
Achieving Goals in Decentralized POMDPs

Christopher Amato and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

{camato,shlomo}@cs.umass.edu.com

ABSTRACT
Coordination of multiple agents under uncertainty in the de-
centralized POMDP model is known to be NEXP-complete,
even when the agents have a joint set of goals. Neverthe-
less, we show that the existence of goals can help develop
effective planning algorithms. We examine an approach
to model these problems as indefinite-horizon decentralized
POMDPs, suitable for many practical problems that termi-
nate after some unspecified number of steps. Our algorithm
for solving these problems is optimal under some common
assumptions – that terminal actions exist for each agent and
rewards for non-terminal actions are negative. We also pro-
pose an infinite-horizon approximation method that allows
us to relax these assumptions while maintaining goal con-
ditions. An optimality bound is developed for this sample-
based approach and experimental results show that it is able
to exploit the goal structure effectively. Compared with the
state-of-the-art, our approach can solve larger problems and
produce significantly better solutions.

1. INTRODUCTION
The decentralized partially observable Markov decision

process (DEC-POMDP) is a powerful and attractive way
to model cooperative sequential multiagent decision making
under uncertainty. It is an extension of the partially observ-
able Markov decision process (POMDP), allowing multiple
agents to choose their individual actions based on their in-
dividual observations and jointly affect a global state and
reward functions. In addition to the uncertainty about the
global state, each agent must cope with imperfect informa-
tion about the knowledge and actions of the other agents.
As this is a cooperative model, solutions seek to maximize
a shared objective function using solely local information to
determine each agent’s action.

Many DEC-POMDP domains involve a set of agents com-
pleting some task or achieving a goal. The number of steps
needed to achieve the goal is unknown, but the problem ends
once it has been completed. Examples of these domains in-
clude agents targeting and catching an object, meeting in
an environment, cooperatively exploring and experimenting
in an environment, or moving an object or sets of objects.
In each case, agents have to cooperate while using only local

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

information to finish the task in an efficient manner. For
instance, meeting in an environment requires the agents to
choose a central location and each determine a set of paths
that will allow the location to be reached in the quickest
manner while also considering what paths the other agents
may take. This is a general class of problems that has many
natural real world applications.

Several optimal and approximate algorithms for solving
DEC-POMDPs have been proposed. Goldman and Zilber-
stein [5] discuss the complexity of a type of goal-oriented
problems under different assumptions, but do so in a finite-
horizon context in which there is a fixed number of steps un-
til completion. For general finite-horizon problems, Hansen
et al. [7] and Szer et al. [15] present optimal algorithms, while
others provide approximate methods [9, 12]. Approximate
algorithms for infinite-horizon problems have been proposed
as well [1, 3, 14].

In goal based problems, the number of steps until com-
pletion depends on the actions that are taken and not a
fixed number of steps as in finite-horizon problems. Solving
these problems as infinite-horizon essentially involves solv-
ing the same problem over and over again. Also, infinite-
horizon solutions are susceptible to changes in the discount
factor, which maintains a bounded value. We can instead
model these problems as indefinite-horizon, which termi-
nate after some unknown number of steps. We base our
indefinite-horizon representation on the action-based termi-
nation model used in POMDPs [6]. Our model assumes
that terminal actions can be taken at any step and cause the
problem to stop. In order to guarantee that problems termi-
nate after a finite number of steps and optimal solutions can
be found, we must also assume that all rewards are negative
except for those generated from the terminal actions. Un-
der these assumptions, we provide an optimal dynamic pro-
gramming algorithm for indefinite-horizon DEC-POMDPs
with action-based termination.

We can relax some of the assumptions made for action-
based termination to allow us to model a wider range of
problems. While we can no longer guarantee that these
problems will terminate after a finite number of steps, the
presence of goals allows us to implement a sampling ap-
proach that can take advantage of the added structure to
produce high quality infinite-horizon solutions. We present
an approximate algorithm for solving a class of goal-directed
DEC-POMDPs, which have a well defined termination con-
dition and any type of reward functions. We show that this
sampling approach can significantly outperform the state-
of-the-art approximate infinite-horizon DEC-POMDP algo-

rithms on a number of goal-directed problems.
The rest of the paper is organized as follows. We first de-

scribe the DEC-POMDP model, its solution and the relevant
previous work. We then present our model for indefinite-
horizon DEC-POMDPs with action-based termination and
a dynamic programming algorithm to determine optimal so-
lutions. We then describe the more general goal-directed
model and an approximate algorithm that is able to take
advantage of goals in DEC-POMDPs. We provide a bound
on the likelihood that an epsilon-optimal solution is found
and show experimentally that this approach can produce
high quality solutions to a range of domains.

2. BACKGROUND
We begin by reviewing the DEC-POMDP framework as

well as how to represent finite and infinite-horizon solutions.
We also review previous work with goals in DEC-POMDPs
as well as the relevant optimal and approximate algorithms.

2.1 The DEC-POMDP model
A DEC-POMDP can be defined 〈I, S, {Ai}, P,R, {Ωi}, O〉

with I, a finite set of agents, S, a finite set of states with des-
ignated initial state distribution b0, Ai, a finite set of actions
for each agent, i, P , a set of state transition probabilities:
P (s′|s,~a), the probability of transitioning from state s to
s′ when the set of actions ~a are taken by the agents, R, a
reward function: R(s,~a), the immediate reward for being
in state s and taking the set of actions ~a, Ωi, a finite set
of observations for each agent, i, O, a set of observation
probabilities: O(~o|s′,~a), the probability of seeing the set of
observations ~o given the set of actions ~a was taken which
results in state s′ and T , a horizon or finite number of steps
after which the problem terminates.

At each step, every agent chooses an action based on their
local observation histories, resulting in an immediate reward
and an observation for each agent. Note that because the
state is not directly observed, it may be beneficial for the
agent to remember its observation history. A local policy for
an agent is a mapping from local observation histories to
actions while a joint policy is a set of local policies, one for
each agent in the problem. The goal is to maximize the total
cumulative reward until the horizon is reached, beginning at
some initial distribution over states. In the infinite-horizon
problem, T is infinity and the decision making process un-
folds over an infinite sequence of steps. In order to maintain
a finite sum over the infinite-horizon, we employ a discount
factor, 0 ≤ γ < 1.

2.2 Policy representations
To represent policies for finite-horizon DEC-POMDPs,

policy trees can be used. These are the same as those em-
ployed for POMDPs except there is a now policy tree for
each agent. An agent’s policy tree can be defined recursively.
The tree begins with an action at the root and a subtree is
defined for each observation that the agent could see. This
continues until the horizon of the problem is achieved at the
leaf nodes. Thus, the agent’s choice of actions is defined by a
path through the tree that depends on the observations that
it sees. The joint policy is defined by a set of policy trees, one
for each agent and can be evaluated by summing the rewards
at each step weighted by the likelihood of transitioning to a
given state and observing a given set of observations.

For infinite-horizon DEC-POMDPs, finite state controllers

can be used instead of policy trees. While infinite size con-
trollers may be needed to represent optimal policies, finite
state controllers present an appealing way to model infinite-
horizon DEC-POMDP policies with finite memory. Each
agent’s policy can be represented as a local controller and the
resulting set of controllers supply the joint policy. Because
fixed memory is being used, it can be beneficial for agents
to use stochastic controllers. Each finite state controller can
formally be defined by the tuple 〈Q,ψ, η〉, where Q is the
finite set of controller nodes. The parameter ψ : Q → ∆A
is the action selection model for each node, which defines a
probability that an action will be chosen in a given node.
The parameter η : Q × A × O → ∆Q represents the node
transition model for each node. This provides the probabil-
ity of transitioning from one node to another after an action
has been taken and an observation has been seen. For n
agents, the value for being at nodes ~q and state s is

V (~q, s) =
X
~a

nY
i

P (ai|qi)
»
R(s,~a) + γ

X
s′

P (s′|~a, s)·X
~o

O(~o|s′,~a)
X
~q′

nY
i

P (q′i|qi, ai, oi)V (~q′, s′)

–
Note that the values for either policy representation can be
calculated offline in order to determine trees or controllers
that can then be executed online for distributed control.

2.3 Previous work
Goldman and Zilberstein [5] modeled goal oriented DEC-

POMDPs as finite-horizon problems with a set of goal states
and negative rewards in all non-goal states. Adding these
goal states to the finite-horizon problem was shown to not
change the complexity of general DEC-POMDPs (NEXP-
complete [4]) and independent transition and observation
(IT-IO) DEC-MDPs (NP-complete [2]) when no additional
assumptions were made. In IT-IO DEC-MDPs, Goldman
and Zilberstein also assume that each agent also has access
to a no-op action in goal states, where the agent essentially
waits for the other agents to reach the goal. When a unique
goal state was assumed or when a single goal is always known
to have higher value than the others, the IT-IO case was
shown to be P-complete.

To optimally solve a general finite-horizon DEC-POMDP,
Hansen et al.’s dynamic programming algorithm [7] can be
used. While this algorithm solves partially observable stochas-
tic games, DEC-POMDPs are a subclass in which the agents
share a common payoff function. In this algorithm, a set of
k-step policy trees, one for each agent, is generated from the
bottom up. That is, on the kth step of the problem, each
agent will perform just a single action (a 1-step policy tree),
so we begin the building of policy trees with considering
taking any action on the last step. We can then remove any
action that is not useful no matter what problem state we
are at or what possible actions the other agents take. That
is, if a tree t has lower value than another tree, t̂ for all states
and trees of the other agents, it is removed, or pruned, be-
cause it is always better to use t̂. This pruning can be done
for all agents until trees can no longer be pruned.

On the next step of the algorithm, we generate all 2-step
policy trees. This is done for each agent by considering any
root action and for any observation that is seen, choosing
some 1-step tree. If an agent has |T | 1-step trees, |A| ac-

tions, and |Ω| observations, there will be |A||T ||Ω| 2-step
trees. After this exhaustive generation of next step trees is

completed for each agent, these sets can then be pruned to
reduce their number. This generation and pruning continues
until the given horizon is reached.

Problems that repeat or continue in some way after goals
have been reached can be solved using infinite-horizon algo-
rithms. Three approximate approached have been developed
by Bernstein et al. [3], Amato et al. [1] and Szer and Charpil-
let [14] which optimize fixed size finite state controllers.
Bernstein et al. and Amato et al. use linear programming
and nonlinear programming (NLP) respectively to find pa-
rameters for stochastic controllers. Szer and Charpillet use
best-first search to construct deterministic controllers.

3. INDEFINITE-HORIZON DEC-POMDPS
In this section, we first discuss the indefinite-horizon model

as well as indefinite-horizon approaches for POMDPs. We
then provide the DEC-POMDP model and an algorithm to
solve it, including a proof that this approach will provide an
optimal indefinite-horizon solution.

3.1 Overview
In many benchmark and real world problems, a set of

agents must achieve some goal in order to receive maximum
value. Benchmark problems include the two agent tiger
problem [9], the box pushing problem [12] and the meet-
ing in a grid problem [3]. After this goal has been reached,
the problem either resets (tiger and box problems) or the
problem effectively stops (grid problem). These problems
can be modeled as a type of indefinite-horizon problem in
which the problem stops after an unknown number of steps
after some goal condition has been reached. This is a natu-
ral and expressive class of problems in which a set of agents
must complete some task such as navigate to a goal location
or simultaneously or independently choose a goal action.

Goldman and Zilberstein discussed goal-oriented problems,
but modeled them as finite-horizon and required the pres-
ence of no-op actions when agents’ transitions are indepen-
dent. Other approaches have ignored the presence of a goal
and have used general infinite-horizon DEC-POMDP algo-
rithms to find solutions. This causes the problem to be
solved over and over again and the solution to be dependent
on the horizon or discount chosen. The alternative is to
model these problems as indefinite-horizon, which removes
the need to either know the proper horizon beforehand or
choose an often meaningless discount factor.

Indefinite-horizon models for POMDPs have been pro-
posed by Patek [10] and Hansen [6]. Patek describes partially
observed stochastic shortest path problems, which make the
following assumptions: (1) existence of a policy that ter-
minates with probability one, (2) any policy that does not
guarantee termination has infinite negative reward and (3)
termination is fully observable. He proves that there is a sta-
tionary optimal policy, and in the limit value iteration and
policy iteration will converge to such a policy. Hansen pro-
poses the action-based termination model which, in addition
to Patek’s assumptions also assumes (4) a set of terminal ac-
tions, (5) all non-terminal actions have negative reward, and
(6) terminal actions can have a positive or negative reward
that depends on the state. The action-based termination
model allows simpler algorithms as proper policies, which
guarantee termination, are easily found. This greatly sim-
plifies the use of value and policy iteration with the model.

3.2 Indefinite-horizon framework
Hansen’s action-based termination model can be extended

to DEC-POMDPs with a minor change. We will require that
each agent has a set of terminal actions and the problem
stops when one of these is taken by each agent simultane-
ously. We also require negative rewards for non-terminal
actions which implies the other assumptions made by Patek
and Hansen. We could have assumed the problem ends when
any agent chooses a terminal action without adding much
complication to the algorithm and analysis. We could have
also used a set of fully observable goal states that the agents
must reach, but this complicates matters as an agent’s ac-
tions depend on only local information, but reaching the goal
may depend on certain information being observed by all
agents. Thus, even if the goal state is completely observable,
estimation of the intermediate states may not possible with
local information, making transitions to the goal unlikely
or impossible. Therefore, it is an open question whether
it is decidable to find an ε-optimal indefinite-horizon DEC-
POMDP policy without assumptions that are more restric-
tive than those made by Patek.

We can define an indefinite-horizon DEC-POMDP with
action-based termination in the same way as a finite-horizon
DEC-POMDP in that a discount factor is not used, but with
the added difference that there is no specified horizon. In-
stead, the problem stops when a terminal action is chosen
by each agent. Assumptions (1)-(6) then allow us to de-
scribe a dynamic programming algorithm that returns an
optimal solution for indefinite-horizon DEC-POMDPs in a
finite number of steps. This algorithm is an extension of the
indefinite-horizon POMDP algorithm presented by Hansen
[6] and the optimal finite-horizon DEC-POMDP algorithm
presented by Hansen et al. [7]. We can build policy trees
for each agent by first considering only terminal actions on
the last step and building up the tree by adding only non-
terminal actions on each successive step. This process of
generating next step trees and pruning continues until we
can be sure that the optimal set of trees has been produced.

Unfortunately, the decentralized case does not allow an er-
ror bound to be calculated in the form of a Bellman residual
as is used by the POMDP method. The Bellman residual
is found from the maximum difference in value for all belief
states, but in DEC-POMDPs, the value of an agent’s policy
depends not only on the state of the system, but also on
the policies chosen by the other agents. Thus, construct-
ing a Bellman residual in the DEC-POMDP case is an open
question. Instead we can calculate an upper bound on the
horizon of any optimal policy and then generate all trees
up to that bound using dynamic programming. A set of
policy trees that provides the highest value for the given ini-
tial state distribution, regardless of horizon, is an optimal
solution for the problem.

We first show how to calculate the upper bound on the
horizon of an optimal policy.

Lemma 3.1. An optimal set of indefinite-horizon policy
trees must have horizon less than kmax = (Rnow−RTmax)/RNTmax
where RTmax is the value of the best combination of terminal
actions, RNTmax the value of best combination of non-terminal
actions and Rnow is the maximum value attained by choos-
ing a set of terminal actions on the first step given the initial
state distribution.

Proof. This proof centers on the fact that the reward

for all non-terminal actions is negative. After k steps of dy-
namic programming, the maximum value attained by any
set of policies is (k − 1)RNTmax + RTmax. If this value is less
than the best value of immediately choosing terminal actions
at the initial state distribution, Rnow, then the agents are
better off ending the problem on the first step. Thus, when
(k− 1)RNTmax +RTmax ≤ Rnow we know that it is more bene-
ficial to choose some combination of terminal actions at an
earlier step. Any set of trees with horizon higher than k will
have even lower value, so kmax = (Rnow −RTmax)/RNTmax

This allows us to bound the horizon, and then we can
just choose the set of trees for any horizon up to kmax that
provides the highest value for the initial state distribution.

Theorem 3.2. Our dynamic programming algorithm for
indefinite-horizon POMDPs returns an optimal set of policy
trees for the given initial state distribution.

Proof. This follows almost directly from Lemma 3.1.
Our dynamic programming algorithm solves the indefinite-
horizon problem up to horizon kmax, which we have shown
represents an upper bound on the horizon of optimal poli-
cies. Because our algorithm represents an exhaustive search
(except for pruning) in policy space up to horizon kmax, an
optimal optimal set of policy trees must be contained in the
resulting sets of trees. Pruning does not remove any policy
trees that will be useful in any optimal policy (because it is
only done when there is another tree that is always better
for all states and trees or subtrees of the other agents, as
shown in [7]). A set of trees that provides the highest value
for the given initial state then represents an optimal policy
for the indefinite-horizon DEC-POMDP.

If we choose Rnow to be the maximum value attained by
choosing a set of terminal actions for any possible initial
state distribution, the resulting sets of policy trees will in-
clude an optimal set for any initial distribution. Also, if
we allow any agent to terminate the problem, we must in-
clude both terminal and non-terminal actions on the first
step of the algorithm and then ensure that at least one agent
chooses a terminal action on the last step of the problem.

Many DEC-POMDP domains can be naturally modeled
as indefinite-horizon with action-based termination. One ex-
ample is the search for a moving target problems discussed
by Hansen. When adapted to the decentralized case, either
both agents must both simultaneously “catch” the target or
one is the target and the goal is to meet by using local infor-
mation. The later case is exactly modeled by the meeting in
a grid benchmark DEC-POMDP problem [3]. The terminal
actions for this grid problem consist of the agents deciding
to stay in the same place when they believe they are in the
same grid square as the other agents. The multiagent tiger
benchmark problem [9] in which the problem resets when
any agent chooses a door that it believes the tiger is be-
hind is also naturally captured by this model. The terminal
actions for the tiger problem are choosing to open a door.
Many other robot navigation and task oriented problems can
be similarly represented using action-based termination.

4. GOAL-DIRECTED DEC-POMDPS
If we relax assumptions (1)-(6) given above, but retain

the notion of a goal, we may no longer be able to provide
an optimal solution that ends after a bounded number of

Algorithm 1: Goal-directed controller generation

input : The total number of samples desired, ntotal,
and the number of those to retain, nbest

output: A set of controllers for the agents, Q̂
begin

trajectories← getTrajectory(b0, goal, ntotal)
bestTraj ← chooseBest(nbest, trajectories)
for each agent, i ∈ I do

Qi ← buildController(bestTraji)

Q̂i ← reduceController(Qi)

change← true
while change do

change← findBestActions(Q̂)

change← findTransitions(Q̂)

return Q̂
end

steps. Instead, we have a class of general infinite-horizon
DEC-POMDPs that has some structure which can allow us
to produce high quality approximate solutions by focusing
on policies that achieve the goal. In this section, we first
give an overview of this class of DEC-POMDPs and then
provide a sample-based algorithm for generating solutions.

4.1 Overview
We will discuss a class of infinite-horizon DEC-POMDPs

with specified goal criteria. We call these problems goal-
directed and require that the problem terminates or resets
if any of the following hold (1) the set of agents reach a
global goal state, (2) a single agent or set of agents reach
local goal states, or (3) any chosen combination of actions
and observations is taken or seen by the set of agents.

These assumptions permit a very general class of prob-
lems that is common in benchmark domains and real world
applications. Because the two agent tiger [9] and meeting
in a grid problems [3] fit in the action-based termination
model, they also fit here, but the box pushing problem [12]
is also included in this class. The box pushing problem re-
sets when at least one agent pushes a small box or when
both agents push a large box into a goal row. Thus, there
are multiple goal states that can be achieved by the agents,
but no terminal actions.

Real world problems include those discussed for indefinite-
horizon DEC-POMDPs as well as those with more general
goals and reward structure. For instance, consider a set
of agents that must perform different experiments at cer-
tain research sites. Some of these sites may require multiple
agents performing some experiment together in order to get
the most scientific value, while other sites may require a
specific tool be used by a single agent. Positive rewards are
given for successfully performing experiments at each site
and the task is completed when all sites have been exper-
imented on. This is a version of the Mars rover problem
discussed in [2]. Many other problems have these charac-
teristics in which the agents must complete some task with
clear termination conditions.

4.2 Algorithmic approach
In order to solve these problems, we develop a sampling

approach for DEC-POMDPs. Sampling has been effective in
reducing the necessary search space in many planning prob-

lems. For instance, in POMDPs, work has primarily dealt
with sampling belief states and generating policies for these
sampled states. Methods have been developed which can
bound the sample size necessary for determining ε-optimal
policies [11] and empirically, very high quality policies can be
found with a much smaller set of belief states [11, 13]. Unfor-
tunately, it is not straightforward to extend these methods
to DEC-POMDPs. This is due to the fact that a shared
belief state can no longer be calculated and policies for each
agent must be evaluated in the context of policies for all
other agents and executed in a decentralized manner.

In our approach, we use the presence of goals to con-
struct an algorithm which samples the policies of the agents
and produces an infinite-horizon solution. The policies for
all agents are sampled simultaneously by using trajectories
which begin at the initial state and terminate when the goal
conditions are met. Because planning is conducted in a cen-
tralized fashion, it is always known when the goal is reached.
If the goal can always be achieved, the goal conditions fo-
cus and limit the possible trajectories and with sufficient
samples we could construct all possible policies for the set
of agents. This would result in an exhaustive policy search
and an optimal joint policy could then be chosen from the
set of possibilities.

When a subset of the possible trajectories is generated, a
partial policy search is conducted and we must decide what
is done when observations are seen that are not observed
in the trajectories. Also, due to decentralized execution of
policies, even if the goal is reached during the trajectories,
if an unseen observation occurs it could cause the agents to
fail to reach the goal. Because it may not be possible to
ensure the goal is reached, we must ensure a valid policy is
generated for any number of steps. For these reasons, we
choose to generate finite state controllers from the sampled
trajectories. The controllers are optimized to provide policy
choices for observations that are and are not part of the
trajectories and action choices for histories of any possible
length. The controllers will also allow the best decentralized
policies to be chosen while considering the possible choices
of the other agents.

4.2.1 Algorithm description
Our approach is given in Algorithm 1. First, we generate

a set of trajectories which consist of action and observation
sequences for each agent that begin at the initial state dis-
tribution and end when the goal is achieved. Actions are
chosen randomly by each agent and observations are chosen
based on their likelihood after the set of actions has been
taken. Trajectories that have not reached the goal after a
given cutoff are discarded.

The trajectories generate rewards for the set of agents at
each step until the goal is reached. These can be summed
by R(b0,~a0) + . . . + γTR(bgoal,~agoal) where the reward is
weighted by the state probabilities R(b,~a) =

P
s b(s)R(s,~a)

and T is the number of steps used to reach the goal. A
heuristic that considers the value of trajectories can be used
to focus and reduce the number considered. This is done by
choosing some number of trajectories that produce the best
value and retaining only them. While some low value trajec-
tories may be valuable to determine what actions should be
taken in certain cases (such as when actions fail to have the
desired outcome), in general, the highest valued trajectories
are the most useful for generating high valued policies.

A controller for each agent can then be generated from
these trajectories. This is accomplished by first creating a
tree whose root node represents the initial state and leaves
represent the goal being achieved. Starting from the root,
new nodes are created for each action that was taken at the
first step of the trajectories. From these nodes, new nodes
are then created for each observation that was seen after the
given action was taken. This process continues until the goal
has been reached, resulting in a tree which represents any
action and observation sequence that is present in any of
that agent’s trajectories. An example of a set of trajectories
and an initial controller is shown in Figure 1. It is for the
possible policies that are generated at this step for which we
derive a bound in our analysis.

To better use trajectories and representation space, this
tree can then transformed into a controller and then op-
timized. A controller is constructed by adding transitions
after the goal has been reached into an absorbing node or
back to the root node, depending on the problem dynamics.
To ensure that an action is defined for any possible action
and observation history we can arbitrarily assign controller
transitions for observations that are not a part of any tra-
jectory. For instance, the controller can transition back to
the beginning or stay in place for unseen observations. The
transitions can be improved during the optimization phase.

Because these controllers are generated from trees, as soon
as two trajectories differ, the controller branches out and a
separate path is created until the goal is reached. This is true
even if the trajectories become the same for later sequences.
For this reason, we can reduce the size of the controllers by
starting from the last node of each trajectory and determin-
ing if the same actions are possible, the same observations
are seen and the same node is transitioned to. If this is the
case, the nodes can be merged. This can greatly reduce the
size of the controllers without reducing their expressiveness.

We then need to choose the best of the possible actions at
each node of the controller. This can be done by any search
method such as branch and bound. The different combina-
tions of action choices are evaluated for the set of agents
and the one with the highest value is chosen. Determin-
ing the actions for each agent’s controller requires at mostQ
i,qi
|Aqi
i | steps for each agent i where |Aqi

i | represents the
number of possible actions for node qi. In many cases, we
can stop after this search and have a high quality infinite-
horizon policy for each agent, but it may also be beneficial
to adjust the controller transitions.

A more compact or higher valued controller may be able
to be constructed if the tree-like structure is adjusted and
transitions between different nodes are used. Because it is
often intractable to search through all possible controller
transitions for all agents, we use a heuristic method that
allows transitions to be changed within a controller. This
approach tests each node and observation to determine if
a higher value can be attained by transitioning to a dif-
ferent resulting node while keeping other transitions in the
agent’s controller and all other agents’ controllers fixed. If
an improvement is found, the transition is updated for that
observation. We can continue optimizing the action choices
and transition choices for the agents until no further im-
provements can be made.

4.2.2 Example
An example of policy generation for an agent is shown

Figure 1: An example of a controller generated from
a set of trajectories. The trajectories all begin at
an initial state and end when a goal condition has
been satisfied. The initial controller is then created
from these trajectories and redundant nodes are
combined to produce the reduced controller. This
controller is then optimized by evaluating it in con-
junction with the controllers of the other agents and
optimizing the action choices and transition choices
as shown in a) and b) respectively.

in Figure 1. This example is motivated by a version of the
meeting in a grid problem in which the agents must nav-
igate to a certain grid location while movements can slip,
resulting in the agent staying in place. We begin with a
set of action and observation sequences which represent tra-
jectories starting at an initial state and end when the goal
condition is satisfied (labeled g throughout). These trajecto-
ries represent different paths that the agent took to achieve
the goal. While it was possible that the agent reached the
goal location after taking one action, because movements
are noisy and multiple paths exist, other instances required
multiple iterations of that action or a different set of actions.

The trajectories are then used to generate an initial con-
troller. For each trajectory, there is a path in the controller
that reaches the goal. Circles are used to represent nodes,
squares represent action choices and observations are labeled
above the given transition arrow. This initial controller is a
tree, except we can consider transitioning to any node once
the goal has been reached. We can then reduce the controller
by noticing that node 5 and node 2 are equivalent. That is,
each takes only action a1 and after observing o1 transitions
to the goal. Thus, the two nodes can be merged, reducing
the controller size from 6 to 5.

The optimization phase further reduces the controller size
by choosing actions and adjusting transitions. The action
choices that provide the highest value are chosen in part a,
producing a 3 node controller with fixed actions. The transi-
tions after each observation, whether part of the trajectories
or not, are then optimized, resulting in a single node that
chooses action a1 until the goal is reached. The optimized
controller is very simple and provides a high valued policy
for this version of the meeting in a grid problem.

4.3 Analysis
The initial policy for the controller is built from sampled

trajectories of the domain. With an unlimited number of
samples and a bound on the horizon, by choosing the best

actions, the initial controllers would be optimal. More inter-
estingly, it is possible to bound the error of the controllers
obtained, based on the number of samples used to generate
them. We show that bounds developed in the context of
POMDPs [8] may be adapted to our setting. The goal is to
show that with probability at least 1 − δ we can construct
controllers that have value within ε of the optimal set of
controllers.

These bounds are based on an analysis similar to that of
learning-theoretic bounds, with a few modifications. In ma-
chine learning, typically all samples may be used in evaluat-
ing every hypothesis. The bounds then rely on the large
number of samples available for testing each hypothesis.
This is not the case in our setting. When evaluating a de-
terministic joint policy π, only trajectories with the same
actions as π for the observations that are seen may be used.
Also, as mentioned above, because policies are produced
from the trajectories, actions will not be specified for all
observation sequences. This does not present a problem in
our analysis, since the set of samples used to define the tra-
jectories is identical to the set of samples used to define the
policies.

We adopt the analysis from [8], section 5.1, to derive
the bounds. While this analysis produces somewhat loose
bounds, it lays the foundation for more sophisticated bounds,
which remains the subject of future work. We use π ∈ Π to
denote a joint deterministic policy from the set of all possible
policies. We also use Ai to denote the set of available actions
for agent i, and A =

Qn
i Ai with |A| ≥ 2. We assume an

upper bound on the number of steps required to reach the
goal, denoted by T . The set of available trajectories is H,
assuming that the actions taken are chosen randomly with
a uniform probability, and independently in each step. Fi-
nally, let Vmax be the maximal difference between the values
of the policies in Π. Using this notation, we show that if the
optimal policy is π∗, the policy obtained from the samples
is π̃(H) and given a sufficient number of samples, then for
any ε we can bound:

P
h
V π
∗
(s0)− V π̃(H)

i
≥ ε

The following lemma describes the probability of generat-
ing a trajectory, h, that is consistent with any joint policy
π. We use accπ(h) to denote the presence or absence of this
consistency. For lack of space we only state lemmas that are
different from [8]. We provide the corresponding lemma or
theorem numbers from this reference below. The proofs are
straightforward and thus omitted.

Lemma 4.1 (An adaptation of Lemma 5.1). For any
joint deterministic policy:

P [accπ(h) = 1] =
1

|A|T

We can then bound the probability that there is a joint
policy that is consistent with less than |H|/|A|T+1 samples.

Lemma 4.2 (An adaptation of Lemma 5.3). Assum-
ing |H| > |A|T+3 log(2|Π|/δ), the probability that there exists
a policy π ∈ Π for which |{h|accπ(h) = 1}| < |H|/|A|T+1 is
at most δ/2.

Together with Lemma 5.4, the theorem below follows.

Theorem 4.3 (An adaptation of Theorem 5.5).
Assuming |H| > |A|T+3(Vmax/ε)

2 log(2|Π|/δ), we have with

probability at least 1− δ simultaneously for all π ∈ Π that:˛̨̨
V π(s0)− Ṽ π(s0)

˛̨̨
≤ ε,

where Ṽ is the value obtained from the samples.

The theorem above shows that the value of the generated
policy is with probability 1−δ at most ε from the true value
of the policy. To bound the difference between the generated
policy π̃ and the optimal policy π∗, we can use the triangle
inequality and the optimality of π̃ on the samples to prove
the following.

Corollary 4.4. From Theorem 4.3 we have:

P
h
V π
∗
(s0)− V π̃(H) ≥ ε

i
≤ δ.

5. EXPERIMENTS
In this section, we evaluate the performance of our goal-

directed approach as well as three state-of-the-art infinite-
horizon DEC-POMDP approximation algorithms. We com-
pare our approach to the NLP method of Amato et al. [1],
Bernstein et al.’s DEC-BPI method [3] and Szer and Charpil-
let’s BFS algorithm [14]. Results are given for three common
benchmark domains as well as a much larger scientific coor-
dination task that was mentioned previously.

5.1 Experimental setup
For the NLP and DEC-BPI approaches, each algorithm

was run until convergence was achieved with ten different
random deterministic initial controllers, and the mean values
and running times were found for a range of controller sizes.
The nonlinear program solver snopt on the NEOS server
was used to determine solutions for the NLP approach. The
algorithms were run on increasingly larger controllers until
memory was exhausted (2GB) or time expired (4 hours).
We then report the results for the controller size with the
highest value for each method.

For our goal-directed approach, our algorithm was also
run until it converged ten times and the mean values and
running times are reported. We also provide the sizes of
typical controllers that are generated. The total number of
trajectories generated and retained were 5000000 and 25 for
the two agent tiger problem, 1000000 and 10 for the meeting
in a grid and box pushing problems and 500000 and 5 for the
two rover problems. It is worth noting that due to the small
number of samples retained, our bound on the optimality of
the solution does not hold in the results below. Sampling
time ranged from less than 30 seconds for the tiger problem
to approximately 5 minutes for the stochastic version of the
rover problem.

The BFS algorithm was run until on increasing controller
sizes until memory or time was exhausted. The solution
reported represents the optimal deterministic controller for
the largest solvable controller size. Because different ma-
chines were required for the algorithms, computation times
are not directly comparable. Nevertheless, we expect that
they would only vary by a small constant.

5.2 Domain descriptions
We test the algorithms on three benchmark domains and

two versions of a very large rover coordination problem. The
benchmark domains that were used are the two agent tiger
problem [9], the meeting in a grid problem [3] and the box

pushing domain [12]. These problems were discussed earlier
and for more details see the references. On all of the test
domains a discount factor of 0.9 was used.

The new domain that we propose has more than twice
the number of states of the previous largest domain. This
problem has 256 states, 6 actions and 8 observations and in-
volves two rovers performing certain scientific experiments
at a set of sites. The agents can conduct scientific experi-
ments at four possible sites by choosing to drill or sample.
These sites are arranged in a two-by-two grid in which the
rovers can independently move north, south, east and west.
Two of the sites require only one agent to sample them while
two of the sites require both agents to drill at the same time
in order to get the maximum reward. If a site only needs to
be sampled, but it is drilled instead, the site is considered
ruined and thus a large negative reward is given. If a sites
requires drilling, but is sampled instead, a small positive re-
ward is given. Once a site is sampled or drilled any further
experiment is considered redundant and incurs a small neg-
ative reward. The rovers can fully observe their own local
location as well as whether an experiment has already been
performed at that site. When at least one experiment is per-
formed at each site, the problem is reset. We provide results
for a version of this problems in which the rovers can deter-
ministically move in the intended direction and a version in
which there is a small probability that movement fails and
the rover stays in place.

5.3 Results
The experimental results are given in Table 1. In all do-

mains except the meeting in a grid problem, significantly
higher values are found with our goal-directed approach.
The BFS approach is limited to very small controllers so
even though an optimal deterministic controller is generated
for the given controller sizes, these controllers were not large
enough to produce a high value. In the rover problems, it
could not find a solution for a one node controller before time
was exhausted. DEC-BPI can solve larger controllers, but
has a high time requirement and generally performs poorly
in these domains. The NLP method performs better, pro-
ducing the highest value in the grid problem and the second
highest value in the others before exhausting the given re-
sources. Nevertheless, the goal-directed approach provides
very high value results often with much less time than the
other approaches. It requires the least time in all domains
except for the rover problem, but in this case, the large in-
crease in value is likely worth the small increase in time.
The other approaches cannot find a meaningful solution to
the rover problem, while the goal-directed method can some-
times find the known optimal solution in the deterministic
version (31.3809). Thus, the goal-directed approach is able
to produce concise, high quality solutions that are based
on the goal structure of the problem rather to producing a
solution for an arbitrary fixed size.

6. CONCLUSIONS
In this paper, we discussed a natural class of problems

in which agents have a set of joint goals. Under assump-
tions that each agent has a set of terminal actions and re-
wards for non-terminal actions are negative, we presented
an indefinite-horizon model. To solve this model, we de-
scribed a dynamic programming algorithm that is guaran-
teed to produce an optimal solution. For problems with

Two Agent Tiger Problem |S| = 2, |A| = 3, |Ω| = 2
BFS DEC-BPI NLP Goal-directed

-14.115 (3 nodes, 12007s) -52.633 (11 nodes, 102s) -1.088 (19 nodes, 6173s)1 5.041 (11,12 nodes, 75s)

Meeting in a Grid Problem |S| = 16, |A| = 5, |Ω| = 2
BFS DEC-BPI NLP Goal-directed

4.211 (2 nodes, 17s) 3.604 (7 nodes, 2227s) 5.658 (5 nodes, 117s) 5.637 (4 nodes, 4s)

Box Pushing Problem |S| = 100, |A| = 4, |Ω| = 5
BFS DEC-BPI NLP Goal-directed

-2 (1 node, 1696s) 9.442 (3 nodes, 4094s) 54.230 (4 nodes, 1824s)1 149.854 (5 nodes, 199s)

Rover Problems: deterministic and stochastic |S| = 256, |A| = 6, |Ω| = 8
BFS DEC-BPI NLP Goal-directed

x -1.112 (3 nodes, 11262s) 9.642 (2 nodes, 379s) 26.932 (5 nodes, 491s)
x -1.177 (3 nodes, 14069s) 8.119 (2 nodes, 438s) 21.483 (6 nodes, 956s)

Table 1: The values produced by each method along with controller size and time in seconds.

a more general reward structure or when other goal con-
ditions are utilized rather than terminal actions, we mod-
eled these problems as goal-directed DEC-POMDPs. We
provided an approximate infinite-horizon approach for this
class of problems and developed a bound on the number
of samples needed to approach optimality. Unlike previous
algorithms, our method uses the goal structure to produce
finite-state controllers rather than optimizing controllers of
an arbitrarily chosen size. Experimental results show that
our approach can significantly outperform current state-of-
the-art algorithms by quickly producing concise, high qual-
ity results even for large DEC-POMDPs.

In the future, we expect to extend our approach to non
goal-directed problems by having a researcher define sub-
goals that may be useful for agents to achieve. Solving
these smaller problems and combining the resulting con-
trollers could allow much larger problems to be solved. We
are also interested in exploring different ways of utilizing
sampling to produce high quality results in other classes of
DEC-POMDPs. With some modification, our sampling ap-
proach can be applied to general finite-horizon and infinite-
horizon DEC-POMDPs and we would expect similarly high
quality results in those cases.

7. ACKNOWLEDGEMENTS
Special thanks to Marek Petrik for his assistance with the

analysis. Support for this work was provided in part by the
National Science Foundation under grants IIS-0535061 and
IIS-0812149, and by the Air Force Office of Scientic Research
under grants FA9550-05-1-0254 and FA9550-08-1-0181.

8. REFERENCES
[1] C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing

memory-bounded controllers for decentralized POMDPs. In
Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, 2007.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.
Solving transition-independent decentralized Markov
decision processes. Journal of AI Research, 22:423–455,
2004.

[3] D. S. Bernstein, E. Hansen, and S. Zilberstein. Bounded
policy iteration for decentralized POMDPs. In Proceedings

1These results utilize controllers with deterministic action
selection.

of the Nineteenth International Joint Conference on
Artificial Intelligence, pages 1287–1292, 2005.

[4] D. S. Bernstein, S. Zilberstein, and N. Immerman. The
complexity of decentralized control of Markov decision
processes. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence, pages 32–37, 2000.

[5] C. V. Goldman and S. Zilberstein. Decentralized control of
cooperative systems: Categorization and complexity
analysis. Journal of Artificial Intelligence Research,
22:143–174, 2004.

[6] E. A. Hansen. Indefinite-horizon POMDPs with
action-based termination. In Proceedings of the
Twenty-Second National Conference on Artificial
Intelligence, pages 291–296, 2007.

[7] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pages 709–715, 2004.

[8] M. Kearns, Y. Mansour, and A. Y. Ng. Approximate
planning in large POMDPs via reusable trajectories.
http://robotics.stanford.edu/~ang/papers/pomdp-
long.pdf,1999.

[9] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and
S. Marsella. Taming decentralized POMDPs: Towards
efficient policy computation for multiagent settings. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 705–711, 2003.

[10] S. D. Patek. On partially observed stochastic shortest path
problems. In Proceedings of the Fortieth IEEE Conference
on Decision and Control, pages 5050–5055, 2001.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: an anytime algorithm for POMDPs. In
Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, pages 1025–1032,
2003.

[12] S. Seuken and S. Zilberstein. Improved memory-bounded
dynamic programming for decentralized POMDPs. In
Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, 2007.

[13] T. Smith and R. Simmons. Heuristic search value iteration
for POMDPs. In Proceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence, 2004.

[14] D. Szer and F. Charpillet. An optimal best-first search
algorithm for solving infinite horizon DEC-POMDPs. In
Proceedings of the Sixteenth European Conference on
Machine Learning, 2005.

[15] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, 2005.

