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Abstract— A key challenge in multi-robot and multi-agent
systems is generating solutions that are robust to other self-
interested or even adversarial parties who actively try to
prevent the agents from achieving their goals. The practicality
of existing works addressing this challenge is limited to only
small-scale synchronous decision-making scenarios or a single
agent planning its best response against a single adversary
with fixed, procedurally characterized strategies. In contrast
this paper considers a more realistic class of problems where
a team of asynchronous agents with limited observation and
communication capabilities need to compete against multiple
strategic adversaries with changing strategies. This problem
necessitates agents that can coordinate to detect changes in
adversary strategies and plan the best response accordingly.
Our approach first optimizes a set of stratagems that represent
these best responses. These optimized stratagems are then inte-
grated into a unified policy that can detect and respond when
the adversaries change their strategies. The near-optimality of
the proposed framework is established theoretically as well as
demonstrated empirically in simulation and hardware.

I. INTRODUCTION

Multi-robot systems is a widely studied field, but the

research is typically focused on a single team of cooperative,

or self-interested, robots [1]–[3]. In contrast, many real-world

domains consist of a team of robots that must complete

tasks while competing against other adversarial robots. For

instance, consider a team of UAVs tasked with surveying

a scene or locating a secret base as well as an opposing

team of UAVs tasked with preventing the secret base from

being found. These adversarial scenarios require reasoning

about not only completing the tasks designated to the team,

but also considering what the adversarial robots may do to

prevent their completion. In this paper, we study the general

multi-robot decision-making problem with uncertainty in

outcomes, sensors and communication, while incorporating

multiple adversarial robots into this problem. Communi-

cation uncertainty and limitations further necessitates the

design of decentralized agents that can coordinate with their

teammates while anticipating changes in the adversary strate-

gies using only their partial views of the world. This is for the

first time all these forms of uncertainty as well as adversarial

behavior have been considered in the same decision-theoretic
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planning framework
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. Furthermore, the size of the spaces for

possible set of actions and coordination strategies for both the

teammates and adversaries scale exponentially in the number

of agents [6] and are typically much too large for an agent

to reason about directly. Hence, a successful agent usually

requires some form of high-level abstraction to reduce its

effective planning space [7]–[9].

One approach is therefore to create a set of basic

stratagems, which are best-responses to particular forms of

adversarial behavior. The reasoning problem is then reduced

to choosing among these basic stratagems in a given situa-

tion, thus significantly improving the scalability of planning.

This approach can be achieved by anticipating in advance

a small set of high-level tactics from which the adversaries

can choose in any situations, that capture the diversity of

their intentions. The task of the high-level planner then is

to choose a response to the adversaries’ current tactics and

follow it until it is determined that they have changed their

tactics and a new response is needed. This fits particularly

well in asynchronous robotic planning scenarios: since each

stratagem has different execution time, agent decision mak-

ing is no longer synchronized as assumed in existing non-

cooperative multi-agent frameworks [6], [10], [11].

The main contribution of this paper therefore focuses

on the design of such a high-level planner, which can be

decoupled into two separate tasks. The first task involves

generating a set of basic stratagems for a team of decentral-

ized agents, each of which is optimized to work best against

a particular tactic of the adversaries. This is formulated as

a set of Macro-Action Decentralized Partially Observable

Markov Decision Processes (MacDec-POMDPs) [9], [12]

that each characterize a cooperative scenario where a team

of decentralized agents collaborate to maximize the team’s

expected performance while operating in a stationary envi-

ronment simulated by a single tactic of the adversaries (Sec-

tion III). The stratagems can therefore be acquired by solving

for a set of probabilistic policy controllers that maximize

the expected total reward generated by the corresponding

MacDec-POMDPs. Then, the second task is to integrate

these specialized policy controllers into a unified policy

controller that works best on average against the adversaries’

switching tactics. This again can be achieved by optimizing

the unified controller with respect to a series of MacDec-

POMDPs (Section IV) so that it can detect situation changes

and switch opportunistically between these stratagems to

1
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respond effectively to the adversaries’ new tactical choice.

Interestingly, it can be shown that under a certain mild

assumption, the result of this stratagem integration/fusion

scheme appears to be near optimal with high probability

as shown in Section V. Finally, to empirically demonstrate

the effectiveness of the proposed framework, experiments

conducted for a robotic scenarios are presented in Section VI,

which show consistent results with our theoretical analysis.

II. BACKGROUND AND NOTATIONS

This section provides a short overview of MacDec-

POMDPs [9], [12] for decentralized multi-agent

decision-making under uncertainty. Formally, a MacDec-

POMDP is defined as a Dec-POMDP [13], [14] tuple

(I,S,{Ai}n
i=1

,{Oi}n
i=1

T,Z,R,g,b) augmented with a

finite set of macro-actions, Mi, for each agent, i, with

M , M
1

[ . . . [ Mn denote the set of joint macro-actions.

Each macro-action is defined as a tuple mi = (bmi , Imi ,rmi)
where bmi : S ! {0,1} and Imi 2 Si are sets of rules

that decide, respectively, the termination and eligibility

to initiate of the corresponding macro-action mi, while

rmi : Qi ! Ai denotes a low-level policy that maps agent

i’s local histories qi 2 Qi to primitive actions ai 2 Ai.

Each agent will follow a chosen macro-action mi until its

termination condition bmi is met. Its stream of observations

collected during the execution of mi is jointly defined as a

macro-observation hi. As such, each individual high-level

policy pi : zi ! mi of agent i can then be characterized as a

mapping from its history of macro-actions and -observations

zi , {(mi
t�1

,h i
t )}t�1

to the next macro-action. Planning in

Dec-POMDP therefore involves maximizing the following

total expected reward with respect to the joint high-level

policy p = (p
1

,p
2

, . . . ,pn):

p⇤ = argmax

p
E

"
+•

Â
t=0

g tR(st ,at)|b,M,p

#
(1)

Unlike Dec-POMDP’s, the MacDec-POMDP formalism

is naturally suitable for asynchronous multi-robot planning

scenarios since it is not necessary for the macro-actions

mi = (bmi , Imi ,rmi) to share the same execution time. In fact,

from the perspective of an individual agent, the outcome of

its selected macro-action (e.g., when it terminates) is non-

deterministic as its termination rule may depend on the global

state of the environment as well as the movements of the

other parties, which are not observable to the agent. This

makes optimizing p via (1) using traditional model-based dy-

namic programming techniques [9], [15]–[20] possible only

if the probability distribution over the stochastic outcome

of bmi , e.g., p(bmi(s) = 0 | s), is explicitly characterized.

This is not trivial and does not scale well in complex

decision problems with long planning horizon, vast state

and action spaces. Alternatively, to sidestep this difficulty,

it is also possible to parameterize and optimize p directly

via interaction with a black-box simulator

2

that implicitly

2

In many real-world scenarios, it is often easier to hand-code a simulator

that captures the interaction rules between agents than learning probability

models of their outcomes.

encodes the probabilistic models of transition T, observation

Z, reward R and termination rule bmi [8]. This interestingly

allows us to avoid modeling these probabilistic models

directly and improve the scalability of solving MacDec-

POMDPs. The specifics of this model-free approach are

detailed in Section III which serves as the building block of

our adversarial multi-agent planning paradigm in Section IV.

III. GENERATING BASIC STRATAGEMS

This section assumes we have access to a set of black-

box simulators preset by the domain expert to simulate

accurately the adversaries’ basic tactics, upon which more

advanced strategies might be built. For example, in popular

real-time strategy (RTS) games, a player can often anticipate

in advance a small set of effective basic tactics from which

the other competitors might choose in any situations. The

decision making process of a player therefore comprises

two parts. The first part focuses on formulating fundamental

stratagems to counter the anticipated tactics of the adver-

saries and is addressed in the remaining of this section. The

second part then is to integrate the resulting stratagems into

a unified strategy that can detect changes in the adversaries’

tactical choice and switch opportunistically between them in

response to those changes (see Section IV).

In particular, formulating a stratagem to counter a specific

tactic of the adversaries can be posed as solving a MacDec-

POMDP which characterizes a cooperative scenario where a

team of decentralized agents collaborate to maximize their

total expected reward while operating in an artificial envi-

ronment driven by the corresponding tactic simulator. The

stratagem can then be optimized via simulation as detailed

next. Formally, we represent a stratagem of a team of agents

as a set of decentralized finite-state-automata (FSA) policy

controllers, C s = {C s
k }n

k=1

, each of which characterizes a

single agent’s corresponding part of the stratagem, C s
k . Each

individual controller C s
k has p nodes {qi

k}
p
i=1

and there are

two probabilistic functions associated with each node qi
k:

(a) an output function l (m j
k|q

i
k) , l k

i j which decides the

probability l k
i j that macro-action m j

k 2 Mk is selected by

agent k; and (b) a transition function d (qt
k|qi

k,m
j
k) , d k

i j(t)
which determines the probability to transit from qi

k to qt
k

following the execution of the selected macro-action m j
k.

The weights w , {{l k
i j},{d k

i j(t)}} can then be optimized via

simulation using the graph-based direct cross-entropy (G-

DICE) optimization method described in [8] (see Figure 1).

In essence, G-DICE iteratively samples w from a distribu-

tion q(w;q) parameterized by q and simulates the induced

policy (with respect to w) with the opponent’s tactic E s ,
{E s

k }n
k=1

using its black-box simulator to acquire a perfor-

mance estimate L(C s(w),E s). At each iteration, a subset of

samples with top performance estimates is used to update q
via maximum likelihood estimation (MLE). This process has

been demonstrated empirically in [21] to converge towards

a uniform distribution over optimal values of w. In practice,

this optimization paradigm is very well-fitted to multi-robot

planning scenarios since it allows us to bypass the explicit
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Fig. 1: A team of two collaborative agents is represented by

two decentralized controllers C s , {C s
1

,C s
2

} characterizing their

stratagem against a basic tactic E s , {E s
1

,E s
2

} of the adversaries.

The sampling distribution of C s
’s parametric weights w is then op-

timized using performance feedback L(C s(w),E s) from interacting

with E s
’s black-box simulator.

probabilistic modeling of opponent’s tactic which is usually

fraught with the curses of dimensionality and histories,

especially in complex problem domains with large number of

agents, vast action and observation spaces [8]. This method

will also serve as the building block for our stratagem fusion

scheme detailed in Section IV below.

IV. STRATEGEM FUSION

This section introduces the stratagem fusion scheme that

integrates all basic stratagems (see Section III) into a set of

unified policies for a team of agents to collaborate effectively

against the adversaries’ high-level switching policies that

switch opportunistically among a set of basic tactics. The

task of stratagem fusion is then to formulate a high-level

policy that can automatically detect situation changes and

choose which response to follow at any point of decision

to adapt effectively to new situations (e.g., the adversaries

decide to switch to a different tactic) and consequently, maxi-

mize its expected performance. To achieve this, we model the

team’s high-level policy as a set of unified controllers, each

of which characterizes a single agent’s high-level individual

policy that results from connecting its low-level controllers

via inter-controller transitions (see Figure 2). This essentially

allows the agents to change their strategic choices during

real-time execution by transiting between different nodes

of different controllers. The weights associated with these

transitions therefore regulate the switching decision of the

high-level controller and need to be optimized. If we know

exactly how the adversaries change their tactics (i.e., their

black-box simulators) in response to our strategic choices,

these weights can be optimized using the same approach

described in Section III (see Figure 2b).

In practice, however, the adversaries’ switching

mechanism is often unknown or highly non-trivial to

characterize, especially in decentralized settings where their

strategic choices are largely influenced by their limited

observation and communication capacities, which are also

unknown. Existing works [6], [10], [22], [23] that attempt to

reason explicitly about the adversaries’ strategic rationalities

are therefore impractical and less robust in situations where

irrational choices arise due to limited cognitive abilities

q q�

q q�

w

C1
1

C2
1

C1 : w ⇠ q(w; )�

G-DICE

w

��
w ⇠ q(w; )�

{C1(w), C2(w)} E(u)

C(w)L( , E(u))

(a) (b)

Fig. 2: (a) An agent’s unified controller C
1

(w) that connects its

low-level controllers (i.e., stratagems) {C 1

1

,C 2

1

} via inter-controller

transitions (i.e., denote by the red, dash lines) whose weights w are

to be optimized; and (b) a team of two agents optimizes their high-

level joint controller {C
1

(w),C
2

(w)} via interaction with the black-

box simulator of the adversaries’ switching strategy E (u) given the

switching weights u.

and lack of communication. This motivates us to consider

a more reasonable approach to formulate a robust policy

that works well on average when tested against all possible

high-level strategies of the adversaries. To achieve this,

the adversaries’ switching policies are similarly modeled

as high-level controllers that connect low-level controllers

representing their basic tactics using inter-controller

transitions as illustrated in Figure 2a. The weights of

these inter-controller transitions (that regulate switching

decisions) are then treated as random variables distributed

by a known distribution. Thus, instead of optimizing our

agents’ switching weights with respect to a single realization

of the adversaries’ inter-controller transitions, we optimize

them with respect to the distribution of these switching

weights to embrace their uncertainty.

Formally, let C = {Ck}n
k=1

and E = {Ek}n
k=1

denote the

sets of high-level controllers for the teams of collabora-

tive agents and adversaries, respectively, where Ck = {C s
k }s

(Ek = {E s
k }s) denotes a single agent’s (adversary’s) individ-

ual switching policy. Let w = {wk}n
k=1

and p(u) denote

the weights associated with inter-controller transitions of

C = {Ck}n
k=1

and the distribution over random weights

u = {uk}n
k=1

that regulates the switching decision of E =
{Ek}n

k=1

, respectively. Our approach proposes to optimize w
such that the expected performance of the induced high-level

controller C (w) when tested against a random adversary

E (u) distributed by p(u) is maximized:

w⇤ = argmax

w

⇣
L(w) , Eu⇠p(u)

h
L(C (w),E (u))

i⌘
, (2)

where L(C (w),E (u)) denotes the simulated performance of

C (w) against E (u). However, since we can only access the

value of L(C (w),E (u)) via simulation, solving (2) requires

simulating C (w) against infinitely many candidates of E (u)
and is therefore intractable. To sidestep this intractability, we

instead exploit the following surrogate objective function,

bw = argmax

w

 
bL(w) , 1

m

m

Â
i=1

L
⇣
C (w),E (u(i))

⌘!
, (3)

where {u(i)}m
i=1

are i.i.d samples drawn from p(u). Intu-



itively, these are the potential candidates for the adversaries’

switching weights that can be identified in advance using

the domain expert’s knowledge. We can now solve (3) using

G-DICE [8] (see Section III) with a meta black-box that

aggregates the feedback of each black-box E (u(i)).

V. THEORETICAL ANALYSIS

This section derives performance guarantees for the above

stratagem fusion scheme (Section IV) which depend on

the solution quality of the graph-based direct cross-entropy

(G-DICE) optimization method described in [8]. To enable

the analysis, we put forward the following assumption:

Assumption 1. Let

bL(w) denote an arbitrary black-box

function being optimized via simulation with G-DICE using

(3). Let U , {w | bL(w) = maxw0 bL(w0)} denotes the set of

optimal solutions to (3). Then, let p(w) and q(w;q) denote

the uniform distribution over U and the sampling distribution

of G-DICE parameterized by q (see Section III). For any

d 2 (0,1), there exists a non-decreasing sequence {en,d }•
n=1

for which:

Pr

⇣
D

KL

⇣
q(w;q ⇤)kp(w)

⌘
 en,d

⌘
� 1�d ,

where n and q ⇤
denote the size of w and the optimal

parameterization of q(w;q) found by G-DICE, respectively.

This is a reasonable assumption to make since it has been

previously demonstrated that the underlying cross-entropy

optimization process of G-DICE empirically causes q(w;q)
to converge towards the uniform distribution p(w) over

optimal values of w [8], [21]. Then, let L(q) , Ew[L(w)]
(with L(w) defined in (2)) denote the expected performance

of C (w) when w is drawn randomly from q(w;q ⇤), we

are interested in the gap between L(q) and L(w⇤) (see

Eq (2)), the latter of which is the best performance that

can be achieved. Thus, this gap essentially characterizes the

near-optimality of q(w;q ⇤), which are bounded below. To

do this, we first establish the following results in Lemmas

1 and 2 that bound the difference between the generalized

performance of q (i.e., L(q)) and its empirical version (i.e.,

the average performance

bL(q) when tested against a finite

set of adversary candidates). Lemma 3 is then established

to bridge the gap between the

bL(q) and L(w⇤). The main

result that bounds the performance gap between L(q) and

L(w⇤) is then derived in Theorem 1 as a direct consequence

of the previous Lemmas.

Lemma 1. For any sampling distribution q(w;q), let

bL(q),
Ew

h
bL(w)

i
, with

bL(w) defined in (3), denotes the empirical

performance of C (w) where w is randomly drawn from

q(w;q). Then, it follows that with probability at least 1�d
over the choice of candidates {u(i)}m

i=1

for the adversaries’

switching weights,

L(q)  bL(q)+

 
D

KL

(q(w;q)kp(w))+ log

4m
d

2m�1

! 1

2

(4)

holds universally for all possible q(w;q) where p(w)
denotes the uniform distribution over the set U of optimal

choice of w for (3), i.e., U , {w | bL(w) = maxw0 bL(w0)}.

Exploiting the result of Lemma 1, we can further derive

a tighter and domain specific bound on the difference

between the generalized and empirical performance of our

stratagem fusion scheme (see Section IV) that incorporates

the empirical optimality of G-DICE (see Assumption 1):

Lemma 2. Let q , q(w;q ⇤) denotes the optimal sampling

distribution found by G-DICE [8]. Let r denotes the number

of stratagems of each agent (Section III) and let k denotes

the number of nodes in each agent’s individual specialized

controller C s
k . It then follows that with probability at least

1�d ,

L(q)  bL(q) +

0

@
eh, d

2

+ log

8m
d

2m�1

1

A

1

2

, (5)

where L(q) and

bL(q) are defined in Lemma 1,

h = O
�
nr(r �1)k2

�
and d 2 (0,1).

Lemmas 1 and 2 thus bound the performance gap between

L(q) and

bL(q). To relate L(q) to L(w⇤), we need to bound

the gap between

bL(q) and L(w⇤), which is detailed below.

Lemma 3. Let q , q(w;q ⇤) denotes the optimal sampling

distribution found by G-DICE [8] and d 2 (0,1), then with

probability at least 1�d ,

bL(q)  L(w⇤) +

 
log

1

d
2m

! 1

2

, (6)

where

bL(q) is defined in Lemma 1.

Using these results, the key result can be stated and proven:

Theorem 1. Let q , q(w;q ⇤) denotes the optimal sampling

distribution found by G-DICE [8] and w⇤
denotes the optimal

solution to (2). L(w⇤) thus represents the best possible

performance and with probability at least 1�d ,

L(q)  L(w⇤) + 2

0

@
eh, d

4

+ log

16m
d

2m�1

1

A

1

2

, (7)

where L(q) is defined in Lemma 1, h = O
�
nr(r �1)k2

�
.

Due to the limited space, all proofs of the above results are

deferred to the appendix of the extended version of this paper

at https://arxiv.org/pdf/1710.06525.pdf.

VI. EXPERIMENTS

This section presents an adversarial, multi-robot Capture-

The-Flag (CTF) domain adapted from its original domain in

[4] to demonstrate the effectiveness of our stratagem fusion

framework in Section IV. The specific domain setup for our

CTF variant is detailed in Section VI-A below.



(a) (b)

Fig. 3: Figures of (a) Capture-The-Flag (CTF) domain setup; and (b) hardware configuration of the experimented robots: each robot is built

from the Kobuki base of the TurtleBot 2 with on-board processing unit (Gigabyte Aero 14 laptop with Intel Core i7-7700HQ quad-core

CPU and NVIDIA GTX 1060 GPU with 6GB RAM) as well as sensory devices including (1) Intel RealSense Camera (R200) Developer

Kit (130mm x 20mm x 7mm) with Depth/IR: Up to 640⇥480 resolution at 60 FPS & RGB: 1080p at 30 FPS; and (2) Omnidirectional

RPLIDAR A2 with 4000 samples/s (10Hz) and 8/16m range.

A. Capture-The-Flag Domain

The domain settings for Capture-The-Flag are shown in

Fig. 3a, which depicts a competitive scenario between two

teams of decentralized, collaborative robots. Each team has

2�3 robots and the two teams divide the environment into

two parts separated by a horizontal boundary (the cyan line

in Fig. 3a), each of which belongs to one team (e.g., red

& blue). There are 10 vantage points within each team’s

territory. One of which contains the flag of the team (e.g.,

the red and blue circles in Fig .3a denote the locations of

the flags for the red and blue team, respectively). Each

team, however, only knows the location of its own flag,

thus making observations necessary to correctly detect

the enemy’s flag. The rule of the game is for each team

to defend its own flag while seeking to capture the flag

of the opposing team without getting caught. The game

ends when one team successfully captures the flag of the

opposing team. To achieve this, each team of agents need to

coordinate their movements between vantage points to reach

the opposing team’s flag and at the same time, avoid being

seen by opposing agents. If an agent engages an opposing

agent on foreign territory, its team will be charged with

a penalty. The particular macro-actions and -observations

available for each robot are detailed below, which feature

a wide range of interesting observations and patterns of

collaborative attack and defend for the opposing robots:

Macro-Actions. There are 4 classes of macro-actions

available to each robot at any decision time: (a) Move(p)
which invokes a collision avoidance navigation procedure

that directs the robot to vantage point p from its current

location; (b) Sentry(p
1

, p
2

, p
3

) which directs the robot

to vantage point p
1

and then lets it stay in a closed-loop

moving from p
1

to p
2

to p
3

and back to p
1

. There are 5

predefined instances for each team; (c) Pincer(p
1

, p
2

, p
3

, p
4

)
which directs the robot to vantage point pi (with i being its

role index in the team) and then p
4

. This creates an effective

pincer attack when 2 or 3 robots choose the same Pincer
instance. There are 3 different Pincer macros predefined for

each team; and (d) Tag which allows a robot to catch an

opposing robot on its own territory provided the opposing

robot is within a predefined tagging range.

Macro-Observations. There are in total 128 macro-

observations for each robot, which are generated by first

collecting raw observations the environment using the

robot’s on-board visual recognition/detection modules and

then summarizing the raw information into a 6-dimensional

observation vector. Each observation is represented as a

6-dimensional binary vector whose components correspond

to yes/no (1/0) answers to the following questions: (a) Is the

robot residing in its own or the opposition territory? (b) does

the enemy flag appear in sight? (c) is there an opposition

robot in close proximity? (d) is there an opposition robot

further away? (e) is there an allied robot in the vicinity? and

(f) is there an observed pincer signal emitted from allied

robots? The answers to these questions can be generated

from the raw visual processing unit on-board each robot.

Rewards. Finally, in order to encourage each team to

discover and capture the opposition’s flag as soon as

possible while avoid getting tagged, a reward mechanism

is implemented which issues (a) a negative reward of �1

to each robot at each time step; (b) a positive reward of 10

to a team if one of its member successfully tags an enemy;

(c) a negative reward of �10 for the entire team if one of

the team member gets caught; and (d) a large award of

500 is issued to a team when it successfully captures the

opposition’s flag. Conversely, this implies a large penalty of

�500 issued to the other team who loses the flag.

Black-box Simulators. In addition to the domain specifi-

cation above, the allied robots also have access to a set of

black-box simulators of the opposition’s fundamental tactics

upon which more advanced strategies might be built. In our

experiments, these are constructed as tuples of individual

hand-coded tactics (see Table I below) that include: (a) DL
and DR which script the robot to play defensively on left and

right flank of its territory using Sentry and Move macro-

actions, respectively; (b) DC which scripts the robot to play

defensively on the middle-front of the allied territory; (c)



TABLE I: The opposition’s team tactics E s
represented as combi-

nations of individual’s tactics {E s
k }k of 3 robots R1,R2 and R3.
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1

, AS E 4

2
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AS which leads the robot to a vantage point inside the

opposition’s territory to get an observation. Depending on

the collected observation, the robot either moves to another

vantage point or launch a pincer attack to a vantage point

estimated to contain the opposition’s flag; and (d) AA which

is similar to AS except that it enables the robot to retreat

to a safe place within the allied territory to gather extra

observations if it observes that there is an opposing robot

in close proximity. The team of allied robots however do not

have access to these details and can only interact with them

via a black-box interface that gives feedback on how well

their strategies fare against the opposition’s.

B. Experiment: Generating Basic Stratagems

To learn the fundamental stratagems to counter the opposi-

tion’s basic tactics as described in Section VI-A, we construct

separate MacDec-POMDPs (see Section II) that encapsulates

the opposition’s corresponding tactic simulator E s , {E s
k }k.

The corresponding stratagem can then be formulated and

computed as decentralized FSA controllers C s , {C s
k }k

(Section III) that optimizes these MacDec-POMDPs. This

is achieved via a recently developed graph-based direct

cross-entropy (G-DICE) stochastic optimization method of

[8]. Fig 4 shows that the empirical performance of each

stratagem C s
when tested against the corresponding opposi-

tion’s tactic E s
increases and converges rapidly to the optimal

performance when we increase the number of optimization

iterations. Table II then reports the averaged performance

(with standard errors) of each stratagem when tested against

all other opposition’s tactics over 1000 independent simula-

tions. The results interestingly show that the quality of each

stratagem C s
decreases significantly when tested against

other opposition’s tactics {E s0}s0 6=s that it was not optimized

to interact with (see Table II’s first 4 rows and columns).

This implies a performance risk when applying a single

stratagem against non-stationary opponent with switching

tactics: The applied stratagem might no longer be optimal

when the opponent switches to a new tactic. This necessitates

design of agents which can detect and respond aptly when

the opponents change their tactics which constitutes the main

contribution of our work (Section IV). Its effectiveness is

demonstrated next in Section VI-C.

C. Experiment: Stratagem Fusion

This section empirically demonstrates the effectiveness

of our stratagem fusion framework (Section IV) against

more sophisticated and non-stationary/strategic opponents. In

particular, we first evaluate the performance of the optimized

stratagems in the previous experiments (Section VI-B)

against a team of opponents with switching tactic: each
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Fig. 4: Graphs of each stratagem’s increasing performance qual-

ity in the no. of optimization iterations when optimized against

the opposition’s corresponding tactic of (a) (DL,DC,DR), (b)

(DL,AS,DR), (c) (AA,DC,AS) and (d) (AS,AA,AS) (see Ta-

ble I). The shaded area represents the confidence interval of the

average performance.

opponent independently switches its tactic based on a

set of probability weights u (as previously described in

Section IV). The results (averaged over 1000 independent

runs) are reported in the last columns of Table II, which show

significant decreases in the performance of each stratagem

when tested against an opponent that keeps switching

between tactics. This corroborates our observations earlier

that a single stratagem is generally ineffective against

opponents with unexpected behaviors. This can be remedied

using our stratagem fusion scheme (see Fig. 2) to integrate

all single stratagems into a unified (switching) policy which

can perform effectively against the switching tactic of the

opponents (assuming the switching weights u are known).

The reported results in the last row of Table II in fact

show that among all policies, the optimized switching

policy performs best against the tactic-switching opponents

and near-optimal against each stationary opponent: Its

performance is, in most cases, only second (and very close)

to the corresponding stratagem specifically designed to

counter the opponent’s tactic.

In practice, however, since the switching weights of the

opponents are usually not known a priori, a similar problem

arises when the actual weights u used by the opposition’s

switching tactic are different from those used to optimize

the switching policy of the allied robots. To resolve this,

our stratagem fusion scheme further treated the switching

weights u of the opposition as random variables whose

samples are either given in advance or can be drawn di-

rectly from a blackbox distribution p(u). A good-for-all
switching policy C (bw) can thus be computed using our

sampling method in Section IV (specifically, see Eq. (3))



TABLE II: Average performance (with standard errors) of the robots’ basic stratagems C 1,C 2,C 3,C 4

and switching policy C (w) when

tested against the opposition’s basic tactics E 1,E 2,E 3,E 4

(see Table I) and switching tactic E (u) with switching weights u. The switching

policy C (w) is learned assuming access to a blackbox simulator of E (u) (see Section III).

E 1 = (DL,DC,DR) E 2 = (DL,AS,DR) E 3 = (AA,DC,AS) E 4 = (AS,AA,AS) E (u)
C 1 481.235±0.119 405.737±0.933 184.081±1.453 126.665±1.277 329.598±1.137

C 2

450.004±1.217 439.339±0.699 191.609±1.279 97.129±1.392 295.037±1.302

C 3

296.436±2.616 139.034±1.573 374.477±1.049 190.408±1.285 263.993±1.343

C 4

323.481±2.463 218.717±1.432 352.924±0.924 375.485±0.893 309.696±1.229

C (w) 469.007±0.774 399.731±0.949 332.819±1.006 301.353±1.095 386.831±0.992

TABLE III: Average performance (with standard errors) of the allied robots’ good-for-one C (w) (optimized against a particular E (u))
and good-for-all C (bw) (optimized against the entire distribution of u – see Section IV) switching policies when tested against unseen

switching policies E (u(1)),E (u(2)), . . . ,E (u(6)) of the opposition.

E (u(1)) E (u(2)) E (u(3)) E (u(4)) E (u(5)) E (u(6))

C (w) 383.836±1.006 385.482±0.892 388.875±0.875 388.361±0.876 389.545±0.871 389.824±0.869

C (bw) 385.811±1.013 390.403±0.882 393.296±0.865 391.793±0.870 394.021±0.861 391.698±0.873
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Fig. 5: Graphs of the switching policy’s increasing performance

in the no. of optimization iterations when optimized against a

switching tactic of the opposition with (a) fixed switching weights;

and (b) random switching weights. The shaded area represents the

confidence interval surrounding the average performance.

which is guaranteed, with high probability, to produce near-

optimal performance against unseen switching weights of

the opposition. This is empirically demonstrated in Table III

which shows the superior performance of the good-for-
all policy C (bw) to that of the good-for-one policy C (w)
when tested against opponents with unseen tactic-switching

weights E (u(1)),E (u(2)), . . . ,E (u(6)). Also, similar to the

case of basic stratagem in Section III, the quality of those

switching policies increases and converges rapidly to the

optimal value when we increase the number of optimization

iterations (Fig. 5) in our stratagem fusion framework, which

demonstrates the its stability.

VII. HARDWARE EXPERIMENTS

In addition to the simulated experiments, we also conduct

real-time experiments with real robots to showcase the ro-

bustness of our proposed framework in practical RTS sce-

narios. The specifics of our robot configuration and domain

setup are shown in Fig. 3. Each robot is built with the

Kobuki base of TurtleBot 2 and configured with on-board

processing unit (Gigabyte Aero 14 laptop with Intel Core

i7-7700HQ quad-core CPU and NVIDIA GTX 1060 GPU

with 6GB RAM) as well as sensory devices including (1)

Intel RealSense Camera (R200) Developer Kit (130mm x

20mm x 7mm) with Depth/IR: Up to 640⇥480 resolution at

60 FPS & RGB: 1080p at 30 FPS; and (2) Omnidirectional

RPLIDAR A2 (4000 samples/sec (10Hz) and 8/16m range).

The information provided by the LIDAR sensor is directed

to each robot’s on-board collision-avoidance navigation pro-

cedure [24] to helps it localize and move around without

colliding with other robots and obstacles in the environment.

The visual feed from RealSense camera is passed through

the Single Shot MultiBox Detector [25] implemented on

each allied robot’s processing unit to detect its surrounding

objects (e.g., the opposing robots, other allied robots and

flags). The processed information is then used to generate

the high-level macro-observations (Section VI-A) for the

robot’s on-board policy controller. Fig. 6 shows a visual

excerpt from our video demo featuring a CTF scenario of 3

allied robots which implement the optimized policy produced

by our framework to compete against an opposing team

of 2 adversary robots implementing the hand-coded tactics

in Section VI-A. The excerpt shows interesting teamwork

between all allied robots in capturing the opposing team’s

flag despite their partial, decentralized views of the world

(see detailed narration in Fig. 6’s caption), which further

demonstrates the robustness of our proposed framework in

practical robotic applications. Interested readers are referred

to our video at https://youtu.be/EGLprD6MMGE for

a complete visual demonstration.

VIII. CONCLUSION

This paper introduces a novel near-optimal adversarial pol-

icy switching algorithm for decentralized, non-cooperative

multi-agent systems. Unlike the existing works in literature

which are mostly limited to simple decision-making sce-

narios where a single agent plans its best response against

an adversary whose strategy is specified a priori under

reasonable assumptions, we investigate instead a class of

multi-agent scenarios where multiple robots need to operate

independently in collaboration with their teammates to act

effectively against adversaries with changing strategies. To

achieve this, we first optimize a set of basic stratagems that

each is tuned to respond optimally to a pre-identified basic

tactic of the adversaries. The stratagems are then integrated

into a unified policy which performs near-optimally against
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Fig. 6: Image excerpts from a video demo showing (1) a team of 3 allied (blue) robots (B1,B2 and B3) that implement the optimized

stratagem produced by our framework (Section III) to compete against (2) an opposing team of 2 opponent (red) robots (R1 and R2)

which implement the hand-coded tactics DL and DR (see Section VI-A), respectively: (a) B1,B2 and B3 decide to invade the opposition

territory; (b) B1 and B3 decide to attack the center while B2 decides to take the left flank of the opposition; (c) B2 passes through R1’s

defense while B1 takes an interesting position to block R2 so that B3 can pass through its defense; (d) B1 and B2 detect the flag and

mount a pincer attack; (e) R2 arrives to defend the flag and B2 retreats to avoid getting tagged; and (f) without noticing B1 from behind,

R2 continues its DR patrol, thus losing the flag to B1.

any high-level strategies of the adversaries that switches

between their basic tactics. The near-optimality of our pro-

posed framework can be established in both theoretical and

empirical settings with interesting and consistent results. We

believe this is a significant step towards bridging the gap

between theory and practice in multi-agent research.
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