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Overview
 POMDPs and their solutions
 Fixing memory with controllers
 Previous approaches
 Representing the optimal controller
 Some experimental results
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POMDPs

 Partially observable Markov decision process
(POMDP)

 Agent interacts with the environment
 Sequential decision making under uncertainty
 At each stage receives:

 an observation rather than the actual state
 Receives an immediate reward

Environment
a

o,r
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POMDP definition
 A POMDP can be defined with the

following tuple: M = 〈S, A, P, R, Ω, O〉
 S, a finite set of states with designated

initial state distribution b0

 A, a finite set of actions
 P, the state transition model: P(s'| s, a)
 R, the reward model: R(s, a)
 Ω, a finite set of observations
 O, the observation model: O(o|s',a)
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POMDP solutions
 A policy is a mapping δ : Ω* → A
 Goal is to maximize expected

discounted reward over an infinite
horizon

 Use a discount factor, γ, to calculate this
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Example POMDP: Hallway

   Minimize number of
steps to the starred
square for a given
start state
distribution

States: grid cells with
orientation

Actions: turn    ,   ,    ,
move forward, stay

Transitions: noisy

Observations: red lines

Goal: starred square
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Previous work
 Optimal algorithms

 Large space requirement
 Can only solve small problems

 Approximation algorithms
 provide weak optimality guarantees, if any
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Policies as controllers
 Fixed memory
 Randomness used to offset memory

limitations
 Action selection, ψ : Q → ΔA
 Transitions, η : Q × A × O → ΔQ
 Value given by Bellman equation:
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Controller example
 Stochastic controller

 2 nodes, 2 actions, 2 obs
 Parameters

 P(a|q)
 P(q’|q,a,o)
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Optimal controllers
 How do we set the parameters of the

controller?

 Deterministic controllers - traditional
methods such as branch and bound
(Meuleau et al. 99)

 Stochastic controllers - continuous
optimization
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Gradient ascent
 Gradient ascent (GA)- Meuleau et al. 99

 Create cross-product MDP from
POMDP and controller

 Matrix operations then allow a gradient
to be calculated
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Problems with GA
 Incomplete gradient calculation
 Computationally challenging
 Locally optimal
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BPI
 Bounded Policy Iteration (BPI) - Poupart & Boutilier

03

 Alternates between improvement and
evaluation until convergence

 Improvement: For each node, find a probability
distribution over one-step lookahead values
that is greater than the current node’s value for
all states

 Evaluation: Finds values of all nodes in all
states
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BPI - Linear program
For a given node, q
Variables: x(a)= P(a|q), x(q’,a,o)=P(q’,a|q,o)
Objective:  Maximize ε
Improvement Constraints: ∀s ∈ S

Probability constraints: a ∈ A

Also, all probabilities must sum to 1 and be
greater than 0
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Problems with BPI
 Difficult to improve value for all states
 May require more nodes for a given

start state
 Linear program (one step lookahead)

results in local optimality
 Must add nodes when stuck
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QCLP optimization
 Quadratically constrained linear

program (QCLP)
 Consider node value as a variable
 Improvement and evaluation all in one

step
 Add constraints to maintain valid values
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QCLP intuition
 Value variable allows improvement and

evaluation at the same time (infinite
lookahead)

 While iterative process of BPI can “get
stuck” the QCLP provides the globally
optimal solution
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Variables: x(q’,a,q,o) = P(q’,a|q,o), y(q,s)= V(q,s)
Objective:  Maximize
Value Constraints: ∀s ∈ S, q ∈ Q

Probability constraints: ∀q ∈ Q, a ∈ A, o ∈ Ω

Also, all probabilities must sum to 1 and be
greater than 0

QCLP representation
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Optimality

Theorem: An optimal solution of the
QCLP results in an optimal stochastic
controller for the given size and initial
state distribution.
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Pros and cons of QCLP
 Pros

 Retains fixed memory and efficient policy
representation

 Represents optimal policy for given size
 Takes advantage of known start state

 Cons
 Difficult to solve optimally
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Experiments
 Nonlinear programming algorithm

(snopt) - sequential quadratic
programming (SQP)

 Guarantees locally optimal solution
 NEOS server
 10 random initial controllers for a range

of sizes
 Compare the QCLP with BPI
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Results

(a) best and (b) mean results of the QCLP
and BPI on the hallway domain (57 states,
21 obs, 5 acts)

(a) (b)
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Results

(a) (b)

(a) best and (b) mean results of the QCLP
and BPI on the machine maintenance
domain (256 states, 16 obs, 4 acts)
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Results
 Computation time is comparable to BPI
 Increase as controller size grows offset

by better performance

Hallway                                Machine
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Conclusion
 Introduced new fixed-size optimal

representation
 Showed consistent improvement over

BPI with a locally optimal solver
 In general, the QCLP may allow small

optimal controllers to be found
 Also, may provide concise near-optimal

approximations of large controllers
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Future Work
 Investigate more specialized solution

techniques for QCLP formulation
 Greater experimentation and

comparison with other methods
 Extension to the multiagent case


