
Learning in POMDPs with Monte Carlo Tree Search

Sammie Katt 1 Frans A. Oliehoek 2 Christopher Amato 1

Abstract
The POMDP is a powerful framework for reason-
ing under outcome and information uncertainty,
but constructing an accurate POMDP model is
difficult. Bayes-Adaptive Partially Observable
Markov Decision Processes (BA-POMDPs) ex-
tend POMDPs to allow the model to be learned
during execution. BA-POMDPs are a Bayesian
RL approach that, in principle, allows for an
optimal trade-off between exploitation and ex-
ploration. Unfortunately, BA-POMDPs are cur-
rently impractical to solve for any non-trivial do-
main. In this paper, we extend the Monte-Carlo
Tree Search method POMCP to BA-POMDPs
and show that the resulting method, which we
call BA-POMCP, is able to tackle problems that
previous solution methods have been unable to
solve. Additionally, we introduce several tech-
niques that exploit the BA-POMDP structure to
improve the efficiency of BA-POMCP along with
proof of their convergence.

1. Introduction
The Partially Observable Markov Decision Processes
(POMDP) (Kaelbling et al., 1998) is a general model for
sequential decision making in stochastic and partially ob-
servable environments, which are ubiquitous in real-world
problems. A key shortcoming of POMDP methods is
the assumption that the dynamics of the environment are
known a priori. In real-world applications, however, it may
be impossible to obtain a complete and accurate descrip-
tion of the system. Instead, we may have uncertain prior
knowledge about the model. When lacking a model, a prior
can be incorporated into the POMDP problem in a princi-
pled way, as demonstrated by the Bayes-Adaptive POMDP
framework (Ross et al., 2011).

The BA-POMDP framework provides a Bayesian approach

1Northeastern University, Boston, Massachusetts,USA
2University of Liverpool, UK. Correspondence to: Sammie Katt
<katt.s@husky.neu.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

to decision making by maintaining a probability distribu-
tion over possible models as the agent acts in an online rein-
forcement learning setting (Duff, 2002; Wyatt, 2001). This
method casts the Bayesian reinforcement learning prob-
lem into a POMDP planning problem where the hidden
model of the environment is part of the state space. Unfor-
tunately, this planning problem becomes very large, with
a continuous state space over all possible models, and as
such, current solution methods are not scalable or perform
poorly (Ross et al., 2011).

Online and sample-based planning has shown promising
performance on non-trivial POMDP problems (Ross et al.,
2008). Online methods reduce the complexity by consid-
ering the relevant (i.e., reachable) states only, and sample-
based approaches tackle the complexity issues through ap-
proximations in the form of simulated interactions with the
environment. Here we modify one of those methods, Par-
tial Observable Monte-Carlo Planning (POMCP) (Silver
& Veness, 2010) and extend it to the Bayes-Adaptive case,
leading to a novel approach: BA-POMCP.

In particular, we improve the sampling approach by ex-
ploiting the structure of the BA-POMDP resulting in root
sampling and expected models methods. We also present
an approach for more efficient state representation, which
we call linking states. Lastly, we prove the correctness
of our improvements, showing that they converge to the
true BA-POMDP solution. As a result, we present meth-
ods that significantly improve the scalability of learning in
BA-POMDPs, making them practical for larger problems.

2. Background
First, we discuss POMDPs and BA-POMDPs in Sec-
tions 2.1 and 2.2.

2.1. POMDPs

Formally, a POMDP is described by a tuple (S, A, Z, D,
R, γ, h), where S is the set of states of the environment;
A is the set of actions; Z is the set of observations; D is
the ‘dynamics function’ that describes the dynamics of the
system in the form of transition probabilities D(s′,z|s,a);1

1 This formulation generalizes the typical formulation with
separate transition T and observation functions O: D = 〈T,O〉.
In our experiments, we do employ this typical factorization.

Learning in POMDPs with Monte Carlo Tree Search

R is the immediate reward function R(s, a) that describes
the reward of selecting a in s; γ ∈ (0,1) is the discount
factor; and h is the horizon of an episode in the system.

The goal of the agent in a POMDP is to maximize the ex-
pected cumulative (discounted) reward, also called the ex-
pected return. The agent has no direct access to the sys-
tem’s state, so it can only rely on the action-observation
history ht = 〈a0,z1, . . . ,at−1,zt〉 up to the current step t.
It can use this history to maintain a probability distribution
over the state, also called a belief, b(s). A solution to a
POMDP is then a mapping from a belief b to an action a,
which is called a policy π. Solution methods aim to find an
optimal policy, a mapping from a belief to an action with
the highest possible expected return.

The agent maintains its belief during execution through be-
lief updates. A belief update calculates the posterior proba-
bility of the state s′ given the previous belief over s and
action-observation pair 〈a,z〉: b′(s) = P (s′|b(s), a, z).
This operation is infeasible for large spaces because it enu-
merates over the entire state space. A common approxi-
mation method is to represent the belief with (unweighted)
particle filters (Thrun, 1999). A particle filter is a collection
of K particles (states). Each particle represents a probabil-
ity of 1

K ; if a specific state x occurs n times in a particle
filter, then P (x) = n

K . The precision of the filter is de-
termined by the amount of particles K. To update such a
belief after each time step with observation z, a standard
approach is to utilize rejection sampling. Given some ac-
tion a, the agent repeatedly samples a state s from particle
filter, then simulates the execution of a on s through D,
and receives a (simulated) new state s′sim and observation
zsim. s′ is added to the new belief only when zsim == z,
and rejected otherwise. This process repeats until the new
belief contains K particles.

Partially Observable Monte-Carlo Planning
(POMCP) (Silver & Veness, 2010), is a scalable method
which extends Monte Carlo tree search (MCTS) to solve
POMDPs. POMCP is one of the leading algorithms for
solving general POMDPs. At each time step, the algorithm
performs online planning by incrementally building a
lookahead tree that contains (statistics that represent)
Q(h,a), where h is the action-observation history h to
reach that node. It samples hidden states s at the root node
(called ‘root sampling’) and uses that state to sample a
trajectory that first traverses the lookahead tree and then
performs a (random) rollout. The return of this trajectory
is used to update the statistics for all visited nodes. These
statistics include the number of times an action has been
taken at a history (N(h,a)) and estimated value of being in
that node (Q(h,a)), based on an average over the returns.

Because this lookahead tree can be very large, the search
is directed to the relevant parts by selecting the ac-
tions inside the tree that maximize the ‘upper confidence

bounds’ (Auer et al., 2002): U(h,a) = Q(h, a) +

c
√

log(N(h) + 1)/N(h,a). Here, N(h) is the number of
times the history has been visited. At the end of each sim-
ulation, the discounted accumulated return is used to up-
date the estimated value of all the nodes in the tree that
have been visited during that simulation. POMCP termi-
nates after some criteria has been met, typically defined by
a maximum number of simulations or allocated time. The
agent then picks the action with the highest estimated value
(maxaQ(b,a)). POMCP can be shown to converge to an ε-
optimal value function. Moreover, the method has demon-
strated good performance in large domains with a limited
number of simulations. The extension of POMCP that is
used in this work is discussed in Section 3.

2.2. BA-POMDPs

Most research concerning POMDPs has considered the
task of planning: given a full specification of the model,
determine an optimal policy (e.g., (Kaelbling et al., 1998;
Shani et al., 2012)). However, in many real-world applica-
tions, the model is not (perfectly) known in advance, which
means that the agent has to learn about its environment dur-
ing execution. This is the task considered in reinforcement
learning (RL) (Sutton & Barto, 1998).

A fundamental RL problem is the difficulty of deciding
whether to select actions in order to learn a better model of
the environment, or to exploit the current knowledge about
the rewards and effects of actions. In recent years, Bayesian
RL methods have become popular because they can pro-
vide a principled solution to this exploration/exploitation
trade-off (Wyatt, 2001; Duff, 2002; Engel et al., 2005;
Poupart & Vlassis, 2008; Vlassis et al., 2012).

In particular, we consider the framework of Bayes-
Adaptive POMDPs (Ross et al., 2007; 2011). BA-
POMDPs use Dirichlet distributions to model uncertainty
over transitions and observations2 (typically assuming the
reward function is chosen by the designer and is known).
In particular, if the agent could observe both states and ob-
servations, it could maintain a vector χ with the counts of
the occurrences for all 〈s, a, s′, z〉 tuples. We write χs

′z
sa for

the number of times that s,a is followed by s′,z.

While the agent cannot observe the states and has uncer-
tainty about the actual count vector, this uncertainty can
be represented using regular POMDP formalisms. That is,
the count vector is included as part of the hidden state of
a specific POMDP, called a BA-POMDP. Formally, a BA-
POMDP is a tuple 〈S̄, A, D̄, R̄, Z, γ, h〉 with some modi-
fied components in comparison to the POMDP. While the
observation and action space remain unchanged, the state
(space) of the BA-POMDP now includes Dirichlet parame-

2 (Ross et al., 2007; 2011) follow the standard T &O POMDP
representations, but we use our combined D formalism.

Learning in POMDPs with Monte Carlo Tree Search

ters: s̄ = 〈s, χ〉, which we will refer to as augmented states.
The reward model remains the same, since it is assumed to
be known, R̄(〈s′,χ′),a) = R(s,a). The dynamics func-
tions, D̄, however, is described in terms of the counts in s̄,
and is defined as follows

Dχ(s′,z|s, a) , E[D(s′,z|s, a)|χ] =
χs

′z
sa∑

s′z χ
s′z
sa

. (1)

These expectations can now be used to define the transi-
tions for the BA-POMDP. If we let δs

′z
sa denote a vector

of the length of χ containing all zeros except for the posi-
tion corresponding to 〈s,a,s′,z〉 (where it has a one), and if
we let Ia,b denote the Kronecker delta that indicates (is 1
when) a = b, then we can define D̄ as D̄(s′,χ′,z|s,χ, a) =
Dχ(s′,z|s, a)Iχ′,χ+δs′zsa

.

Remember that these counts are not observed by the agent,
since that would require observations of the state. The
agent can only maintain belief over these count vectors.
Still, when interacting with the environment, the ratio of
the true—but unknown—count vectors will converge to co-
incide with the true transition and observation probabili-
ties in expectation. It is important to realize, however, that
this convergence of count vector ratios does not directly
imply learnability by the agent: even though the ratio of
the count vectors of the true hidden state will converge, the
agent’s belief over count vectors might not.

BA-POMDPs are infinite state POMDP models and thus
extremely difficult to solve. Ross et al. (2011) introduced
a technique to convert such models to finite models, but
these are still very large. Therefore, Ross et al. propose
a simple lookahead planner to solve BA-POMDPs in an
online manner. This approach approximates the expected
values associated with each action at the belief by applying
a lookahead search of depth d. This method will function
as the comparison baseline in our experiments, as no other
BA-POMDP solution methods have been proposed.

3. BA-POMDPs via Sample-based Planning
Powerful methods, such as POMCP (Silver & Veness,
2010), have significantly improved the scalability of
POMDP solution methods. At the same time the most
practical solution method for BA-POMDPs, the aforemen-
tioned lookahead algorithm, is quite limited in dealing with
larger problems. POMDP methods have rarely been ap-
plied to BA-POMDPs (Amato & Oliehoek, 2015), and no
systematic investigation of their performance has been con-
ducted. In this paper, we aim to address this void, by ex-
tending POMCP to BA-POMDPs, in an algorithm that we
refer to as BA-POMCP. Moreover, we propose a number of
novel adaptations to BA-POMCP that exploit the structure
of the BA-POMDP. In this section, we first lay out the basic
adaptation of POMCP to BA-POMDPs and then describe
the proposed modifications that improve its efficiency.

Algorithm 1 BA-POMCP(b̄,num sims)

1: //b̄ is an augmented belief (e.g., particle filter)
2: h0 ← () . The empty history (i.e., now)
3: for i← 1 . . . num sims do
4: //First, we root sample an (augmented) state:
5: s̄← SAMPLE(b̄) . reference to a particle
6: s̄′ ← COPY(s̄)
7: SIMULATE(s̄′, 0, h0)
8: end for
9: a← GREEDYACTIONSELECTION(h0)

10: return a

Algorithm 2 SIMULATE(s̄, d, h)

1: if ISTERMINAL(h) || d == max depth then
2: return 0
3: end if
4: //Action selection uses statistics stored at node h:
5: a← UCBACTIONSELECTION(h)
6: R← R(s̄,a)
7: z ← STEP(s̄, a) //modifies s̄ to sampled next state
8: h′ ← (h,a,z)
9: if h′ ∈ Tree then

10: r ← R+ γ SIMULATE(s̄′, d+ 1, h′)
11: else
12: CONSTRUCTNODE(h′) //Initializes statistics
13: r ← R+ γ ROLLOUT(s̄′, d+ 1, h′)
14: end if
15: //Update statistics:
16: N(h,a)← N(h,a) + 1

17: Q(h,a)← N(h,a)−1
N(h,a)

Q(h,a) + 1
N(h,a)

r

18: return r

BA-POMCP BA-POMCP, just like POMCP, constructs
a lookahead tree through simulated experiences (Algo-
rithm 1). In BA-POMDPs, however, the dynamics of the
system are inaccessible during simulations, and the belief
is a probability distribution over augmented states. BA-
POMCP, as a result, must sample augmented states from
the belief b̄, and use copies of those states (s̄ = 〈s,χ〉) for
each simulation (Algorithm 2). We will refer to this as root
sampling of the state (line 6). The copy is necessary, as
otherwise the STEP function in Algorithm 2 would alter
the belief b̄. It is also expensive, for χ grows with the state,
action and observation space, to |S|2×|A|+ |S| ∗ |A| ∗ |Ω|
parameters. In practice, this operation becomes a bottle-
neck to the runtime of BA-POMCP in larger domains.

To apply POMCP on BA-POMDPs, where the dynamics
are unknown, we modify the STEP function, proposing sev-
eral variants. The most straightforward one, NAIVESTEP
is employed in what we refer to as ‘BA-POMCP’. This
method, shown in Algorithm 3, is similar to BA-MCP
(Guez et al., 2012): essentially, it samples a dynamic model
Dsa which specifies probabilities Pr(s′,z|s,a) and subse-
quently samples an actual next state and observation from
that distribution. Note that the underlying states and obser-
vations are all represented simply as an index, and hence
the assignment on line 5 is not problematic. However, the

Learning in POMDPs with Monte Carlo Tree Search

Algorithm 3 BA-POMCP-STEP(s̄ = 〈s, χ〉, a)

1: Dsa ∼ χsa
2: 〈s′,z〉 ∼ Dsa
3: //In place updating of s̄ = 〈s, χ〉
4: χs

′z
sa ← χs

′z
sa + 1

5: s← s′

6: return z

Algorithm 4 R-BA-POMCP-STEP (s̄ = 〈s, χ〉, a)

1: //Sample root sampled function
2: s′,z ∼ Ḋs,a
3: s← s′

4: return z

cost of the model sampling operation in line 1 is.

Root Sampling of the Model BA-MCP (Guez et al.,
2012) addresses the fully observable BRL problem by us-
ing POMCP on an augmented state s̄ = 〈s, T 〉, consisting
of the observable state, as well as the hidden true transi-
tion function T . Application of POMCP’s root sampling of
state in this case leads to ‘root sampling of a transition func-
tion’: Since the true transition model T does not change
during the simulation, one is sampled at the root and used
during the entire simulation. In the BA-POMCP case, root
sampling of a state s̄ = 〈s, χ〉 does not lead to a same inter-
pretation: no model, but counts are root sampled and they
do change over time.

We use this as inspiration to introduce a similar, but clearly
different, (since this is not root sampling of state) technique
called root sampling of the model (which we will refer to
as just ‘root sampling’). The idea is simple: every time we
root sample a state s̄ = 〈s, χ〉 ∼ b̄ at the beginning of a
simulation (line 5 in Algorithm 1), we directly sample a
Ḋ ∼ Dir(χ), which we will refer to as the root-sampled
model Ḋ and it is used for the rest of the simulation.

We denote this root sampling in BA-POMCP as ‘R-BA-
POMCP’. The approach is formalized by R-BA-POMCP-
STEP (Algorithm 4). Note that no count updates take place
(cf. line 4 in Algorithm 3). This highlights an important
advantage of this technique: since the counts are not used in
the remainder of the simulation, the copy of counts (as part
of line 6 of Algorithm 1) can be avoided altogether. Since
this copy operation is costly, especially in larger domains,
where the number of states, action and observations and
the number of counts is large, this can lead to significant
savings. Finally, we point out that, similar to what Guez
et al. (2012) propose, Ḋ can be constructed lazily: the part
of the model Ḋ is only sampled when it becomes necessary.

The transition probabilities during R-BA-POMCP differ
from those in BA-POMCP, and it is not obvious that a
policy based on R-BA-POMCP maintains the same guar-
antees. We prove in Section 4 that the solution of R-BA-
POMCP in the limit converges to that of BA-POMCP.

Algorithm 5 E-BA-POMCP-STEP(s̄ = 〈s, χ〉, a)

1: //Sample from Expected model
2: s′,z ∼ Dχ(·, ·|s,a)

3: χs
′z
sa ← χs

′z
sa + 1

4: s← s′

5: return z

Expected models during simulations The second, com-
plementary, adaptation modifies the way models are sam-
pled from the root-sampled counts in STEP. This version
samples the transitions from the expected dynamics Dχ

given in (1), rather than from a sampled dynamics func-
tion D ∼ Dir(χ). The latter operation is relatively costly,
while constructing Dχ is very cheap. In fact, this operation
is so cheap, that it is more efficient to (re-)calculate it on
the fly rather than to actually store Dχ. This approach is
shown in Algorithm 5.

Linking States Lastly, we propose a specialized data
structure to encode the augmented BA-POMDP states. The
structure aims to optimize for the complexity of the count-
copy operation in line 6 of Algorithm 1 while allowing
modifications to s̄.

The linking state sl is a tuple of a system state, a pointer
(or link) to an unmodifiable set of counts χ and a set of up-
dated counts 〈s, l, δ〉. l is a pointer to some set of counts χ,
which remain unchanged during count updates (such as in
the STEP function), and instead are stored in the set of up-
dated counts, δ, as shown in Algorithm 6. The consequence
is that the linking state copy-operation can safely perform
a shallow copy of the counts χ, and must only consider δ,
which is assumed to be much smaller.

Linking states can be used during the (rejection-sample-
based) belief update at the beginning of each real time step.
While the root-sampled augmented states (including δ in
linking states) are typically deleted at the end of each simu-
lation during L-BA-POMCP, each belief update potentially
increases the size of δ of each particle. Theoretically, the
number of updated counts represented in δ increases and
the size of δ may (eventually) grow similar to the size of χ.
Therefore, at some point, it is necessary to construct a new
χ′ that combines χ and δ (after which δ can be safely emp-
tied). We define a new parameter for the maximum size of
δ, λ, and condition to merge only if the size of δ exceeds λ.
We noticed that, in practice, the number of merges is much
smaller than the amount of copies in BA-POMCP. We also
observed in our experiments that it is often the case that a
specific (small) set of transitions are notably more popular
than others and that δ grows quite slowly.

4. Theoretical Analysis
Here, we analyze the proposed root sampling of the dy-
namics function and expected transition techniques, and

Learning in POMDPs with Monte Carlo Tree Search

Algorithm 6 L-BA-POMCP-STEP(sl = 〈s, l, δ〉, a)

1: D ∼ 〈l, δ〉
2: s′,z ∼ Ds,a
3: s← s′

4: δs
′z
sa ← δs

′z
sa + 1

5: return z

demonstrate they converge to the solution of the BA-
POMDP. These main steps of this proof are similar to those
in (Silver & Veness, 2010). We point out however, that the
technicalities of proving the components are far more in-
volved. Due to lack of space we will defer a detailed pre-
sentation of all these to an extended version of this paper.

The convergence guarantees of the original POMCP
method are based on showing that, for an arbitrary roll-
out policy π, the POMDP rollout distribution (the distribu-
tion over full histories when performing root sampling of
state) is equal to the derived MDP rollout distribution (the
distribution over full histories when sampling in the belief
MDP). Given that these are identical it is easy to see that
the statistics maintained in the search tree will converge to
the same number in expectation. As such, we will show a
similar result here for expected transitions (‘expected’ for
short) and root sampling of the dynamics function (‘root
sampling’ below).

We define H0 as the full history (also including states) at
the root of simulation, Hd as the full history of a node at
depth d in the simulation tree, and χ(Hd) as the counts
induced by Hd. We then define the rollout distributions:

Definition 1. The expected full-history expected-
transition BA-POMDP rollout distribution is the distribu-
tion over full histories of a BA-POMDP, when performing
Monte-Carlo simulations according to a policy π, while
sampling expected transitions. It is given by:

Pπ(Hd+1) = Dχ(Hd)(sd+1,zd+1|as,sd)π(ad|hd)Pπ(Hd)
(2)

with Pπ(H0) = b0(〈s0,χ0〉) the belief ‘now’ (at the root
of the online planning).

Note that there are two expectations in the above defini-
tion: ‘expected transitions’ mean that transitions for a his-
tory Hd are sampled from Dχ(Hd). The other ‘expected’
is the expectation of those samples (and it is easy to see
that this will converge to the expected transition probabil-
ities Dχ(Hd)(sd+1,zd+1|as,sd)). For root sampling of the
dynamics model, this is less straightforward, and we give
the definition in terms of the empirical distribution:

Definition 2. The full-history root-sampling (RS) BA-
POMDP rollout distribution is the distribution over full
histories of a BA-POMDP, when performing Monte-Carlo
simulations according to a policy π in combination with
root sampling of the dynamics model D. This distribu-
tion, for a particular stage d, is given by P̃πK(Hd) ,

1
Kd

∑Kd

i=1 I{Hd=H
(i)
d

}, where K is the number of simu-

lations that comprise the empirical distribution, Kd is the
number of simulations that reach depth d (not all simula-
tions might be equally long), and H(i)

d is the history speci-
fied by the i-th particle at stage d.

Now, our main theoretical result is that these distributions
are the same in the limit of the number of simulations:
Theorem 3. The full-history RS-BA-POMDP rollout dis-
tribution (Def. 2) converges in probability to the quantity
of Def. 1:

∀Hd
P̃πKd

(Hd)
p→ Pπ(Hd). (3)

Sketch of Proof. (Due to length restrictions we omit some
details) At the start of every simulation (we assume they
start in some history H0), RS-BA-POMCP samples a dy-
namics model Ḋ. We consider probability P̃π(Hd) that
RS-BA-POMCP generates a full history Hd at depth d.
Clearly P̃πKd

(Hd)
p→ P̃π(Hd), and this quantity can be

written out

P̃π(Hd) =

∫
P̃π
(
Hd|Ḋ

)
Dir(Ḋ|χ̇)dḊ = . . .

=

d∏
t=1

π(at−1|ht−0)
∏
〈s,a〉

B(χsa(H0))

B(χsa(Hd)
(4)

with B(α) = Γ(α1+...·+αk)
Γ(α1)·...·Γ(αk) the normalization term of a

Dirichlet distribution with parametric vector α.

For ease of notation we continue the proof for stage d+ 1.
I.e., we will show ∀Hd+1

P̃π(Hd+1)
p→ Pπ(Hd+1).

Note that a history Hd+1 = (Hd,ad,sd+1,zd+1), only dif-
fers from Hd in that it has one extra transition for the
(sd,ad,sd+1,zd+1) quadruple, implying that χ(Hd+1) only
differs from χ(Hd) in the counts χsdad for sdad. Therefore
(4) can be written in recursive form as

P̃π(Hd+1) = P̃π(Hd)π(ad|hd)
B(χsdad(Hd))

B(χsdad(Hd+1))
(5)

Now, let us write T =
∑

(s′,z) χ
s′z
sdad

(Hd) for the to-
tal of the counts for sd,ad and N = χ

sd+1zd+1
sdad (Hd) for

the number of counts for that such a transition was to
(sd+1zd+1). Because Hd+1 only has 1 extra transition:∑

(s′,z) χ
s′z
sdad

(Hd+1) = T + 1 and since that transition
was to (sd+1zd+1) the counts χsd+1zd+1

sdad (Hd+1) = N + 1.
Now let us expand the rightmost term from (5):

=
Γ(T)/

∏
s′z Γ(χs

′z
sdad

(Hd))

Γ(T + 1)/
∏
s′z Γ(χs′zsdad(Hd+1))

=
Γ(T)

Γ(T + 1)

Γ(N + 1)

Γ(N)
=

Γ(T)

TΓ(T)

NΓ(N)

Γ(N)
=
N

T

=
χ
sd+1zd+1
sdad (Hd)∑

(s′,z) χ
s′z
sdad

(Hd)
, Dχ(Hd)(sd+1,zd+1|as,sd)

Learning in POMDPs with Monte Carlo Tree Search

where we used the fact that Γ(x + 1) = xΓ(x) (DeGroot,
2004). Therefore P̃π(Hd+1)

= P̃π(Hd)π(ad|hd)Dχ(Hd)(sd+1,zd+1|as,sd). (6)

which is identical to (2) except for the difference in be-
tween P̃π(Hd) and Pπ(Hd). This can be resolved by for-
ward induction with base step: P̃π(H0) = Pπ(H0), and
the induction step, i.e., show P̃π(Hd+1) = Pπ(Hd+1)
given P̃π(Hd) = Pπ(Hd), directly following from (2)
and (6). Therefore we can conclude that ∀d P̃π(Hd) =
Pπ(Hd). Combining this with (4) proves the result.

Corollary 4. Given suitably chosen exploration constant
(e.g., c > Rmax

1−γ), BA-POMCP with root-sampling of dy-
namics function converges in probability to the expected
transition solution.

Proof. Since Theorem 3 guarantees the distributions over
histories are the same in the limit, they will converge to the
same values maintained in the tree.

Finally, we see that these are solutions for the BA-POMDP:

Corollary 5. BA-POMCP with expected transitions sam-
pling, as well as with root sampling of dynamics function
converge to an ε-optimal value function of a BA-POMDP:
V (〈s,χ〉 ,h)

p→ V ∗ε (〈s,χ〉 ,h), where ε = precision
1−γ .

Proof. A BA-POMDP is a POMDP, so the analysis from
Silver & Veness (2010) applies to the BA-POMDP, which
means that the stated guarantees hold for BA-POMCP. The
BA-POMDP is stated in terms of expected transitions, so
the theoretical guarantees extend to the expected transition
BA-POMCP, which in turn (4) implies that the theoretical
guarantees extend to RS-BA-POMCP.

Finally, we note that linking states does not affect they way
that sampling is performed at all:

Proposition 6. Linking states does not affect convergence
of BA-POMCP.

5. Empirical Evaluation
Experimental setup In this section, we evaluate our
algorithms on a small toy problem—the classical Tiger
problem (Cassandra et al., 1994)—and test scalability on
a larger domain—a partially observable extension to the
Sysadmin problem (Guestrin et al., 2003), called Partially
Observable Sysadmin (POSysadmin). These domains will
show performance on a very small problem and a more
complex one.

In POSysadmin, the agent acts as a system administra-
tor with the task of maintaining a network of n comput-
ers. Computers are either ‘working’ or ‘failing’, which

Table 1: Default experiment parameters

Parameter Value

γ 0.95
horizon (h) 20
particles in belief 1000
f (computer fail %) 0.1
exploration const h ∗ (max(R)−min(R))
episodes 100
λ = # updated counts 30

can be deterministically resolved by ‘rebooting’ the com-
puter. The agent does not know the state of any com-
puter, but can ‘ping’ any individual computer. At each
step, any of the computers can ‘fail’ with some probabil-
ity f . This leads to a state space of size 2n, an action space
of 2n + 1, where the agent can ‘ping’ or ‘reboot’ any of
the computers, or ‘do nothing’, and an observation space
of 3 ({NULL, failing, working}). The ‘ping’ action has
a cost of 1 associated with it, while rebooting a computer
costs 20 and switches the computer to ‘working’. Lastly,
each ‘failing’ computer has a cost of 10 at each time step.

We conducted an empirical evaluation with aimed for 3
goals: The first goal attempts to support the claims made
in Section 4 and show that the adaptations to BA-POMCP
do not decrease the quality of the resulting policies. Sec-
ond, we investigate the runtime of those modifications to
demonstrate their contribution to the efficiency of BA-
POMCP. The last part contains experiments that directly
compare the performance per action selection time with the
baseline approach of Ross et al. (2011). For brevity, Table 1
describes the default parameters for the following experi-
ments. It will be explicitly mentioned whenever different
values are used.

BA-POMCP variants Section 4 proves that the solu-
tions of the proposed modifications (root-sampling (R-),
expected models (E-) and linking states (L-)) in the limit
converge to the solution of BA-POMCP. Here, we investi-
gate the transient behaviour of these methods in practice.
These experiments describe a scenario where the agent
starts of with a noisy prior belief.

For the Tiger problem, the agent’s initial belief over the
transition model is correct (i.e., counts that correspond to
the true probabilities with high confidence), but it provides
an uncertain belief that underestimates the reliability of the
observations. Specifically, it assigns 5 counts to hearing the
correct observation and 3 counts to incorrect: the agent be-
liefs it will hear correctly with a probability of 62.5%. The
experiment is run for with 100, 1000 & 1000 simulations
and all combinations of BA-POMCP adaptations.

Figure 1 plots the average return over 10000 runs for a
learning period of 100 episodes for Tiger. The key obser-
vation here is two-fold. First, all methods improve over

Learning in POMDPs with Monte Carlo Tree Search

Figure 1: The average discounted return of BA-POMCP
over 100 episodes on the Tiger problem for 100, 1000 &

10000 simulations

time through refining their knowledge about D. Second,
there are three distinct clusters of lines, each grouped by
the number of simulations. This shows that all 3 variants
(R/L/E-BA-POMCP) produce the same results and perfor-
mance increases as the number of simulations increases.

We repeat this investigation with the (3-computer)
POSysadmin problems, where we allow 100 simulations
per time step. In this configuration, the network was fully
connected with a failure probability f = 0.1. The (de-
terministic) observation function is assumed known a pri-
ori, but the prior over the transition function is noisy as
follows: for each count c, we take the true probability of
that transition (called p) and (randomly) either subtract or
add .15. Note that we do not allow transitions with non-
zero probability to fall below 0 by setting those counts to
0.001. Each Dirichlet distribution is then normalized the
counts to sum to 20. With 3 computers, this results in
|S| × |A| = 8 × 7 = 56 noisy Dirichlet distributions of
|S| = 8 parameters.

Figure 2 shows how each method is able to increase its per-
formance over time for POSysadmin. Again, the proposed
modifications do not seem to negatively impact the solution
quality.

BA-POMCP scalability While the previous experiments
indicate that the three adaptations produce equally good
policies, they do not support any of the efficiency claims
made in Section 3. Here, we compare the scalability of
BA-POMCP on the POSysadmin problem. The proposed
BA-POMCP variants are repeatedly run for 100 episodes
on instances of POSysadmin of increasing network size (3
to 10 computers), and we measure the average action se-
lection time required for 1000 simulations. Note that the
experiments are capped to allow up to 5 seconds per action
selection, demonstrating the problem size that a specific

Figure 2: The average discounted of 100 simulations of
BA-POMCP per time episodes on the Sysadmin problem

Figure 3: The average amount of seconds required for
BA-POMCP given the the log of the amount of parameters

(size) in the POSysadmin problem

method can perform 1000 simulations in under 5 seconds.

Figure 3 shows that BA-POMCP takes less than 0.5 sec-
onds to perform 1000 simulations on an augmented state
with approximately 150 parameters (3 computers), but is
quickly unable to solve larger problems, as it requires more
than 4 seconds to plan for a BA-POMDP with 200000
counts. BA-POMCP versions with a single adaptation are
able to solve the same problems twice as fast, while com-
binations are able to solve much larger problems with up
to 5 million parameters (10 computers). This implies not
only that each individual adaptation is able to speed up BA-
POMCP, but also that they complement one another.

Performance The previous experiments first show that
the adaptations do not decrease the policy quality of BA-
POMCP and second that the modified BA-POMCP meth-
ods improve scalability. Here we put those thoughts to-
gether and directly consider the performance relative to the
action selection time. In these experiments we take the av-

Learning in POMDPs with Monte Carlo Tree Search

Figure 4: The average return over 100 episodes per action
selection time of on the Tiger problem

erage return over multiple repeats of 100 episodes and plot
them according to the time required to reach such perfor-
mance. Here BA-POMCP is also directly compared to the
baseline lookahead planner by Ross et al. (2011).

First, we apply lookahead with depth 1&2 on the Tiger
problem under the same circumstance as the first experi-
ment for increasing number of particles (25, 50, 100, 200
& 500), which determines the runtime. The resulting av-
erage episode return is plotted against the action selection
time in Figure 4.

The results show that most methods reach near optimal per-
formance after 0.5 seconds action selection time. R-BA-
POMCP and E-R-BA-POMCP perform worse than their
counterparts BA-POMCP and E-BAPOMCP, which sug-
gests that root sampling of the dynamics actually slows
down BA-POMCP slightly. This phenomenon is due to the
fact that the Tiger problem is so small, that the overhead of
copying the augmented state and re-sampling of dynamics
(during STEP function) that root sampling avoids is negli-
gible and does overcome the additional complexity of root
sampling. Also note that, even though the Tiger problem is
so trivial that a lookahead of depth 1 suffices to solve the
POMDP problem optimally, BA-POMCP still consistently
outperforms this baseline.

The last experiment shows BA-POMCP and lookahead on
the POSysadmin domain with 6 computers (which contains
55744 counts) with a failure rate of 0.05. The agent was
provided with an accurate belief χ.3 The results are shown
in Figure 5.

We were unable to get lookahead search to solve this prob-

3We do not use the same prior as in the first BA-POMCP vari-
ants experiments since this gives uninformative results due to the
fact that solution methods convergence to the optimal policy with
respect to the (noisy) belief, which is different from the one with
respect to the true model.

Figure 5: The average return over 100 episodes per action
selection time of BA-POMCP on the POSysadmin

problem

lem: the single instance which returned results in a reason-
able amount of time (the single dot in the lower right cor-
ner) was with a lookahead depth of 1 (which is insufficient
for this domain) with just 50 particles. BA-POMCP, how-
ever, was able to perform up to 4096 simulations within
5 seconds and reach an average return of approximately
−198, utilizing a belief of 1000 particles. The best per-
forming method, L-R-E-BA-POMCP requires less than 2
seconds for similar results, and is able to reach approxi-
mately −190 in less than 3 seconds. Finally, we see that
each of the individual modifications outperform the origi-
nal BA-POMCP, where Expected models seems to be the
biggest contributor.

6. Conclusion
This paper provides a scalable framework for learning in
Bayes-Adaptive POMDPs. BA-POMDPs give a princi-
pled way of balancing exploration and exploiting in RL for
POMDPs, but previous solution methods have not scaled
to non-trivial domains. We extended the Monte Carlo Tree
Search method POMCP to BA-POMDPs and described
three modifications—Root Sampling, Linking States and
Expected Dynamics models— to take advantage of BA-
POMDP structure. We proved convergence of the tech-
niques and demonstrated that our methods can generate
high-quality solutions on significantly larger problems than
previous methods in the literature.

Acknowledgements
Research supported by NSF grant #1664923 and
NWO Innovational Research Incentives Scheme Veni
#639.021.336.

Learning in POMDPs with Monte Carlo Tree Search

References
Amato, Christopher and Oliehoek, Frans A. Scalable plan-

ning and learning for multiagent POMDPs. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pp. 1995–2002, January 2015.

Auer, Peter, Cesa-Bianchi, Nicolo, and Fischer, Paul.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

Cassandra, Anthony R, Kaelbling, Leslie Pack, and
Littman, Michael L. Acting optimally in partially ob-
servable stochastic domains. In AAAI, volume 94, pp.
1023–1028, 1994.

DeGroot, Morris H. Optimal Statistical Decisions. Wiley-
Interscience, 2004.

Duff, Michael O’Gordon. Optimal Learning: Computa-
tional procedures for Bayes-adaptive Markov decision
processes. PhD thesis, University of Massachusetts
Amherst, 2002.

Engel, Yaakov, Mannor, Shie, and Meir, Ron. Reinforce-
ment learning with kernels and gaussian processes. In
Proceedings of the ICML’05 Workshop on Rich Repre-
sentations for Reinforcement Learning, pp. 16–20. Cite-
seer, 2005.

Guestrin, Carlos, Koller, Daphne, Parr, Ronald, and
Venkataraman, Shobha. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Re-
search, pp. 399–468, 2003.

Guez, Arthur, Silver, David, and Dayan, Peter. Efficient
bayes-adaptive reinforcement learning using sample-
based search. In Advances in Neural Information Pro-
cessing Systems, pp. 1025–1033, 2012.

Kaelbling, Leslie Pack, Littman, Michael L, and Cassan-
dra, Anthony R. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1):
99–134, 1998.

Poupart, Pascal and Vlassis, Nikos A. Model-based
Bayesian reinforcement learning in partially observable
domains. In ISAIM, 2008.

Ross, Stephane, Chaib-draa, Brahim, and Pineau, Joelle.
Bayes-Adaptive POMDPs. In Advances in Neural Infor-
mation Processing Systems, pp. 1225–1232, 2007.

Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, and
Chaib-Draa, Brahim. Online planning algorithms for
pomdps. Journal of Artificial Intelligence Research, 32:
663–704, 2008.

Ross, Stéphane, Pineau, Joelle, Chaib-draa, Brahim, and
Kreitmann, Pierre. A bayesian approach for learning and
planning in partially observable Markov decision pro-
cesses. The Journal of Machine Learning Research, 12:
1729–1770, 2011.

Shani, Guy, Pineau, Joelle, and Kaplow, Robert. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems, pp. 1–51, 2012.

Silver, David and Veness, Joel. Monte-Carlo planning in
large POMDPs. In Advances in Neural Information Pro-
cessing Systems, pp. 2164–2172, 2010.

Sutton, Richard S. and Barto, Andrew G. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Thrun, Sebastian. Monte Carlo POMDPs. In Advances in
Neural Information Processing Systems, volume 12, pp.
1064–1070, 1999.

Vlassis, Nikos, Ghavamzadeh, Mohammad, Mannor, Shie,
and Poupart, Pascal. Bayesian reinforcement learning. In
Reinforcement Learning, pp. 359–386. Springer, 2012.

Wyatt, Jeremy L. Exploration control in reinforcement
learning using optimistic model selection. In ICML, pp.
593–600, 2001.

