
Decentralized Control of
Partially Observable Markov Decision Processes

Christopher Amato, Girish Chowdhary, Alborz Geramifard, N. Kemal Üre, and Mykel J. Kochenderfer

Abstract— Markov decision processes (MDPs) are often used
to model sequential decision problems involving uncertainty un-
der the assumption of centralized control. However, many large,
distributed systems do not permit centralized control due to
communication limitations (such as cost, latency or corruption).
This paper surveys recent work on decentralized control of
MDPs in which control of each agent depends on a partial view
of the world. We focus on a general framework where there may
be uncertainty about the state of the environment, represented
as a decentralized partially observable MDP (Dec-POMDP),
but consider a number of subclasses with different assumptions
about uncertainty and agent independence. In these models, a
shared objective function is used, but plans of action must be
based on a partial view of the environment. We describe the
frameworks, along with the complexity of optimal control and
important properties. We also provide an overview of exact and
approximate solution methods as well as relevant applications.
This survey provides an introduction to what has become an
active area of research on these models and their solutions.

I. INTRODUCTION

Optimal sequential decision making and control problems
under uncertainty have been extensively studied both in the
artificial intelligence and control systems literature (see e.g.
[1]–[4]). The stochastic processes that describe the evolution
of the states of many real world dynamical systems and
decision domains can be assumed to satisfy the Markov prop-
erty, which posits that the conditional distribution of future
states of the process depends only upon the present state and
the action taken at that state. Hence, the Markov Decision
Process (MDP) framework has been widely used to formulate
both discrete and continuous optimal decision making and
control problems. Solution strategies have been developed
for MDP formulations when the full state information is
available, including dynamic programming [5], [6].

However, full state information is not always available in
many real world problems. Åström introduced the partially
observable MDP (POMDP) formulation for control with
imperfect state information and showed how to transform
a POMDP into a continuous-state MDP (the belief-state
MDP) [7]. Since then, several solution strategies that focus
on the efficiency and feasibility of obtaining a solution have
been explored for POMDPs in the AI community [8]–[10].
Control problems with incomplete state information have

C. Amato is with CSAIL at MIT, Cambridge, MA. G. Chowdhary is with
LIDS at MIT, Cambridge, MA and Mechanical and Aerospace Engineering
at Oklahoma State University, Stillwater, OK. A. Geramifard and N. K. Üre
are with LIDS at MIT, Cambridge, MA. M. J. Kochenderfer is with the
Department of Aeronautics and Astronautics at Stanford University, Stan-
ford, CA. Email: camato@csail.mit.edu, girish.chowdhary@okstate.edu,
agf@csail.mit.edu, ure@mit.edu, mykel@stanford.edu.
Research is supported in part by AFOSR MURI project #FA9550-091-0538.

also been tackled in the control systems literature. One of
the most successful examples of this work is the Linear
Quadratic Gaussian Regulator framework, which guarantees
a closed form optimal control solution for output feedback
control problems with linear state transition dynamics and
Gaussian state transition uncertainties, representing a sub-
class of POMDPs [11].

Many real world problems, however, can be tackled more
effectively by a collaborative approach in which various
(potentially heterogeneous) agents collaborate to achieve
common goals. A collaborative approach provides robustness
to individual agent failures and is generally more scalable to
complex, long duration missions. Examples of missions that
would benefit from a collaborative approach include wide-
area persistent surveillance, forward base resupply, extrater-
restrial operation, and disaster mitigation (see e.g. [12]–[14]).
These problems are often characterized by incomplete or par-
tial information about the environment and the state of other
agents due to limited, costly or unavailable communication.
For example, not all agents may be aware of the states of
other agents or may only have limited information about the
states of the environment. Furthermore, it is often unrealistic
to assume the existence of an all-knowing central agent for
computing optimal policies. That is, it is often unreasonable
or undesirable to communicate all available information to
other agents or a central decision-maker. Hence, there is
a significant research effort underway focused on creating
decentralized decision making and control algorithms for
collaborative agent networks where decision making depends
on partial views of the world.

The decentralized POMDP (Dec-POMDP) model, which
is an extension of the POMDP model, is one way of for-
mulating multiagent decision making and control problems
under uncertainty with incomplete or partial state information
[15]. In a Dec-POMDP, each agent receives a separate
observation and action choices are based solely on this
local information, but there is a single global reward for
the system. The dynamics of the system and the global
reward depend on the actions taken by all of the agents. A
desired solution maximizes a shared objective function while
agents make choices based on local information. The Dec-
POMDP model is more general and can potentially outper-
form many ofter multiagent frameworks such as consensus-
based multiagent control [12], [16], [17], which assumes
a given behavior rather than optimizing the action choices
given the limited information. The result of this generality
(which also includes general dynamics and rewards/costs) is
a high complexity for generating an optimal solution in a

Dec-POMDP. In fact, it has been shown that even for just
two agents, the Dec-POMDP problem is nondeterministic
exponential (NEXP) complete [15]. Hence, solving decen-
tralized multiagent optimal control problems represented as
Dec-POMDPs generally involves approximation techniques
and identifying additional domain structure.

In this paper, we present a brief survey of several recent
advances in tackling the Dec-POMDP problem. We begin in
Section II by formally discussing the Dec-POMDP model
and an associated optimal solution. We then describe in
Section III notable subclasses such as the Dec-MDP, network
distributed POMDPs (ND-POMDPs), and Dec-POMDPs
with explicit communication. In Section IV we present the
computational complexity of the Dec-POMDP and a number
of subclasses. We provide an overview of optimal and
approximate algorithms for general Dec-POMDPs as well
as some algorithms for subclasses in Section V. In Section
VI, we discuss some of the application domains and some
work on learning with these models (relaxing the assumption
that the Dec-POMDP model is known). Finally, we conclude
in Section VII.

II. BACKGROUND

We focus on solving sequential decision making problems
with discrete time steps and stochastic models with finite
states, actions, and observations, though the model can be
extended to continuous problems. A key assumption is that
state transitions are Markovian, meaning that the state at time
t depends only on the state and events at time t − 1. This
section presents the general Dec-POMDP formulation and
discusses solutions.

A. Dec-POMDP Model

A Dec-POMDP is a tuple 〈I, S, {Ai}, T,R, {Ωi}, O, h〉,
• I , a finite set of agents.
• S, a finite set of states with designated initial state

distribution b0.
• Ai, a finite set of actions for each agent, i with A =
×iAi the set of joint actions, where × is the Cartesian
product operator.

• T , a state transition probability function, T : S × A ×
S → [0, 1], that specifies the probability of transitioning
from state s ∈ S to s′ ∈ S when the set of actions
~a ∈ A are taken by the agents. Hence, T (s,~a, s′) =
Pr(s′|~a, s).

• R, a reward function: R : S × A → R, the immediate
reward for being in state s ∈ S and taking the set of
actions ~a ∈ A.

• Ωi, a finite set of observations for each agent, i, with
Ω = ×iΩi the set of joint observations.

• O, an observation probability function: O : Ω×A×S →
[0, 1], the probability of seeing the set of observations
~o ∈ Ω given the set of actions ~a ∈ A was taken which
results in state s′ ∈ S, Hence O(~o,~a, s′) = Pr(~o|~a, s′).

• h, the number of steps until the problem terminates,
called the horizon.

Environment

a1

o1
an

on

r

Fig. 1. Representation of n agents in a Dec-POMDP setting with actions
ai and observations oi for each agent i along with a single reward r.

As depicted in Fig. 1, a Dec-POMDP [15] involves multi-
ple agents that operate under uncertainty based on different
streams of observations1. Like an MDP or a POMDP, a Dec-
POMDP unfolds over a finite or infinite sequence of steps. At
each step, every agent chooses an action (in parallel) based
purely on its local observations, resulting in an immediate
reward and an observation for each individual agent.

The reward is typically only used as a way to specify
the objective of the task. It is generally not observed during
execution. The assumption of a common shared reward
allows very general formulations without having to specify
sub-rewards for sub-goals.

Because the full state is not directly measured, it may
be beneficial for each agent to remember a history of
its measurements (i.e., observations). This problem is akin
to output feedback control in which a history of output
measurements is required to reconstruct the original signal
[19], [20]. Unlike POMDPs, it is not typically possible to
calculate a centralized estimate of the system state from the
observation history of a single agent.

B. Dec-POMDP Solutions

A solution to a Dec-POMDP is a joint policy or a set
of policies, one for each agent in the problem. A local
policy for an agent is a mapping from local observation
histories to actions. Like the POMDP case, the goal is to
maximize the total cumulative reward, beginning at some
initial distribution over states b0. In general, the agents do
not observe the actions or observations of the other agents,
but the rewards, transitions, and observations depend on the
decisions of all agents. The work discussed in this paper (and
the vast majority of work in the Dec-POMDP community)
considers the case where the model is assumed to be known
to all agents.

The value of a joint policy, π, from state s is

V π(s) = E

[
h−1∑
t=0

γtR(~at, st)|s, π

]
,

which represents the expected value of the immediate reward
for the set of agents summed for each step of the problem
given the action prescribed by the policy until the horizon is
reached. In the finite-horizon case, the discount factor, γ, is

1Dec-POMDPs are also related to multiagent team decision problems [18]

typically set to 1. In the infinite horizon case, as the number
of steps is infinite, the discount factor γ ∈ [0, 1) is included
to maintain a finite sum and h = ∞. An optimal policy
beginning at state s is π∗(s) = argmaxπ V

π(s).

III. NOTABLE SUBCLASSES

We now discuss a number of subclasses of Dec-POMDPs.
The motivation for these subclasses is to reduce the com-
plexity of the problem while making assumptions that match
real-world problem domains.

A. Dec-MDPs

A Dec-MDP is a Dec-POMDP that is jointly fully observ-
able. Joint full observability is said to hold if the aggregated
observations made by all the agents uniquely determines the
global state, or if O(~o,~a, s′) > 0 then Pr(s′|~o) = 1.

A factored n-agent Dec-MDP (Dec-MDPn) is a Dec-MDP
where the world state can be factored into n components,
S = S1× . . .×Sn where each agent, i, possess a local state
set Si. Another state component, S0, is sometimes added
to represent an “unaffected state” that is a property of the
environment which is not affected by any agent actions. For
clarity reasons, we omit S0 from the discussion below, but it
can be incorporated in a straightforward manner. A factored,
Dec-MDPn is said to be locally fully observable if each agent
observes its own state component, ∀oi ∃si : Pr(si|oi) = 1.
In factored Dec-MDPs, si ∈ Si is referred to as the local
state, ai ∈ Ai as the local action and oi ∈ Ωi as the local
observation for agent i.

B. Dec-MDPs with Independence

A factored, Dec-MDPn is said to be transition independent
if there exists T1 through Tn such that

T (s,~a, s′) =

n∏
i=1

Ti(si, ai, s
′
i).

That is, the transition probability for an agent depends only
on that agent’s action and previous local state. This type
of independence occurs if the dynamics of agents do not
interfere with each other’s dynamics.

Similarly, a factored, Dec-MDPn is said to be observation
independent if there exists O1 through On such that

O(~o,~a, s′) =

n∏
i=1

Oi(oi, ai, s
′
i).

That is, an agent’s observation probability depends only on
that agent’s resulting local state and action. This type of
independence may occur due to the lack of sensors to detect
the effects of other agents on the environment, such as when
agents may be operating in different locations or when they
do not affect the environment at all. Many tracking problems
can be assumed to be observation independent [21]–[23].

If a Dec-MDP has independent observations and transi-
tions, then the Dec-MDP is also locally fully observable.
This occurs because the observations collectively must fully
determine the state of the system, but they cannot be af-
fected by the other agents. As a result, there cannot be

!

"

$

%

Fig. 2. An example of a networked distributed POMDP (ND-POMDP),
in which transition and observation models for each agent is indepen-
dent of the others, while the reward function is only dependent on the
neighboring agents: R(s,~a) = R(s1, s2, a1, a2) + R(s2, s3, a2, a3) +
R(s2, s4, a2, a4) +R(s3, s5, a3, a5) +R(s4, s5, a4, a5).

noise concerning local state components. A Dec-MDP with
independent transitions and observations is often referred to
as a TI Dec-MDP, dropping the observation independence
label since it is implied that the observations are represented
by local states in this problem.

A factored Dec-MDPn is said to be reward independent if
there exist R1 through Rn such that R((s1, . . ., sn),~a) =
f (R1(s1, a1), . . . , Rn(sn, an)) and f is a monotonically,
non-decreasing function. These assumptions allow the reward
to be decomposed in a way that ensures that the global
reward is maximized by maximizing the local rewards. It
is often assumed that the rewards are additive, R(s,~a) =∑
iRi(si, ai). Problems with additive rewards (but not in-

dependent transitions and observations) are very general and
natural domains include various types of multi-robot foraging
problems [24].

C. Networked Distributed POMDPs

Networked distributed POMDPs (ND-POMDPs) [21] rep-
resent factored Dec-POMDPs with independent transitions
and observations with an additional assumption: block re-
ward independence. As a result, rewards in ND-POMDPs can
be decomposed based on neighboring agents and summed
as R(s,~a) =

∑
lR(sl1 , . . . , slk , s0, 〈al1 , . . . , alk〉) where l

represents a group of k = |l| neighboring agents and s0
represents the “unaffected state.” Also note that transition
and observation independence in the factored Dec-POMDP
case are the same as defined for Dec-MDPs above. Figure 2
depicts an example ND-POMDP with 5 agents and their con-
nectivity network and a resulting set of overlapping binary
reward functions. As discussed in Section VI, ND-POMDPs
have been used to represent various target tracking and
networking problems. While, in general, ND-POMDPs have
the same worst-case complexity as general Dec-POMDPs,
algorithms are able to make use of locality of interaction
to solve them more efficiently in practice (as discussed in
Section V).

D. MMDPs

Another subclass is the multiagent Markov decision pro-
cess (MMDP) [25]. In an MMDP, each agent is able to
observe the true state of the system, making the problem fully

observable. More formally, a Dec-POMDP is fully observ-
able if there exists a mapping for each agent i, fi : Ωi → S
such that whenever O(~o,~a, s′) is non-zero then fi(oi) = s′.
Because each agent is able to observe the true state, an
MMDP can be solved as an MDP by using coordination
mechanisms to ensure agent policies are consistent with each
other. The MMDP model is appropriate when agents observe
the true state, but still must coordinate on their selection of
actions. Efficient solution methods have also been studied in
similar models using factored MDPs [26], [27].

E. Dec-POMDPs with Explicit Communication

While communication can be included into the actions and
observations of the general Dec-POMDP model, communi-
cation can also be considered explicitly. Free, instantaneous,
and lossless communication is equivalent to centralization
as all agents have access to all observations at each step
(allowing the problem to be solved as a POMDP [28]).
When communication has a cost or can be delayed or lost,
agents must reason about what and when to communicate.
In particular, a Dec-POMDP with Communication (Dec-
POMDP-Com) [29] augments the Dec-POMDP formulation
with a set of communication messages Σ. The reward
function R(s,~a, ~σ) is a function of the current state, joint
action, and the joint message ~σ. The complexity of a Dec-
POMDP-Com remains the same as a Dec-POMDP, but in
some cases it may be beneficial to consider communication
explicitly. For instance, it may be useful to reason about
and optimize communication separately or under a different
criterion. Several other communication models have also
been studied [18], [30].

IV. NUMERICAL COMPLEXITY

We first discuss the worst-case complexity of general
Dec-POMDPs and Dec-MDPs, and then elaborate on the
complexity of the subclasses.

Given a Dec-POMDPn and a Dec-MDPn with a value
threshold and a bound on the horizon h < |S|, then

Theorem 1: ∀n ≥ 2, Dec-POMDPn ∈ NEXP.
Theorem 2: Dec-MDP2 is NEXP-hard.
Corollary 3: ∀n ≥ 2, both Dec-POMDPn and Dec-MDPn

are NEXP-complete.

The proof [15] is not included due to space considerations,
but for intuition note that Dec-POMDPs (and Dec-MDPs) are
solvable in NEXP time by guessing a solution in exponential
time and then, given this fixed solution, evaluating it by
generating the appropriate Markov process (which can be
seen as an exponentially bigger belief-state MDP). The
NEXP-hardness result follows from a reduction from the
Tiling problem [31] (each agent must place a tile in a grid
based solely on local information and the result must be
consistent).

Theorem 4: In Dec-MDPs with independent transitions
and observations (and no unobserved state S0), optimal
policies for each agent depend only on the local state and
not on agent histories, resulting in NP-completeness.

TABLE I
WORST-CASE COMPLEXITY OF (FINITE-HORIZON) PROBLEMS

Model Complexity

MDP P-complete
MMDP P-complete
TI Dec-MDP with independent rewards P-complete
TI Dec-MDP NP-complete
POMDP PSPACE-complete
MPOMDP PSPACE-complete
ND-POMDP NEXP-complete
Dec-MDP NEXP-complete
Dec-POMDP-Com NEXP-complete
Dec-POMDP NEXP-complete

The full proof [30], [32] is again deferred, but note that
action and observation histories do not provide additional
information about an agent’s own state information (since
this is locally fully observable) and because of transition
and observation independence, these histories do not provide
additional information about the other agents. The optimal
policy for a TI Dec-MDP is a non-stationary mapping from
local states (observations) to actions for each agent. While it
may be somewhat surprising that Dec-MDPs have the same
complexity as Dec-POMDPs, the joint full observability
property only implies that the true state is known when the
observations are shared, which is not the case in general.

Theorem 5: Dec-MDPs with independent transitions, ob-
servations and rewards can be solved independently for each
agent and have resulting complexity that is P-complete.

This theorem follows from the fact that solving an MDP is
P-complete [33], [34].

Table I summarizes the complexity results. Because
infinite-horizon POMDPs are undecidable [35], all infinite-
horizon Dec-POMDP-based models are also undecidable.
Additional complexity results for these and other models
have also been studied [30], [34], [36].

V. ALGORITHMS

In this section, we consider algorithms for the case where
the Dec-POMDP model is assumed to be known to all
agents. Many algorithms also assume offline centralization
for planning, but decentralized execution of the policy. In
this way, agents can coordinate in choosing the set of
policies that will be used, but the specific actions chosen
and observations seen will not be known to the other agents
during execution. The Dec-POMDP model does not make
any assumptions about how the solution is generated (in a
centralized or decentralized fashion), only that the resulting
policy can be executed in a decentralized manner. Also note
that POMDP algorithms cannot be easily extended to apply
to Dec-POMDPs. One reason for this is that the decentralized
nature of the Dec-POMDP framework results in a lack of a
shared belief state, typically making it impossible to properly
estimate the state of the system based on local information.

Because a shared belief state cannot typically be cal-
culated, the policy is not typically recoverable from the
value function as in POMDP methods [8]. As a result,

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

(a)

o1

o1 o2

o2

a2a1

(b)

Fig. 3. A single agent’s policy represented as (a) policy tree and (b)
finite-state controller with initial state shown with a double circle.

explicit policies are usually maintained in the form of policy
trees in the finite-horizon case or finite-state controllers
in the infinite-horizon case as shown in Fig. 3. One tree
or controller is maintained per agent and the policy can
be extracted by starting at the root or initial node of the
controller and continuing to the subtree or next node based
on the observation seen. A policy can be evaluated by
summing the rewards at each step weighted by the likelihood
of transitioning to a given state and observing a given set
of observations. For a set of agents, the value of trees or
controller nodes ~q while starting at state s is given by

V (~q, s) = R(~a~q, s) +
∑
s′,~o

T (s′,~a~q, s)O(~o,~a~q, s′)V (~q~o, s′),

where ~a~q are the actions defined at ~q, while ~q~o are the sub-
trees or resulting nodes of ~q that are visited after ~o have been
seen. An optimal policy can be shown to be deterministic,
but stochastic controllers can be used to represent the same
value with fewer nodes [37].

A. Optimal Approaches

Like MDPs [5] and POMDPs [8], [10], dynamic pro-
gramming methods have been used in the context of Dec-
POMDPs [38]. Here, a set of T -step policy trees, one for
each agent, is generated from the bottom up. On each step,
all t-step policies are generated that build off the policies
from step t− 1. Thus, all 1-step trees (single actions) would
be generated on the first step. Any policy that has lower value
than some other policy for all states and possible policies of
the other agents is then removed, or pruned (using linear pro-
gramming). This generation and pruning continues until the
given horizon is reached and the set of trees with the highest
value at the initial state distribution is chosen. More efficient
dynamic programming methods have also been developed,
by reducing the number of policy trees generated at each
step through reachability analysis [39] or by compressing
policy representations [40]. A dynamic programming method
has also been developed for generating ε-optimal (stochastic)
finite-state controllers for infinite-horizon problems [37].

Instead of computing policy trees for Dec-POMDPs using
the bottom-up approach of dynamic programming, trees can
also be built using a top-down approach via heuristic search
[41]. In this case, a search node is a set of partial policies
for the agents up to a given horizon. These partial policies

can be evaluated up to that horizon and then a heuristic
(such as an MDP or POMDP solution value) can be added.
The resulting heuristic values are over-estimates of the true
value, allowing an A*-based search [42] through the space of
possible policies for the agents, expanding promising search
nodes to horizon t+1 from horizon t. A more general search
representation using the framework of Bayesian games was
also developed [43]. Recent work has greatly improved the
scalability of the original algorithms by clustering proba-
bilistically equivalent histories and incrementally expanding
nodes in the search tree [44].

Other alternatives have also been developed. One recent
approach takes advantage of the centralized planning phase
for decentralized control by transforming Dec-POMDPs into
continuous-state MDPs with piecewise-linear convex value
functions [45]. This allows powerful POMDP methods to
be utilized and extended to take advantage of the struc-
ture in Dec-POMDPs, greatly increasing scalability over
previous methods. Other methods include a mixed integer
linear programming formulation [46] and an average reward
formulation for transition independent Dec-MDPs [47].

B. Approximate Approaches

While optimal solution methods for Dec-POMDPs have
been an active area of research, scalability is the main
concern. Hence, a number of approximate methods have been
developed. The major limitation of dynamic programming
approaches is the explosion of memory and time require-
ments as the horizon grows. This lack of scalability occurs
because each step requires generating and evaluating all joint
policy trees (sets of policy trees for each agent) before
performing the pruning step. Memory bounded dynamic
programming (MBDP) techniques mitigate this problem by
keeping a fixed number of policy trees for each agent at
each step [48]. A number of approaches have improved upon
MBDP by limiting [49] or compressing [50] observations, re-
placing the exhaustive backup with branch-and-bound search
in the space of joint policy trees [51] as well as constraint
optimization [52] and linear programming [53] to increase
the efficiency of selecting the best trees at each step.

As an alternative to MBDP-based approaches, a method
called joint equilibrium search for policies (JESP) [54] uti-
lizes alternating best response. Initial policies are generated
for all agents and then all but one is held fixed. The
remaining agent can then calculate a best response (local
optimum) to the fixed policies. This agent’s policy then
becomes fixed and the next agent calculates a best response.
These best response calculations to fixed other agent policies
continue until no agent changes its policy. The result is a joint
policy that is only locally optimal, but it may be high-valued.
JESP can be made more efficient by incorporating dynamic
programming in the policy generation.

Like finite-horizon approaches, methods for producing
ε-optimal infinite-horizon solutions are can also become
intractable. As a result, ε-optimal solutions cannot typically
be found for any reasonable bound of the optimal solution in
practice. To combat this intractability, approximate infinite-

horizon algorithms have sought to produce a high quality
solution while keeping the controller sizes for the agents
fixed. The concept behind these approaches is to choose a
controller size |Qi| for each agent and then determine what
the actions and transitions should be for the set of controllers.
Approximate infinite-horizon algorithms set these action se-
lection and node transition parameters using methods such as
heuristic search in the space of deterministic controllers [55],
continuous optimization techniques in the space of stochastic
controllers [56]–[58] or expectation maximization [59]–[61].

The above algorithms improve scalability to larger prob-
lems over optimal methods, but do not possess any bounds on
solution quality. A few approximate algorithms do possess
such a bound, including a method for bounding value in
pruning additional policies in dynamic programming [62]
and an approach that estimates the value function using
repeated sampling [63].

C. Algorithms for Subclasses

Additional methods have also been developed to solve
transition and observation independent Dec-MDPs more
efficiently. These methods include a bilinear programming
algorithm [64] and recasting the problem as a continuous
MDP with a decentralizeable policy [65].

There are ND-POMDP methods that produce quality
bounded solutions [66], use finite-state controllers for agent
policies [67], employ constraint-based dynamic program-
ming [22], and combine inference techniques [68]. Other
formulations for locality of interaction have also been devel-
oped. These include more general models such as factored
Dec-POMDPs [69] and weakly coupled Dec-POMDPs [70]
as well as models that assume agents only coordinate in
certain locations [71]–[73].

A number of researchers have explored solution methods
using communication. This includes using a centralized pol-
icy as a basis for communication [74], and forced synchro-
nizing communication [75] as well as myopic communica-
tion, where an agent decides whether or not to communicate
based on the assumption that the communication can take
place on this step or never again [76]. Other work includes
stochastically delayed communication [77] and communica-
tion for online planning in Dec-POMDPs [78].

VI. APPLICATIONS AND LEARNING

A number of motivating applications for Dec-POMDPs
have been discussed. Many of the earlier applications were
motivating, but not deployed, while some of the newer work
has been deployed on various platforms. Applications include
multi-robot coordination in the form of space exploration
rovers [79], helicopter flights [18], foraging [24] and naviga-
tion [71], [80], [81], load balancing for decentralized queues
[82], network congestion control [83], [84], network routing
[85], wireless networking [61] as well as sensor networks
for target tracking [21], [22] and weather phenomena [23].
There is also an application of Dec-POMDPs to a real-time

strategy video game.2

This paper discussed the planning problem in which the
model is assumed to be known. Other work that is out
of the scope of this paper has developed a few learning
techniques that relax the model availability assumption.
These approaches include model-free reinforcement learning
methods using gradient-based methods to improve the poli-
cies [86], [87], learning using local signals and modeling the
remaining agents as noise [88] and using communication to
learn solutions in ND-POMDPs [89] and Dec-POMDPs [90].

VII. CONCLUSIONS

The decentralized partially observable Markov decision
process (Dec-POMDP) is a rich framework to formulate
sequential decision making and control problems for a dis-
tributed group of agents collaborating to achieve a common
goal under uncertainty. As it is often the case that communi-
cation has some cost, latency or unreliability, centralization
may not be possible or may result in a poor solution.
In contrast, solutions to Dec-POMDPs yield decentralized
control policies that the agents execute to collaboratively
optimize the common objective. However, while many more
specialized multiagent models have been widely studied, the
more general problem of scaling up Dec-POMDP solution
methods with an increasing number of agents is still an
open research question. Fortunately, there has been a large
amount of work in recent years on utilizing problem structure
to increase scalability in optimal and approximate solution
methods as well as more scalable subclasses that relax prob-
lem assumptions which show a large amount of progress. In
this paper, we surveyed the Dec-POMDP model, a number of
these subclasses, provided an overview of their complexity,
and discussed the main classes of solution methods. We also
presented a brief overview of the significant ongoing research
activity in scaling up Dec-POMDP solution methods and
applying Dec-POMDP formulations to real-world problems.
Due to the increasing trend of tackling real-world problems
with distributed teams of heterogeneous agents, we expect
that significant research activity in these areas will continue
and result in even greater scalability in the near future.

VIII. ACKNOWLEDGMENTS

We would like to thank Shlomo Zilberstein and Matthijs
Spaan for developing material in conjunction with Christo-
pher Amato on a related tutorial which served as an inspi-
ration for this paper.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control. Bel-
mont, MA: Athena Scientific, 2007, vol. I–II.

[2] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, 2010.

[3] A. E. Bryson and Y.-C. Ho, Applied Optimal Control. Waltham:
Blaisdell Publishing Company, 1969.

[4] R. F. Stengel, Stochastic Optimal Control: Theory and Application.
New York: J. Wiley and Sons, 1986.

2See the video at http://www.screencast.com/t/M2Y2ZDA0M from
Christopher Jackson, Kenneth Bogert, and Prashant Doshi.

[5] R. A. Howard, Dynamic Programming and Markov Processes. MIT
Press, 1960.

[6] R. E. Bellman, Dynamic Programming. Princeton University Press,
1957.

[7] K. J. Åström, “Optimal control of Markov decision processes with
incomplete state estimation,” Journal of Mathematical Analysis and
Applications, vol. 10, pp. 174–205, 1965.

[8] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 1–45, 1998.

[9] P. Poupart, “Partially observable Markov decision processes,” in En-
cyclopedia of Machine Learning. Springer, 2010, pp. 754–760.

[10] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP
solvers,” Autonomous Agents and Multi-Agent Systems, pp. 1–51,
2012.

[11] A. E. Bryson, Applied Linear Optimal Control: Examples and Algo-
rithms. Cambridge University Press, 2002.

[12] R. Murray, “Recent research in cooperative control of multi-vehicle
systems,” ASME Journal of Dynamic Systems, Measurement, and
Control, 2007.

[13] E. Semsar-Kazerooni and K. Khorasani, “Multi-agent team coopera-
tion: A game theory approach,” Automatica, vol. 45, no. 10, pp. 2205–
2213, 2009.

[14] Office of the Secretary of Defense, “Unmanned aerial vehicles
roadmap 2002–2027,” Tech. Rep., December 2002.

[15] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840,
2002.

[16] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[17] M. Egerstedt and M. Mesbahi, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[18] D. V. Pynadath and M. Tambe, “The communicative multiagent team
decision problem: Analyzing teamwork theories and models,” Journal
of Artificial Intelligence Research, vol. 16, pp. 389–423, 2002.

[19] A. J. Calise, N. Hovakimyan, and M. Idan, “Adaptive output feedback
control of nonlinear systems using neural networks,” Automatica,
vol. 37, no. 8, pp. 1201 – 1211, 2001.

[20] H. K. Khalil, Nonlinear Systems. New York: Macmillan, 2002.
[21] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked dis-

tributed POMDPs: A synthesis of distributed constraint optimization
and POMDPs,” in Proceedings of the Twentieth National Conference
on Artificial Intelligence, 2005.

[22] A. Kumar and S. Zilberstein, “Constraint-based dynamic programming
for decentralized POMDPs with structured interactions,” in Proceed-
ings of the Eighth International Conference on Autonomous Agents
and Multiagent Systems, 2009, pp. 561–568.

[23] ——, “Event-detecting multi-agent MDPs: Complexity and constant-
factor approximation,” in Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence, 2009, pp. 201–207.

[24] D. Shi, M. Z. Sauter, X. Sun, L. E. Ray, and J. D. Kralik, “An extension
of Bayesian game approximation to partially observable stochastic
games with competition and cooperation,” in International Conference
on Artificial Intelligence, 2010.

[25] C. Boutilier, “Sequential optimality and coordination in multiagent
systems,” in Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence, 1999, pp. 478–485.

[26] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
MDPs,” in Advances in Neural Information Processing Systems, ser.
15, 2001, pp. 1523–1530.

[27] C. Guestrin, S. Venkataraman, and D. Koller, “Context specific multi-
agent coordination and planning with factored MDPs,” in Proceedings
of the Eighteenth National Conference on Artificial Intelligence, 2002,
pp. 253–259.

[28] F. A. Oliehoek and M. T. J. Spaan, “Tree-based solution methods for
multiagent POMDPs with delayed communication,” in Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July
2012, pp. 1415–1421.

[29] C. V. Goldman and S. Zilberstein, “Optimizing information exchange
in cooperative multi-agent systems,” in Proceedings of the Second
International Conference on Autonomous Agents and Multiagent Sys-
tems, 2003.

[30] ——, “Decentralized control of cooperative systems: Categorization
and complexity analysis,” Journal of Artificial Intelligence Research,
vol. 22, pp. 143–174, 2004.

[31] C. H. Papadimitriou, Computational Complexity. Addison-Wesley,
1994.

[32] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman, “Solv-
ing transition-independent decentralized Markov decision processes,”
Journal of Artificial Intelligence Research, vol. 22, pp. 423–455, 2004.

[33] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of Operations Research, vol. 12,
no. 3, pp. 441–450, 1987.

[34] M. Allen and S. Zilberstein, “Complexity of decentralized control:
Special cases,” in Advances in Neural Information Processing Systems,
ser. 22, 2009, pp. 19–27.

[35] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and related stochastic optimization problems,”
Artificial Intelligence, vol. 147, pp. 5–34, 2003.

[36] S. Seuken and S. Zilberstein, “Formal models and algorithms for
decentralized control of multiple agents,” Journal of Autonomous
Agents and Multi-Agent Systems, vol. 17, no. 2, pp. 190–250, 2008.

[37] D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein, “Policy
iteration for decentralized control of Markov decision processes,”
Journal of Artificial Intelligence Research, vol. 34, pp. 89–132, 2009.

[38] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic program-
ming for partially observable stochastic games,” in Proceedings of the
Nineteenth National Conference on Artificial Intelligence, 2004, pp.
709–715.

[39] C. Amato, J. S. Dibangoye, and S. Zilberstein, “Incremental policy
generation for finite-horizon DEC-POMDPs,” in Proceedings of the
Nineteenth International Conference on Automated Planning and
Scheduling, 2009, pp. 2–9.

[40] A. Boularias and B. Chaib-draa, “Exact dynamic programming for
decentralized POMDPs with lossless policy compression,” in Pro-
ceedings of the Eighteenth International Conference on Automated
Planning and Scheduling, 2008.

[41] D. Szer, F. Charpillet, and S. Zilberstein, “MAA*: A heuristic search
algorithm for solving decentralized POMDPs,” in Proceedings of
the Twenty-First Conference on Uncertainty in Artificial Intelligence,
2005.

[42] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Systems Science and Cyber-
netics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July.

[43] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis, “Optimal and
approximate Q-value functions for decentralized POMDPs,” Journal
of Artificial Intelligence Research, vol. 32, pp. 289–353, 2008.

[44] F. A. Oliehoek, M. T. J. Spaan, C. Amato, and S. Whiteson, “Incre-
mental clustering and expansion for faster optimal planning in Dec-
POMDPs,” Journal of Artificial Intelligence Research, vol. 46, pp.
449–509, 2013.

[45] J. S. Dibangoye, C. Amato, O. Buffet, and F. Charpillet, “Optimally
solving Dec-POMDPs as continuous-state MDPs,” in Proceedings of
the Twenty-Third International Joint Conference on Artificial Intelli-
gence, 2013.

[46] R. Aras, A. Dutech, and F. Charpillet, “Mixed integer linear program-
ming for exact finite-horizon planning in decentralized POMDPs,”
in Proceedings of the Seventeenth International Conference on Au-
tomated Planning and Scheduling, 2007, pp. 18–25.

[47] M. Petrik and S. Zilberstein, “Average-reward decentralized Markov
decision processes,” in Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, 2007, pp. 1997–2002.

[48] S. Seuken and S. Zilberstein, “Memory-bounded dynamic program-
ming for DEC-POMDPs,” in Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence, 2007, pp. 2009–
2015.

[49] ——, “Improved memory-bounded dynamic programming for decen-
tralized POMDPs,” in Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, 2007, pp. 344–351.

[50] A. Carlin and S. Zilberstein, “Value-based observation compression
for DEC-POMDPs,” in Proceedings of the Seventh International
Conference on Autonomous Agents and Multiagent Systems, 2008.

[51] J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa, “Point-based in-
cremental pruning heuristic for solving finite-horizon DEC-POMDPs,”
in Proceedings of the Eighth International Conference on Autonomous
Agents and Multiagent Systems, 2009.

[52] A. Kumar and S. Zilberstein, “Point-based backup for decentralized
POMDPs: complexity and new algorithms,” in Proceedings of the
Ninth International Conference on Autonomous Agents and Multiagent
Systems, 2010, pp. 1315–1322.

[53] F. Wu, S. Zilberstein, and X. Chen, “Point-based policy generation
for decentralized POMDPs,” in Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems, 2010, pp.
1307–1314.

[54] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella, “Taming
decentralized POMDPs: Towards efficient policy computation for
multiagent settings,” in Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, 2003, pp. 705–711.

[55] D. Szer and F. Charpillet, “An optimal best-first search algorithm
for solving infinite horizon DEC-POMDPs,” in Proceedings of the
Sixteenth European Conference on Machine Learning, 2005, pp. 389–
399.

[56] D. S. Bernstein, E. A. Hansen, and S. Zilberstein, “Bounded policy
iteration for decentralized POMDPs,” in Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, 2005, pp.
1287–1292.

[57] C. Amato, D. S. Bernstein, and S. Zilberstein, “Optimizing fixed-
size stochastic controllers for POMDPs and decentralized POMDPs,”
Journal of Autonomous Agents and Multi-Agent Systems, vol. 21, no. 3,
pp. 293–320, 2010.

[58] C. Amato, B. Bonet, and S. Zilberstein, “Finite-state controllers based
on Mealy machines for centralized and decentralized POMDPs,”
in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010, pp. 1052–1058.

[59] A. Kumar and S. Zilberstein, “Anytime planning for decentralized
POMDPs using expectation maximization,” in Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
2010, pp. 294–301.

[60] J. K. Pajarinen and J. Peltonen, “Periodic finite state controllers
for efficient POMDP and DEC-POMDP planning,” in Advances in
Neural Information Processing Systems 24, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, Eds., 2011, pp. 2636–2644.

[61] J. Pajarinen and J. Peltonen, “Efficient planning for factored infinite-
horizon DEC-POMDPs,” in Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence, July 2011, pp.
325–331.

[62] C. Amato, A. Carlin, and S. Zilberstein, “Bounded dynamic program-
ming for decentralized POMDPs,” in Proceedings of the Workshop
on Multi-Agent Sequential Decision Making in Uncertain Domains,
the Sixth International Joint Conference on Autonomous Agents and
Multiagent Systems, 2007.

[63] C. Amato and S. Zilberstein, “Achieving goals in decentralized
POMDPs,” in Proceedings of the Eighth International Conference on
Autonomous Agents and Multiagent Systems, 2009, pp. 593–600.

[64] M. Petrik and S. Zilberstein, “A bilinear programming approach
for multiagent planning,” Journal of Artificial Intelligence Research,
vol. 35, pp. 235–274, 2009.

[65] J. S. Dibangoye, C. Amato, A. Doniec, and F. Charpillet, “Producing
efficient error-bounded solutions for transition independent decentral-
ized MDPs,” in Proceedings of the Twelfth International Conference
on Autonomous Agents and Multiagent Systems, 2013.

[66] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo,
“Letting loose a SPIDER on a network of POMDPs: generating
quality guaranteed policies,” in Proceedings of the Sixth International
Conference on Autonomous Agents and Multiagent Systems, 2007, pp.
218:1–218:8.

[67] J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and M. Yokoo,
“Not all agents are equal: Scaling up distributed POMDPs for agent
networks,” in Proceedings of the Seventh International Conference on
Autonomous Agents and Multiagent Systems, 2008.

[68] A. Kumar, M. Toussaint, and S. Zilberstein, “Scalable multiagent
planning using probabilistic inference,” in Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, 201,
pp. 2140–2146.

[69] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis, “Exploit-
ing locality of interaction in factored Dec-POMDPs,” in Proceedings
of the Seventh International Conference on Autonomous Agents and
Multiagent Systems, 2008.

[70] S. J. Witwicki and E. H. Durfee, “Towards a unifying characterization
for quantifying weak coupling in Dec-POMDPs,” in Proceedings of the

Tenth International Conference on Autonomous Agents and Multiagent
Systems, May 2011, pp. 29–36.

[71] M. T. J. Spaan and F. S. Melo, “Interaction-driven Markov games for
decentralized multiagent planning under uncertainty,” in Proceedings
of the Seventh International Conference on Autonomous Agents and
Multiagent Systems, 2008, pp. 525–532.

[72] P. Varakantham, J.-y. Kwak, M. Taylor, J. Marecki, P. Scerri, and
M. Tambe, “Exploiting coordination locales in distributed POMDPs
via social model shaping,” in Proceedings of the Nineteenth Interna-
tional Conference on Automated Planning and Scheduling, 2009, pp.
313–320.

[73] F. Melo and M. Veloso, “Decentralized MDPs with sparse interac-
tions,” Artificial Intelligence, 2011.

[74] M. Roth, R. Simmons, and M. Veloso, “Reasoning about joint beliefs
for execution-time communication decisions,” in Proceedings of the
Fourth International Conference on Autonomous Agents and Multia-
gent Systems, 2005.

[75] R. Nair and M. Tambe, “Communication for improving policy com-
putation in distributed POMDPs,” in Proceedings of the Third Inter-
national Conference on Autonomous Agents and Multiagent Systems,
2004, pp. 1098–1105.

[76] R. Becker, A. Carlin, V. Lesser, and S. Zilberstein, “Analyzing
myopic approaches for multi-agent communication,” Computational
Intelligence, vol. 25, no. 1, pp. 31–50, 2009.

[77] M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis, “Multiagent plan-
ning under uncertainty with stochastic communication delays,” in
Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling, 2008, pp. 338–345.

[78] F. Wu, S. Zilberstein, and X. Chen, “Multi-agent online planning
with communication,” in Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling, 2009.

[79] D. S. Bernstein, S. Zilberstein, R. Washington, and J. L. Bresina,
“Planetary rover control as a Markov decision process,” in Proceedings
of the The Sixth International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2001.

[80] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun, “Game
theoretic control for robot teams,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005, pp.
1163–1169.

[81] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Coordinated multi-
robot exploration under communication constraints using decentralized
Markov decision processes,” in Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[82] R. Cogill, M. Rotkowitz, B. Van Roy, and S. Lall, “An approximate
dynamic programming approach to decentralized control of stochastic
systems,” in Proceedings of the Forty-Second Allerton Conference on
Communication, Control, and Computing, 2004.

[83] J. M. Ooi and G. W. Wornell, “Decentralized control of a multiple
access broadcast channel: Performance bounds,” in Proceedings of the
35th Conference on Decision and Control, 1996, pp. 293–298.

[84] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
generated congestion control,” in SIGCOMM, August 2013.

[85] L. Peshkin and V. Savova, “Reinforcement learning for adaptive
routing,” in Proceedings of the International Joint Conference on
Neural Networks, 2002, pp. 1825–1830.

[86] A. Dutech, O. Buffet, and F. Charpillet, “Multi-agent systems by
incremental gradient reinforcement learning,” in Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence,
2001, pp. 833–838.

[87] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling, “Learning
to cooperate via policy search,” in Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence, 2000, pp. 489–
496.

[88] Y.-H. Chang, T. Ho, and L. P. Kaelbling, “All learning is local:
Multi-agent learning in global reward games,” in Advances in Neural
Information Processing Systems, ser. 16, 2004.

[89] C. Zhang and V. Lesser, “Coordinated multi-agent reinforcement
learning in networked distributed POMDPs,” in Proceedings of the
Tenth International Conference on Autonomous Agents and Multiagent
Systems, 2011.

[90] ——, “Coordinating multi-agent reinforcement learning with limited
communication,” in Proceedings of the Twelfth International Confer-
ence on Autonomous Agents and Multiagent Systems, 2013.

	INTRODUCTION
	BACKGROUND
	Dec-POMDP Model
	Dec-POMDP Solutions

	NOTABLE SUBCLASSES
	Dec-MDPs
	Dec-MDPs with Independence
	Networked Distributed POMDPs
	MMDPs
	Dec-POMDPs with Explicit Communication

	NUMERICAL COMPLEXITY
	ALGORITHMS
	Optimal Approaches
	Approximate Approaches
	Algorithms for Subclasses

	Applications and Learning
	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

