the waiting room while the
other robots pushed the small boxes.

(c) The green robot goes to the wait-
ing room to check for signals and the
white robot sends signal #1.

(d) Signal #1 is interpreted as a need
for help in depot 1, so they move to
depot 1 and push the large box.

Fig. 8. Scenario 2 video captures (limited communication).

push the large box back to the goal (Figure 8(c)). The robots
then successfully push the large box back to the goal (Figure
8(d)). In this case, the planning process determines how the
signals should be used to perform communication.

D. Scenario 3: Global Communication

In the last scenario, the robots can use signaling (rather
than direct communication). In this case, there is a switch
in each of the depots that can turn on a blue or red
light. This light can be seen in the waiting room and
there is another light switch in the waiting room that
can turn off the light. (The light and switch were simu-
lated in software and not incorporated in the physical do-
main.) The macro-actions were: Go to depot 1, Go to
depot 2, Go to the drop-off area, Pick up
the small box, Pick up the large box, Drop
off a box, Go to the "waiting room"), Turn
on a blue light, Turn on a red light, and
Turn off the light.

The first seven macro-actions are the same as for the
communication case except we relaxed the assumption that
the robots had to go to the waiting room before going to
the depots (making both the depot and waiting room macro-
actions applicable anywhere). The macro-actions for turning
the lights on are applicable in the depots and the macro-
actions for turning the lights off are applicable in the waiting
room. While the lights were intended to signal requests for
help in each of the depots, we did not assign a particular
color to a particular depot. In fact, we did not assign them
any meaning at all, allowing the planner to set them in any
way that improves performance.

The results are shown in Figure 9. Because one robot
started ahead of the others, it was able to go to depot 1
to sense the size of the boxes while the other robots go to
the waiting room (Figure 9(a)). The robot in depot 1 turned
on the light (red in this case, but not shown in the images)
to signify that there is a large box and assistance is needed
(Figure 9(b)). The green robot (the first other robot to the
waiting room) sees this light, interprets it as a need for help
in depot 1, and turns off the light (Figure 9(c)). The other
robot arrives in the waiting room, does not observe a light
on and moves to depot 2 (also Figure 9(c)). The robot in
depot 2 chooses to push a small box back to the goal and
the green robot moves to depot 1 to help the other robot
(Figure 9(d)). One robot then pushes the small box back
to the goal while the two robots in depot 1 begin pushing

(a) One robot starts first and goes to
depot 1 while the other robots go to
the waiting room.

(b) The robot in depot 1 sees a large
box, so it turns on the red light (the
light is not shown).

(c) The green robot sees light first,
turns it off, and goes to depot 1. The
white robot goes to depot 2.

(d) Robots in depot 1 move to the
large box, while the robot in depot
2 begins pushing the small box.

(e) Robots in depot 1 begin pushing
the large box and the robot in depot
2 pushes a small box to the goal.

(f) The robots from depot 1 suc-
cessfully push the large box to the
goal.

Fig. 9. Scenario 3 video captures (signaling).

the large box (Figure 9(e)). Finally, the two robots in depot
1 push the large box back to the goal (Figure 9(f)). This
behavior is optimized based on the information given to the
planner. The semantics of all these signals as well as the
movement and signaling decisions were decided on by the
planning algorithm to maximize value.

VI. RELATED WORK

There are several frameworks for multi-robot decision
making in complex domains. For instance, behavioral meth-
ods have been studied for performing task allocation over
time with loosely-coupled [24] or tightly-coupled [25] tasks.
These are heuristic in nature and make strong assumptions
about the type of tasks that will be completed.

Linear temporal logic (LTL) has also been used to specify
robot behavior [26], [27]; from this specification, reactive
controllers that are guaranteed to satisfy the specification can
be derived. These methods are appropriate when the world

dynamics can be effectively described non-probabilistically
and when there is a useful characterization of the robot’s
desired behavior in terms of a set of discrete constraints.
When applied to multiple robots, it is necessary to give
each robot its own behavior specification. In contrast, our
approach (probabilistically) models the domain and allows
the planner to automatically optimize the robots’ behavior.

Market-based approaches use traded value to establish
an optimization framework for task allocation [28], [29].
These approaches have been used to solve real multi-robot
problems [30], but are largely aimed to tasks where the robots
can communicate through a bidding mechanism.

Emery-Montemerlo et al. [31] introduced a (cooperative)
game-theoretic formalization of multi-robot systems which
resulted in solving a Dec-POMDP. An approximate forward
search algorithm was used to generate solutions, but because
a (relatively) low-level Dec-POMDP was used scalability
was limited. Their system also required synchronized exe-
cution by the robots.

VII. CONCLUSION

We have demonstrated—for the first time—that complex
multi-robot domains can be solved with Dec-POMDP-based
methods. The MacDec-POMDP model is expressive enough
to capture multi-robot systems of interest, but also simple
enough to be feasible to solve in practice. Our results show
that a general purpose MacDec-POMDP planner can gener-
ate cooperative behavior for complex multi-robot domains
with task allocation, direct communication, and signaling
behavior emerging automatically as properties of the solution
for the given problem model. Because all cooperative multi-
robot problems can be modeled as Dec-POMDPs, MacDec-
POMDPs represent a powerful tool for automatically trading-
off various costs, such as time, resource usage and com-
munication while considering uncertainty in the dynamics,
sensors and other robot information. These approaches have
great potential to lead to automated solution methods for
general probabilistic multi-robot coordination problems with
heterogeneous robots in complex, uncertain domains.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[2] C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J.
Kochenderfer, “Decentralized control of partially observable Markov
decision processes,” in Proc. of the 52nd IEEE Conf. on Decision and
Control, 2013.

[3] A. Mahajan, “Optimal decentralized control of coupled subsystems
with control sharing,” IEEE Transactions on Automatic Control,
vol. 58, 2013.

[4] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, no. 4, 2002.

[5] F. A. Oliehoek, “Decentralized POMDPs,” in Reinforcement Learn-
ing: State of the Art, ser. Adaptation, Learning, and Optimization,
M. Wiering and M. van Otterlo, Eds. Springer, 2012, vol. 12.

[6] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, 1998.

[7] C. Amato, G. Konidaris, and L. P. Kaelbling., “Planning with macro-
actions in decentralized POMDPs,” in Proc. 13th Int. Conf. on
Autonomous Agents and Multiagent Systems, 2014.

[8] J. Bohren, “SMACH,” http://wiki.ros.org/smach/, 2010.
[9] C. Amato, J. S. Dibangoye, and S. Zilberstein, “Incremental policy

generation for finite-horizon DEC-POMDPs,” in Proc. 19th Int. Conf.
on Automated Planning and Scheduling, 2009.

[10] J. S. Dibangoye, C. Amato, O. Buffet, and F. Charpillet, “Optimally
solving Dec-POMDPs as continuous-state MDPs,” in Proc. 24th Int.
Joint Conf. on Artificial Intelligence, 2013.

[11] F. A. Oliehoek, M. T. J. Spaan, C. Amato, and S. Whiteson, “Incre-
mental clustering and expansion for faster optimal planning in Dec-
POMDPs,” Journal of Artificial Intelligence Research, vol. 46, 2013.

[12] J. S. Dibangoye, C. Amato, A. Doniec, and F. Charpillet, “Producing
efficient error-bounded solutions for transition independent decentral-
ized MDPs,” in Proc. 12th Int. Conf. on Autonomous Agents and
Multiagent Systems, 2013.

[13] F. S. Melo and M. Veloso, “Decentralized MDPs with sparse interac-
tions,” Artificial Intelligence, 2011.

[14] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked
distributed POMDPs: a synthesis of distributed constraint optimization
and POMDPs,” in Proc. 20th National Conf. on Artificial Intelligence,
2005.

[15] P. Velagapudi, P. R. Varakantham, K. Sycara, and P. Scerri, “Dis-
tributed model shaping for scaling to decentralized POMDPs with
hundreds of agents,” in Proc. 10th Int. Conf. on Autonomous Agents
and Multiagent Systems, 2011.

[16] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 6, 1998.

[17] C. Kube and E. Bonabeau, “Cooperative transport by ants and robots,”
Robotics and Autonomous Systems, vol. 30, no. 1-2, 2000.

[18] R. Beckers, O. Holland, and J.-L. Deneubourg, “From local actions to
global tasks: Stigmergy and collective robotics,” in Artificial life IV,
vol. 181, 1994.

[19] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset, “Limited
communication, multi-robot team based coverage,” in Proc. IEEE Int.
Conf. on Robotics and Automation, vol. 4. IEEE, 2004.

[20] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial Intelligence, vol. 112, no. 1, 1999.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The Int. Journal of Robotics Research, vol. 32,
no. 11, 2013.

[22] S. Seuken and S. Zilberstein, “Memory-bounded dynamic program-
ming for DEC-POMDPs,” in Proc. 20th Int. Joint Conf. on Artificial
Intelligence, 2007.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2,
2009.

[24] L. E. Parker, “ALLIANCE: An architecture for fault tolerant multi-
robot cooperation,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 2, 1998.

[25] A. W. Stroupe, R. Ravichandran, and T. Balch, “Value-based action
selection for exploration and dynamic target observation with robot
teams,” in Proc. Int. Conf. on Robotics and Automation, vol. 4. IEEE,
2004.

[26] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” Robotics & Automation Magazine, IEEE,
vol. 14, no. 1, 2007.

[27] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on LTL specifications,” in Proc. 43rd IEEE
Conf. on Decision and Control, 2004.

[28] M. B. Dias and A. T. Stentz, “A comparative study between cen-
tralized, market-based, and behavioral multirobot coordination ap-
proaches,” in Proc. IEEE Int. Conf. on Intelligent Robots and Systems,
vol. 3, 2003.

[29] B. Gerkey and M. Matarić, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” Int. Journal of Robotics Research,
vol. 23, no. 9, 2004.

[30] N. Kalra, D. Ferguson, and A. T. Stentz, “Hoplites: A market-based
framework for planned tight coordination in multirobot teams,” in
Proc. Int. Conf. on Robotics and Automation, 2005.

[31] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun, “Game
theoretic control for robot teams,” in Proc. Int. Conf. on Robotics and
Automation, 2005.

