
Using POMDPs to Control an Accuracy-Processing Time Trade-off in Video
Surveillance

Komal Kapoor
Department of Computer Science and Engineering

University of Minnesota - Twin Cities
Minneapolis, Minnesota 55455, USA

Email: kapoo031@umn.edu

Christopher Amato ∗

CS & AI Laboratory (CSAIL)
Massachusetts Institute of Technology

Cambridge, Massachusetts, 02139, USA
Email: camato@csail.mit.edu

Nisheeth Srivastava
Department of Computer Science and Engineering

University of Minnesota - Twin Cities
Minneapolis, Minnesota 55455, USA

Email: nsriva@cs.umn.edu

Paul Schrater
Department of Computer Science and Engineering

University of Minnesota - Twin Cities
Minneapolis, Minnesota 55455, USA

Email: schrater@umn.edu

Abstract

With rapid profusion of video data, automated surveillance
and intrusion detection is becoming closer to reality. In order
to provide timely responses while limiting false alarms, an in-
trusion detection system must balance resources (e.g., time)
and accuracy. In this paper, we show how such a system can
be modeled with a partially observable Markov decision pro-
cess (POMDP), representing possible computer vision filters
and their costs in a way that is similar to human vision sys-
tems. The POMDP representation can be optimized to pro-
duce a dynamic sequence of operations and achieve a trade-
off between time and detection quality, taking into account
uncertainty in the filter predictions. In a set of experiments on
actual video data, we show that our method can both outper-
form static “expert” models and scale to large dynamic do-
mains. These results suggest that our method could be used
in real-world intrusion detection systems.

1 Introduction
Intrusion detection through video surveillance is becoming
increasingly important with the availability of inexpensive
cameras and monitoring technology. However, the volume
of graphic data generated by such systems and the need
for real-time performance requires the deployment of auto-
mated investigation techniques. Furthermore, the computa-
tional complexity of sophisticated scene understanding al-
gorithms renders online processing difficult. For automated
surveillance to become practicable with low hardware bud-
gets, it is essential that the average computational cost of the
computer vision methods used be reduced.

To solve this problem, we turn to nature, which per-
forms visual perception of extremely diverse stimuli in real-
time very satisfactorily. A prominent feature of perception
mechanisms in nature is that they are inherently hierarchi-
cal. Such a modular approach, in addition to being con-
ducive to specialization, allows natural systems to be adap-
tive to problems of varying complexity and resource avail-
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Figure 1: A schematic representation of a hierarchical
surveillance system allowing an adaptive trade-off between
granularity of object detection and computational cost. CV1,
CV2 and CV3 are computer vision filters that are incremen-
tally more informative about particular object identities.

ability. These systems serve as an essential mechanism for
saving cost and preserving functionality in varied real-time
scenarios. Several prominent artificial vision algorithms at-
tempt to mimic the human visual system at a cortical level
through a hierarchy of filters (Lowe 2001; Ranzato et al.
2007). We, however, attempt to emulate the hierarchical na-
ture of visual perception at a cognitive level (Marr 1982;
Kanwisher et al. 1996). We envisage a surveillance system
consisting of differentially sophisticated computer vision fil-
ters which are explicitly ordered in an adaptive hierarchy
sensitive to processing cost requirements.

Deriving detection strategies for different real world sce-
narios manually, perhaps with the help of a domain expert, is
not feasible except for very simple problems. Additionally,
because of the many available operators that could be uti-
lized in different combinations such that not all are perfect,
major fallacies can arise if the accumulated uncertainties are
ignored. This is more so applicable for computer vision op-
erators which are notoriously faulty. Nevertheless, by using
the structure present in the imagery and combining different
analysis techniques in an intelligent and dynamic manner the



strengths of each technique can be utilized, while minimiz-
ing weaknesses.

We express the intrusion detection problem as an instance
of a sequential decision-making problem where each opera-
tor is characterized by both its accuracy and its cost (see Fig-
ure 1). In this work, we implement this in practice using par-
tially observable Markov decision process (POMDP)(Kael-
bling, Littman, and Cassandra 1998) models, which opti-
mize the sequential decision-making problem while consid-
ering uncertainty about the performance of each computer
vision filter in different situations. Such a formulation allows
the system to cost-efficiently select appropriate sequences of
vision filters to discover potential intrusions in scenarios of
varying complexity given resource constraints.

The remainder of this paper is organized as follows. We
begin with a summary of related work in Section 2. We then
describe the video data that we used in this paper and give
an overview of our intrusion detection system in Section 3.
Section 4 provides details of the POMDP model utilized for
intrusion detection which allows us to dynamically balance
the computational cost of video analysis against the opera-
tor’s accuracy. Section 5 presents our experimental results,
showing our model can outperform a traditional “expert” ap-
proach using real-world data and scale to large problems.
Finally, we present our conclusion in Section 6.

2 Related Work
Automated visual surveillance systems targeted at minimiz-
ing human intervention are rapidly gaining importance. As
sophisticated computer vision techniques for object track-
ing and detection with real-time implementations become
available, there is significant interest in bringing these tech-
niques together to design integrated scene understanding
systems (Collins et al. 2000; Thirde et al. 2006).

Many surveillance systems deal with a sequence of op-
erators being applied to an image. However, little attention
has been paid to making such systems adaptive to varying
requirements of cost and accuracy. Furthermore, the accu-
mulation of uncertainty has not been addressed so far. There
have been earlier attempts (Toth and Kruegel 2002) to make
intrusion detection systems cost-sensitive, where costs are
defined generally as covering detection cost, manual inter-
vention costs, non-intervention costs etc. For example, (Lee
et al. 2002) describe a classification approach using cost-
sensitive decision rule sets to implement cost-sensitive intru-
sion detection. Unfortunately, Lane (Lane 2006) has recently
shown how classification approaches insufficiently express
the desiderata of intrusion detection systems, since they are
typically insensitive to false positive frequencies and the re-
flexive effects of detecting intrusions. He further shows that
POMDPs can be used in a class of network security intrusion
detection problems.

POMDPs have been used as cost-optimizing controllers in
multiple domains, e.g., for active chemical sensing (Gosangi
and Gutierrez-Osuna 2009) and for sensor scheduling (He
and Chong 2004). Although POMDPs possess a high com-
putational complexity, several approximate and heuristics
based approach have lead to their successful application to
real world problems having millions of states (Boger et al.

2005; Young et al. 2010).
Somewhat similar to our approach, Zhang et al. (Zhang

and Sridharan 2010) use an hierarchical POMDP model for
solving a scene analysis problem in a robot domain, but they
do not consider the dynamic case (using video) or learn ex-
pected costs of computer vision filters (instead they consider
color and shape filters only). They explicitly define a three-
layered hierarchy, such that the different layers in the hi-
erarchy address the questions; ‘where to look?’, ‘what to
process?’ and finally ‘how to process?’. In our problem of
intrusion detection, instead of using an explicit hierarchi-
cal POMDP implementation, we implicitly define an hier-
archy of visual operators using insights from human cog-
nition models for object classification and tracking and use
a POMDP based controller to adaptively generate detection
strategies. The structure of our problem allows us to adopt a
factored POMDP formulation, which could be incorporated
into other models such as that of Zhang and Sridharan to uti-
lize a wider range of filters and allow dynamic information
to be incorporated.

3 Scenario and System
We describe a real-world use case to demonstrate the vari-
ous merits of our approach. In our problem, we have a single
camera continuously monitoring a room. The room has a set
of objects forming the static background against which any
intrusion is detected. The system maintains a list of objects
recognized by it; any intrusion apart from this list of objects
raises an alarm. In our scaled-down model, this list of recog-
nized objects (the “whitelist”) comprises of a box, and two
men named Mike and Jonathan. A database of 1280×720
megapixel videos of the scene is generated for training and
testing purposes. Each video includes the view of the scene
taken from a Cannon Powershot S80 camera placed on a
tripod. In each video, either Mike, Jonathan or the box is
moving through the scene. Both forward and backward ori-
entations of Mike and Jonathan are captured separately. This
general scenario could be extended to any number of cam-
eras and objects.

Description of the Intrusion Detection System
A real-time intrusion detection system would comprise of
two components, an object detection and a tracking system.
The detection system locates a new object and defines an
appropriate region of interest (ROI), while the tracking sys-
tem tracks it through multiple frames. The detection system
also includes an object classification component that char-
acterizes what the object is. An intrusion is detected on fail-
ure to classify the object. We design both these components
by adopting a hierarchical approach implicitly through our
choice of operators, which consist of computer vision filters
and video operations (as discussed below). Through a train-
ing phase we learn cost and accuracy values for each oper-
ator. We use these values to build a POMDP model which
also encodes the desired trade-off between accuracy and re-
source requirements leading to an optimized solution.

Object Detection and Tracking Foveated visual search
which fixates on only the relevant parts of an image is an



Figure 2: A flow diagram demonstrating how our system in-
telligently deploys a Kalman Filter tracking mechanism to
track an object across multiple frames till it can recognize it
with confidence.

important part of our system for saving cost. In our cur-
rent implementation, we sample locations where the tar-
get is most likely to be found as predicted by a track-
ing system implemented using an implementation of a
Kalman Filter (KF) (Murphy 1998). We use the uncer-
tainty in KF output to determine the ROI size in the next
frame with PredictedSizex = PreviousSizex + 2 ∗
sqrt(V arx). Here, V arx is the variance for the KF predic-
tion. PredictedSizey can be computed similarly. The op-
erator for this action is called moveForward. The described
mechanism is represented pictorially in Figure 2.

Object Recognition Component We utilize a number
computer vision filters as operators in our system, but many
more could be added. The operators in our current imple-
mentation are described below. Of the 5 operators, back-
ground subtraction, saliency and skin detection are imple-
mented to assign an Interest Score to a ROI, which is then
thresholded to obtain a final binary output. The thresholds
are learnt during the training phase.

Background Subtraction (backSub) A probabilistic
background subtraction technique is used such that a model
of the expected background (mean and variance) is learned
for each pixel in the image using a few images. The ele-
ment of surprise (s) for a pixel measures the deviation of the
pixel’s value from the learned model parameters. The inter-
est score of the ROI is given by: count(s(pixel)>threshold)

count(pixels)

Saliency (saliency) A saliency score is assigned to
each pixel of an image using a complex visual cogni-
tion model of attention (Walther and Koch 2006). We
obtain baseline saliency scores for the pixels using a
given background image. The Interest Score for the ROI
is computed using:

∑
pixels SaliencyScore(image) −

SaliencyScore(background)
Skin Detection (skin) Skin detection works by assigning

to each pixel of an image the probability that it represents
skin, based on the learnt model of the skin hue (Conaire,
O’Connor, and Smeaton 2007). The Interest Score for the

ROI is computed using: count(P (skin) > 0)
SIFT (SIFT) SIFT features (Lowe 2001) have been pop-

ularly used for object detection as they are found to be dis-
criminative under changes in scale, orientation and illumina-
tion. In the training stage, SIFT features for a box, Jonathan
and Mike are computed and stored in the database using rep-
resentative images. These features are compared against the
features extracted from the test images to determine a match.

Face SIFT (faceSIFT) While the SIFT algorithm would
generically search for interesting features in the entire image
patch passed to it, most discriminating features in persons
are concentrated in their facial features. Therefore, we com-
bine SIFT feature matching with a face detection (Viola and
Jones 2004) front-end. SIFT feature matching then proceeds
as above, at a smaller computational cost because of the re-
duced size of the patch and higher accuracy of prediction as
superfluous background features are removed.

objectLocator This operator is used at the beginning of
a new detection process to orient the Intrusion Detection
System to portions of the image that are different than the
standard image background. A simple background subtrac-
tion technique is used for this purpose. Each pixel is allot-
ted an anomaly score as described for the backSub opera-
tor earlier and a binary image is obtained by thresholding
these anomaly scores. The intruding object is identified as
the largest connected component extracted from the binary
image and the center of this object is returned.

4 The POMDP-based Controller
POMDPs are a mathematical framework for sequential
decision-making under uncertainty and partial observability.
Formally, a POMDP is a tuple 〈S,A, T,R,Ω, O, γ〉 where
S, A and Ω are finite sets of states, actions and observa-
tions respectively, T : S × A × S → [0, 1] denotes the
transition model, R : S × A → R is the reward function,
O : Ω × A × S → [0, 1] represents the observation model,
and γ is the discount factor. The goal is to maximize the ex-
pected total cumulative reward starting at an initial state of
the system. The resulting solution can be viewed as a con-
troller that chooses actions based on the sequences of obser-
vations that are seen.

Our POMDP Model
For our system we define the POMDP tuple as follows:
• S ∈ X × Y × Size×Orient× Type, where :

– X : X-coordinate of the ROI enclosing the object
– Y : Y-coordinate of the ROI enclosing the object
– Size : Size of the ROI enclosing the object
– Orient : {F,B} , orientation of the object (Forward

‘F’ or Backward ‘B’).
– Type : {Jon(J),Mike(M), Box(B), Nothing(N)}

• A = Avision × size ∪ Amove ∪ Afound, where
Avision = {backSub, saliency, skin, SIFT, faceSIFT}
and Amove ={moveForward} as discussed in Section 3.
Avision can be applied using bounding boxes of different
sizes (ROIs). Afound is a set of actions representing the
type, orientation, location, size of the object that is found,
terminating the problem after it is taken.



• T , an identity matrix is used in our system. This is because
the Kalman filter is used for tracking and foveal sampling
is used to keep an object centered. These two systems
could be combined in the future to allow the POMDP to
use and direct tracking in a more systematic way (rather
than through observations as discussed below).

• R, with R(s, a) defined differently for vision operators
and found actions. When a ∈ {backSub, saliency, skin,
SIFT, faceSIFT, moveForward}, R is the cost of perform-
ing the operator a on an ROI of size size (defined as the ex-
pected time required by that operator on the ROI). When
a ∈ Afound, R denotes the positive or negative values for
correctly or incorrectly identifying the object.

• Ω, the values returned by the different operators, which
are based on the Interest Scores or noisy state information
as described below.

• O, where the probabilities are learnt for a ∈ {backSub,
saliency, skin, SIFT, faceSIFT} as well as Gaussian noise
adjusted size and location values for a ∈ {moveForward}.
For example, O returns the probability that skin detection
will return true given the ROI size, object type and ori-
entation. For SIFT there is an observation probability for
each object type and for movement operators, x, y and s
values are grouped into pairs that cannot be distinguished
and Gaussian noise is added.

Training and Policy Construction
The POMDP model was trained using a set of 60 training
images with approximately 10 images each of Jon Forward,
Mike Forward, Jon Backward, Mike Backward, Box and im-
ages with nothing happening. The system can track n possi-
ble ROI sizes given by size = (128∗i, 72∗i) for i = 1 to n.
Training ROIs were constructed around the identified object
returned using objectLocator, for these ROI sizes. Each op-
erator was applied in turn on each of the training ROIs and
the obtained output was recorded. The observation function
was calculated using the following formula for each vision
operator action: P (Obs = x|State = y,Action = a) =
No of images of State y for which observation = x

Total Number of images of state y
The POMDP controller adaptively controls the ROI size

on which an action is performed. Increasing the size of the
ROI patch reduces loss of information but is susceptible to
noise as irrelevant parts of the image get incorporated.For
example, skin can detect skin when applied to the creme col-
ored wall in the scene. The (negative) reward function for
each vision operator was obtained by computing the aver-
age cost (i.e., time) of running the operators on the training
images for each state.

5 Experiments and Evaluation
We demonstrate the capabilities of our approach through a
series of experiments. The experiments were conducted on
a test set comprising of 300 images containing 50 images
each for JF, JB,MF,MB,B, and N picked in order from our
set of videos. The POMDP model was solved using sym-
bolic Perseus (Poupart 2005), which is a fast, approximate
method that is able to use the fact the the states and the ob-
servations are decomposable into different factors that do

not influence each other. Many other optimal or approximate
POMDP solution methods could be used instead.

Static Model The first POMDP model we developed,
called the Static Model, concentrated on the Object Recog-
nition Module given a ROI. Hence, the moveForward filter
was omitted and the POMDP was initialized with a ROI cen-
tered around the coordinates provided by the objectLocator
operator for each successive image.

We constructed 3 versions of the POMDP controller each
expressing a different trade-off criterion between accuracy
and the cost of execution. The different cost-accuracy trade-
offs were brought about by appropriately setting the reward
functions in the model. The POMDPUpper and the POMD-
PLower Models represent the two extremes in the POMDP
Model construction such that POMDPUpper is obtained
when the cost of executing the operators is ignored (such
a model maximizes its accuracy) and the POMDPLower is
obtained when the the model gets the same reward irrespec-
tive of its prediction (this model has accuracy correspond-
ing to a random prediction). The POMDPMid model rep-
resents an intermediate model between the two extremes.
The rewards for this model reflect the test criteria used be-
low: −100 is given for choosing the wrong object, 100 is
given for choosing the correct object and orientation and 0
is given for choosing the correct object, but incorrect orien-
tation. Note that POMDPUpper represents an upper bound
not only on a POMDP solution, but also for any method that
uses the same learnt data model from our test set.

Dynamic Model The dynamic model integrates the static
model with the object tracking module. In this model, the
POMDP controller can call the moveForward operator if
a reasonable decision cannot be made based on the cur-
rent frame. The Kalman filter’s X and Y mean predictions
tell our system where to look for intrusions, whereupon
the cost-sensitive controller identifies the correct size patch
around the filter’s mean location to examine using vision al-
gorithms. For this model, |X|, |Y | and |S| were discretized
to ten each. Here, the rewards are the same as the static case,
except additive rewards are included for choosing locations
and size. Additional values of 10 and −10 are given for
choosing each the location and size correctly or incorrectly.

Results In Figure 3 we demonstrate how our intrusion
detection system functions with different accuracy-cost re-
quirements. The adaptive cost control in our system is pro-
vided by the Object Recognition Module and hence we focus
on the static model for this experiment. We compare how our
POMDP based controllers performed against a solution pro-
vided by a human expert, which we call the Expert Model.
The expert begins with background subtraction to identify if
something is happening in the scene. If something is happen-
ing, it subselects the area of the image. Then it performs skin
detection which allows it to differentiate between humans
and the non-humans. Finally, it either applies SIFTFace if
skin is detected or else applies SIFT and classifies the ob-
ject. The saliency operator is omitted as its incorporation is
seen to reduce the model’s performance. In this experiment,
accuracy is obtained by scoring each correct detection as 1
and each incorrect detection as 0. Models are penalized by



Figure 3: A comparison of accuracy and time for execution
of the POMDPDynamic model against the POMDPUpper,
POMDPMid, POMDPLower and Expert models.

People Objects Nothing
POMDPMid(accuracy=0.533) 18.494 4.367 4.981

Expert(accuracy=0.365) 22.844 6.635 9.719
SIFT(accuracy=0.289) 30.372 19.848 15.464

Table 1: Average time taken (in seconds) for people, objects
and nothing using the static, expert and SIFT Baseline model

0.5 if they get the orientation of Jon and Mike wrong. The
cost of execution is the execution time recorded on the same
machine as used for training.

The different versions of the POMDP model reflect the
ease with which such a formulation can adapt to differ-
ent cost-accuracy requirements. On average, all POMDP
models required less time than the expert model and only
POMDPLower, which represents a random policy, had a
lower accuracy. POMDPMid displays a trade-off between
time and quality, slightly decreasing accuracy while de-
creasing time. Note that the data itself is very noisy (as
demonstrated by the relatively low accuracy performance
of POMDPUpper), showing that methods that consider un-
certainty, such as POMDPs, are likely to outperform other
methods, such as the expert model, in noisy domains.

In Table 1, we show that our intrusion detection system
adapts cost of execution to the complexity of the scenario
better than the expert and the baseline SIFT model which
applies the SIFT operator on the entire image each time.
People (Jonathan and Mike), an inanimate object (Box) and
‘Nothing’ comprise three levels of complexity in our con-
strued scenario. Since SIFT cannot detect the orientation of
the people in the image, the accuracy values in the figures is
calculated such that correct detection is scored 1 point irre-
spective of orientation. The controller (POMDPMid) takes
considerably less time to process a box and ‘no change’
frames than frames with humans present, while producing
much better accuracy than the other models.

It can also be seen that the action sequences for the
different categories of objects reflect that the POMDP
formulation optimizes the inherent hierarchy in the op-
erators and effectively utilizes it for different scenar-
ios. For example, a typical action sequence for an im-

|S| |A| |Ω| Time
Static 1,024 57 8 37

Dynamic 1 10,240 67 40 140
Dynamic 2 102,400 157 200 512
Dynamic 3 1,024,000 167 1,000 3674

Table 2: POMDP problem sizes and running time (in sec-
onds with 500 belief points and alpha vectors)

age having Jonathan facing backward is backSub(yes)→
Skin(yes)→ SIFTFace(unknown)→SIFT(Jonathan) where
values in parentheses denote the results on applying the
operators. On the other hand, for ‘Nothing’ the con-
troller’s action sequence applies backSub(no) followed by
SIFT(Nothing). The low accuracy numbers obtained from
SIFT reflect the inherent complexity of the problem and the
limitations of the detection operators used. The strength of
our methodology is in the ability to make the most of the
given operators and combine them efficiently over time.

Finally the performance of the dynamic model is com-
pared against the previous models. Here, to make the com-
parison fair the same evaluation criteria was used as in
the static case, without incorporating object size or loca-
tion into the accuracy score. As shown in Figure 3, the dy-
namic model outperforms all the previous models in both
accuracy and computational cost. By employing an efficient
detection-tracking-detection mechanism it is able to quickly
gather more information about the object providing a more
reliable classification. Furthermore, the ability of the model
to skip uninformative frames allows it to to be more cost ef-
fective. In the dynamic case, the POMDP policy is very simi-
lar to POMDPMid, except moveForward is called additional
times to determine additional size and location information.

The scalability of the POMDP solution is shown in Table
2. Different versions of the dynamic model were created and
the sizes of these, along with the time taken to solve them
using factored Perseus is given. The full dynamic model is
called Dynamic 3 here while cases that do not include x, y
location and s are called Dynamic 1 and 2 respectively.

6 Conclusion
In this work, we design an intrusion detection system using a
hierarchical approach to scene understanding. We also suc-
cessfully integrate a POMDP formulation for object recog-
nition that balances the computational cost of image analysis
against the classification accuracy. We demonstrate through
experimentation on actual video data that the POMDP out-
performs baseline models made from an expert system and
SIFT. This shows that a POMDP model that produces an
optimized sequential solution that is adaptive based on the
information it receives can produce better results than stan-
dard static models. The results also show that our approach
is robust to noisy data by producing values near the upper
bound by retaining uncertainty estimates and finding ways to
reduce that uncertainty. The POMDP model is able to scale
to large problems with high uncertainty, producing the best
solution for a problem with over 1 million states and 100
observations.

Our approach is also very extensible. As computer vi-



sion algorithms improve or other systems are developed,
they can be incorporated by learning their expected time and
accuracy parameters and including them as actions in our
POMDP model. Furthermore, it has been shown that visual
search based on human eye tracking can be modeled using a
POMDP (Butko and Movellan 2008). This idea can also be
incorporated into our model, changing our POMDP transi-
tion model to retain estimates of an object’s location.

More generally, the trade-off between processing cost and
prediction accuracy is natural across a variety of epistemo-
logical settings, many of which could benefit from adopt-
ing an investigative approach similar to ours. In particular,
scenarios where the decision space can be naturally factored
and the decision process structured as a decision tree of oper-
ator/action sequences can easily benefit from our approach.
For example, in health and medicine, such a methodology
can advance solutions for cost efficient analysis (Lubell et
al. 2008). In climate studies, copious satellite data must be
analyzed to continuously track climate changes. Some ex-
amples include monitoring tropical deforestation (Tucker
and Townshend 2000), snow cover (Romanov, Gutman, and
Csiszar 2010) etc. A quick and efficient screening proce-
dure, along the lines we suggest, can be used for identifying
the most promising areas for further tracking while main-
taining performance guarantees. Precisely the same condi-
tions hold in mining astronomical data for interesting stellar
events (Feroz and Hobson 2008). Our hierarchical approach
to information exploration could be profitably employed in
many such situations.
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