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POMDPs

= Partially observable Markov decision process
(POMDP)
= Agent interacts with the environment
= Sequential decision making under uncertainty
= At.each stage receives:
= an observation rather than the actual state
= Receives an immediate reward
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Overview

POMDPs and their solutions

Fixing memory with controllers
Previous approaches
Representing the optimal controller
= Some experimental results

UNIVERSITY OF MASSACHUSETTS, AMHERST + Department of Computer Science

POMDP definition

= A POMDP can be defined with the
following tuple: M = (S, A, P, R, Q, O)
= S, a finite set of states with designated

initial state distribution b,

= A, a finite set of actions
= P, the state transition model: P(s'| s, a)
= R, the reward model: R(s, a)
= Q, a finite set of observations

= O, the observation model: O(o|s’,a)
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POMDP solutions

= A policy is a mapping 6: Q" — 4

= Goal is to maximize expected
discounted reward over an infinite
horizon

= Use a discount factor, vy, to calculate this
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Previous work

= Optimal algorithms
= Large space requirement
= Can only solve small problems
= Approximation algorithms
= provide weak optimality guarantees, if any
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Example POMDP: Hallwa

States: grid cells with
orientation

Actions: turn ), - ((°

move forward, stay

Minimize number of
steps to the starred
square for a given
start state

G . Transitions: noisy
distribution

Observations: red lines

| Goal: starred square
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Policies as controllers

= Fixed memory

= Randomness used to offset memory
limitations

= Action selection, J : Q — AA
= Transitions,n :Q x A x O = AQ
= Value given by Bellman equation:

V(g.9)= Y P(alg)

R(s,a)+ 72 P(s'l s,a)E 0ol s’,a)E P(q'lg,a,0V(q',s")
s o, q'
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Controller example

» Stochastic controller
= 2 nodes, 2 actions, 2 obs
= Parameters

= P(alq)
" P(q,lq!avo)

Gradient ascent

= Gradient ascent (GA)- Meuleau et al. 99

= Create cross-product MDP from
POMDP and controller

= Matrix operations then allow a gradient
to be calculated
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Optimal controllers

= How do we set the parameters of the
controller?

= Deterministic controllers - traditional

methods such as branch and bound
{Meuleau et al. 99)

s Stochastic controllers - continuous
optimization
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Problems with GA

= Incomplete gradient calculation
= Computationally challenging
= Locally optimal
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= Bounded Policy Iteration (BPI) - Poupart & Boutilier
03

= Alternates between improvement and
evaluation until convergence

= Improvement: For each node, find a probability
distribution over one-step lookahead values
that is greater than the current node’s value for
all states

= Evaluation: Finds values of all nodes in all
states
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Problems with BPI

= Difficult to improve value for all states

= May require more nodes for a given
start state

= Linear program (one step lookahead)
results in local optimality

= Must add nodes when stuck
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BPI - Linear program

For a given node, q

Variables: x(a)= P(alq), x(¢’,a,0)=P(q’,a|q,0)
Objective: Maximize ¢

Improvement Constraints: Vs € S

V(gs)+e< ) x(@R(s,a)+ 7Y P(s'15,0) 3 0(015,0) Y, x(q',a,o)V(q',s')]
s o q"

a

Probability constraints: a € 4 Ex(q‘,a,o) = x(a)

q

Also, all probabilities must sum to 1 and be
greater than 0
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QCLP optimization

= Quadratically constrained linear
program (QCLP)

= Consider node value as a variable

= Improvement and evaluation all in one
step

= Add constraints to maintain valid values
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QCLP intuition

= Value variable allows improvement and
evaluation at the same time (infinite
lookahead)

= While iterative process of BPI can “get
stuck” the QCLP provides the globally
optimal solution
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Optimalit

Theorem: An optimal solution of the
QCLP results in an optimal stochastic
controller for the given size and initial
state distribution.
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QCLP representation

Variables: x(¢’,a,q,0) = P(q’,a|q,0); ¥(¢,5)= V(q,s)
Objective: Maximize Ebo(S)y(qo,S)
Value Constraints: Vs €'S, g€ 0

)’(q,s) T E Ex(q'7a’q’0k)
Probability constraints: Vg€ 0, a €4, 0 € Q
Y x(q',a,4,0) = Y x(q,a.q:0,)
q' q'

R(s,a) + yE P(s'l s,a)E O(o! s',a)E x(q',a,9,0)y(q",s' )}

Also, all probabilities must sum to 1 and be
greater than 0
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Pros and cons of QCLP

= Pros

= Retains fixed memory and efficient policy
representation

= Represents optimal policy for given size
= Takes advantage of known start state

= Cons
= Difficult to solve optimally
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Experiments

= Nonlinear programming algorithm
(snopt) - sequential quadratic
programming (SQP)

Guarantees locally optimal solution
NEOS server

10 random initial controllers for a range
of sizes

Compare the QCLP with BPI
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number of nodes number of nades

@ ®)

(a) best and (b) mean results of the QCLP
and BPI on the machine maintenance
domain (256 states, 16 obs, 4 acts)
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best value of controllers ‘mean value of controllers

nnnnnnnnnn - number of nodes

@) (58

(a) best and (b) mean results of the QCLP
and BPI on the hallway domain (57 states,
21 obs, 5 acts)
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= Computation time is comparable to BPI

= Increase as controller size grows offset
by better performance

Hallway Machine

. BRI #nodes [ QCLP | BPI |
1 min 1 [« 1min | 1.3 mins |

1 min 2 [ < 1min 4.6 mins

1 min 4 [ 14.1 mins

1.6 mins 6 | 25.5 mins

2.9 mins 8 | 42.9 mins

¢ mins 10 62.8 mins
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Euture Work

= Introduced new fixed-size optimal = Investigate more specialized solution
representation techniques for QCLP formulation

= Showed consistent improvement over = Greater experimentation and
BPI with a locally optimal solver comparison with other methods

= In general, the QCLP may allow small = Extension to the multiagent case

optimal controllers to be found

= Also, may provide concise near-optimal
approximations of large controllers
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