
Bounded Dynamic Programming for
Decentralized POMDPs

Christopher Amato, Alan Carlin and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

{camato,acarlin,shlomo}@cs.umass.edu

ABSTRACT
Solving decentralized POMDPs (DEC-POMDPs) optimally
is a very hard problem. As a result, several approximate al-
gorithms have been developed, but these do not have satis-
factory error bounds. In this paper, we first discuss optimal
dynamic programming and some approximate finite hori-
zon DEC-POMDP algorithms. We then present a bounded
dynamic programming algorithm. Given a problem and an
error bound, the algorithm will return a solution within that
bound when it is able to solve the problem. We give a proof
of this bound and provide some experimental results show-
ing high quality solutions to large DEC-POMDPs for large
horizons.

1. INTRODUCTION
Cooperative multiagent problems that include uncertainty

are very common, but are often difficult to solve optimally.
The decentralized partially observable Markov decision pro-
cess (DEC-POMDP) is an extension of the POMDP frame-
work to model these mutiagent settings. Each agent must
make decisions based on imperfect information of the system
state and uncertainty about the other agents. Solutions seek
to maximize shared reward using solely local information for
each agent.

Applications of the DEC-POMDP model include robot
control [2] and networking [4]. Robots typically have sensors
that provide uncertain and incomplete information about
the state of the environment and the location of the other
robots. This lack of information must be factored into the
planning process. In a decentralized network, each node
must make decisions about when and where to send packets
without full knowledge of the structure or actions of the rest
of the network. Other applications include e-commerce and
space exploration systems.

Several exact and approximate algorithms have recently
been developed to solve finite-horizon DEC-POMDPs [2,
4, 5, 6, 7]. The finite-horizon problem, in contrast to the
infinite-horizon version, takes place over a finite number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSDM 2007 May 15, 2007, Honolulu, Hawai’i, USA.

of steps. Current exact algorithms that use dynamic pro-
gramming often require an intractable amount of space even
though an optimal or near-optimal solution may be concise.
DEC-POMDP approximation algorithms can operate with
a limited amount of memory, but as a consequence may
provide solutions that are unboundedly below the optimal.
We propose a new approach that addresses the space re-
quirement of DEC-POMDP algorithms while maintaining
error bounds on the solution quality. This approach uses a
bounded approximation of the value function for each agent
that may require less space than the representation used by
optimal DEC-POMDP algorithms. This technique has al-
ready been successful in POMDP domains [3, 8], and we
extend this idea to the DEC-POMDP case. Bounded error
dynamic programming permits near-optimal solutions to be
found for much larger DEC-POMDPs and horizons.

In this paper, we first present some background on the
DEC-POMDP model. We then discuss some previous ap-
proaches to solve DEC-POMDPs and our ε-pruning approach
that is able to overcome some of the shortcomings of the
earlier work. Lastly, experimental results are provided com-
paring our approach with a state-of-the-art approximate al-
gorithm. We show ε-pruning allows high quality solutions
to be found that are within a given bound of optimal for a
range of domains and horizons.

2. THE DEC-POMDP MODEL
We first review the decentralized partially observable Markov

decision process (DEC-POMDP) model. For clarity, we
present the model for two agents as it is straightforward
to extend it to n agents.

A two agent DEC-POMDP can be defined with the tuple:

M = 〈S, A1, A2, P, R, Ω1, Ω2, O, T 〉

• S, a set of states

• A1 and A2, sets of actions for each agent

• P , state transition probabilities: P (s′|s, a1, a2), the
probability of transitioning to state s′ given the previ-
ous state was s and actions a1 and a2 were taken by
agents 1 and 2 respectively

• R, a reward function: R(s, a1, a2), the immediate re-
ward for being in state s and agent 1 taking action a1

and agent 2 taking action a2

• Ω1 and Ω2, sets of observations for each agent



• O, an observation probabilities: O(o1, o2|s′, a1, a2), the
probability of agents 1 and 2 seeing observations o1

and o2 respectively given agent 1 has taken action a1

and agent 2 has taken action a2 causing the state to
transition to s′

• T , a horizon of the problem

At each step, every agent chooses an action based on their
local observation histories, resulting in an immediate reward
and an observation for each agent. Because the true state
is unknown, local observation histories may be needed to
make an optimal action choice. A local policy for an agent
is a mapping from local observation histories to actions while
a joint policy is a set of policies, one for each agent in the
problem that is executed by that agent. The goal in the
finite-horizon problem is to maximize the total cumulative
reward over the given horizon, beginning at some distribu-
tion over states called a belief state. An optimal joint pol-
icy for a certain belief state is the joint policy with the
maximum value at that belief state. We express this as
maxp,q

P
s b(s)V (p, q, s) for all possible policies p and q of

horizon T , summing over all states s.
We can model DEC-POMDP policies as policy trees. In

a policy tree, the root node defines what action is taken
by that agent on the first step of the problem. The arcs
from that node represent observations, which lead to new
action nodes given that observation. This continues until a
leaf is reached, producing the action for the last step of the
problem. The depth of the tree corresponds to the horizon
of the problem. Each agent’s policy can be described as a
policy tree independent of the other agents.

In the two-agent problem, the value of an agent’s policy
tree, p, can be determined based on a policy for the other
agent, q, and the initial state, s. This can be written recur-
sively as:

V (p, q, s) = R(s, ap, aq)+X
s′

P (s′|ap, aq, s)
X

o1,o2

O(o1, o2|s′, ap, aq)V (po1 , qo2 , s′)

where ap and aq represent the root actions taken in the
policy trees of each agent and V (po1 , qo2 , s′) is the value of
continuing in the policy trees based on the observation that
was seen and the resulting state.

3. OPTIMAL DP
Hansen et al. [4] have developed an optimal dynamic pro-

gramming (DP) algorithm for DEC-POMDPs. The authors
noticed that if communication is not assumed, each agent
must choose policies that have high value based on any pol-
icy the other agent may use. To formalize this, they define
a generalized belief state, b(s, q), for an agent as the proba-
bility that the system state is s and the other agent will use
policy q. The value of an agent’s belief is then:

V (b) = max
p

X
s,q

V (p, q, s)b(s, q)

which represents the maximum the agent can achieve given
its set of policies weighted by the probability that the true
state is s and the other agent uses policy q. As the probabil-
ity distribution of the underlying state depends on the poli-
cies of the other agent and we assume no prior knowledge

about the other agent, all policies that may contribute to
this max must be retained. This suggests that policies that
do not contribute to the max may be removed, or pruned.
Policy trees for horizon two and a visual representation of
the generalized belief space is shown in Figure 1.

Hansen et al. generalize dynamic programming for the
POMDP case and build up a policy tree for each agent one
step at a time. They present a centralized algorithm that
creates policy trees for each agent that can then be executed
distributively. Sets of policy trees are grown for each agent
from the last step of the problem to the first. The algorithm
initializes these sets to include policies of horizon 1, which
are merely the sets of actions for each agent. The actions
that have lower value for all possible states and actions of
the other agents are then removed. This is possible because
by the time this step is reached in the final tree, trees that
contribute to the max must have higher value than any other
tree for some generalized belief state. Since there are mul-
tiple agents in the pruning process, each agent prunes its
set of horizon 1 policies given the current sets for the other
agents. As the other agents’ sets of polices may be reduced
in size as they are pruned, this may affect which policies
can be pruned for other agents. Because of this, pruning
continues until no agent is able to prune any of its remain-
ing policies. Next, policy trees for all agents are grown to
allow all possible actions to be taken and all possible obser-
vations to then be seen. Each action/observation pair then
transitions to the policy trees from the previous step. This
is referred to as a backup and the resulting increase in the
number of trees for each agent is exponential. Next, trees
which have lesser value for all possible states and policies of
the other agents are pruned as described above. The grow-
ing and pruning process continues until the trees reach the
given horizon. This results in a set of policy trees for each
agent that is optimal for any initial initial state.

While this method guarantees that an optimal tree will
be found, the set of trees may be very large and many un-
necessary trees may be generated along the way. Because
of this, it requires an intractable amount of memory for any
but the smallest problems.

4. APPROXIMATE METHODS
As an alternative to exact methods, several DEC-POMDP

approximation algorithms have been developed. Two of
the best techniques are those of Nair et al.[5] and Emery-
Montemerlo et al.[2] Both algorithms iterate through the set
of agents, holding all policies fixed except one and choosing
the best policy for that agent. This continues until there
is no change in the policies selected. While this approach
will allow a locally optimal solution to be found, it may be
very poor and still requires the space of all policies for a
single agent to be searched. Nair et al. propose a way to
scale up their algorithm to larger problems by incorporating
dynamic programming, but effects are limited in practice.
Emery-Montemerlo et al. scale up their algorithm by ap-
proximating the problem by a series of simpler ones. While
this increases solvable problem size, it decreases solution
quality.

Seuken and Zilberstein [6] devised a heuristic approach
to allow solutions to be found for arbitrary horizons. The
authors use a forward search heuristic based on the start
state of the problem to determine likely belief states at later
states of the problem. This allows the number of trees kept



Figure 1: Policy trees for two agents and their resulting generalized state space that depends not only on
the states of the system, but also the policy of the other agent

for each agent to be bounded at each step, but maintains
high quality solutions. While Seuken and Zilberstein are
able to demonstrate good time and value performance for
some small DEC-POMDPs, their algorithm may return so-
lutions that are unboundedly below the optimal solution.
Also, all of the above authors assume knowledge of the start
state in order to improve performance. As this knowledge is
not always present or appropriate, we concentrate on finding
the best solutions for any possible initial state.

5. BOUNDED DP
The main limitation of the optimal approach of Hansen et

al. is that too many trees are retained at each step, result-
ing in huge memory requirements for all but the simplest
problem and the shortest horizons. In order to mitigate this
problem, we introduce a small error term, ε, and we prune
policies that are higher valued than the remaining policies in
the set by at most ε. This may allow a smaller set of policies
to be used in the next step. The tradeoff is that there is a
possible loss in value of at most ε from the optimal value at
any belief state. We will refer to this method as ε-pruning.

5.1 ε-pruning approach
To understand how ε-pruning works, we go into more de-

tail on how pruning is done by Hansen et al. Each policy
can be represented as a vector of values with each compo-
nent corresponding to the value of following the policy tree
beginning at a given state. The value of each generalized
belief state is given by the internal points of the vector. An
example of this is shown in Figure 2 in the context of prun-
ing and ε-pruning.

The authors iteratively construct a set of vectors that will
not be pruned, called the undominated set. The set is ini-
tialized with the policy that has the highest value for an ar-
bitrary belief state. The belief state that is used in pruning
is the generalized belief state that is a probability distribu-
tion not only over the states of the problem, but also over
the policies of the other agent(s). The remaining policies
are examined one at a time and compared to the current
undominated set using a linear program. We refer to a pol-
icy as dominated if the linear program shows that it does not
improve on any undominated policy for any possible distri-
bution of belief states. If the policy that is being examined
is dominated, it is pruned. If it is undominated, the best
tree for the belief at which it dominates is added to the un-
dominated set. The linear program to determine dominance

is shown in Figure 1. If δ is greater than 0, there is some
belief state for which the policy has higher value than the
undominated set. After the agent has tested each of its poli-
cies, the resulting undominated set is then used as part of
the state space for the other agents. Pruning continues for
each agent until no agent further reduces their undominated
set.

Instead of merely pruning, however, we extend the ε-
pruning technique to the DEC-POMDP case. This idea has
been incorporated into POMDP algorithm implementations
and described in [3, 8]. In general, in ε-pruning, a bound is
added to the test of dominance for each policy tree. If the
resulting δ in the linear program is less than our ε bound, it
is considered to be dominated and we refer to such a policy
as ε-dominated. An example of this can be seen in Figure
2. In this case, pruning retains four policy trees and their
respective vectors for the given agent. The maximum loss
is given by the δ value in the above linear program. This
shows how dominant a given vector is with respect to the
other vectors in the set. As the figure shows, if vector 2 is
compared with the other vectors in the set, a small δ results.
For this reason, if ε-pruning is used with l4 > ε ≥ l2 vector
2 is also pruned, as shown. For the POMDP case, the belief
space considered is all distributions over states. In the next
section, we show that ε-pruning can be used in the context
of DEC-POMDPs by using the generalized belief state.

5.2 Bounding total error
More formally, we define one step of ε-pruning for the

DEC-POMDP case as one pruning step by one agent. Poli-
cies are considered dominated if δ is less than ε in the check
for dominance above. This definition is necessary due to
the iterated pruning that is often required for the agents to
converge to a fixed number of policies. ε-pruning can be
performed for one agent any number of times and by any
number of agents, but as we will see, each time it is per-
formed, we may lose ε value from an optimal solution. The
goal of ε-pruning is to reduce the amount of memory neces-
sary to represent an optimal or near optimal value for any
state distribution. That is, ε-pruning attempts to reduce the
number of policies retained while producing a close approxi-
mation to the optimal joint policy for any initial distribution
over states.

Theorem 1. One step of ε-pruning for one agent results
in joint policy values that are at most ε below the optimal
joint policy value for any initial distribution over states.



Figure 2: Example sets of vectors for an agent at a given step with dashed lines for the max values (a) before
pruning (b) after pruning and maximum loss, li, labeled for removing each vector, i, while retaining the other
three, and (c) after ε-pruning with l4 > ε ≥ l2

Given a vector to be pruned, α and an undominated set U
For variables: b(s, q) and δ
Maximize δ
Such that:

∀i
X
s,q

b(s, q) [α(s, q) − Ui(s, q)] ≥ δ

And probability constraint: X
s,q

b(s, q) = 1

Table 1: The two agent linear program for pruning a single vector, α, when compared to the current undom-
inated set, U . b(s, q) represents the probability of state s and policy q for the other agent. α(s, q) and Ui(s, q)
represent values of these vectors given state s and policy q for the other agent.

Proof. (sketch)
We will prove this for the two agent problem, but the proof

generalizes to any number of agents. For any distribution
over states and the policies of the other agent b(s, q) there
is some policy, p, that achieves the optimal value. Using
ε-pruning, if p is not pruned, then the proof is trivial, as
the optimal value has not been lost. If p is pruned, we have
from Table 1 that for all belief states, and policies, i, in the
undominated setX

s,q

b(s, q) [α(s, q) − Ui(s, q)] ≤ ε

We substitute ε for δ due to the fact that the linear program
could not find a belief state that produced a δ greater than
ε. Thus for all belief states, the left hand side is less than
ε. We know that Ui was in the undominated set and was
not pruned. Therefore the lefthand side of the equation
represents a bound on the reduction of joint value.

From the perspective of the other agent, any distribution
over the first agent’s policies can be replaced with the poli-
cies that ε-dominate them and this again results in at most
a loss in value of ε. That is, for any belief over system
states and the policies of first agent,

P
s,p b(s, p)V (p, q, s) ≤P

s,p b(s, p) [V (p′, q, s) + ε] =
P

s,p b(s, p)V (p′, q, s)+ε where

p′ is either the policy p or the policy that is at most ε less
than p at the given belief over s and q. Thus, from the
perspective of the system as a while, one step of ε-pruning
results in a loss in value of at most ε at any belief state, as
the agents share a common payoff.

It follows that one step of e-pruning for each agent, as-
suming two agents, reduces the joint value by at most 2ε.
As pruning is described above, it may take several iterations
before no agent is able to further prune its undominated set.
Because of this, error will accumulate each time ε-pruning is
done, resulting in a total error of nε if n pruning steps were
necessary on a given step of the dynamic programming.

This error also accumulates over the horizon of the prob-
lem. That is, if n1 ε-pruning steps are used on step one of the
dynamic programming and n2 steps are used on step two of
the dynamic programming, the total error at the second step
is additive, resulting in n1ε + n2ε. In general, if ε-pruning is
allowed to continue until convergence on each step, the total
error bound for horizon T would be T (n1 + n2 + . . . + nT )ε.
This can be seen by noticing that after a backup, the value
of any resulting trees is within ε of the optimal value for any
state. That is,

V (p, q, s) ≥ R(s, ap, aq) +
X
s′

P (s′|ap, aq, s)X
o1,o2

O(o1, o2|s′, ap, aq)
ˆ
V (p∗

o1 , q∗o2 , s′) − ε
˜

=

R(s, ap, aq) +
X
s′

P (s′|ap, aq, s)
X

o1,o2

O(o1, o2|s′, ap, aq)

V (p∗
o1 , q∗o2 , s′) − ε

where p∗
o1 and q∗o2 are the optimal subtrees that may have

been pruned on the previous step. This also holds for dis-
tributions over the agents’ policies.



Given DEC-POMDP, horizon T and bound ε
Until horizon T is reached

backup each agent
ε-prune each agent once
prune each agent until convergence

Table 2: ε-pruning for with a total error bound of
2Tε.

6. EXPERIMENTS
In this section, we present the results of several varia-

tions of bounded dynamic programming algorithms on two
DEC-POMDP benchmark problems. We note that two pa-
rameters affect the success of the algorithm. The first is the
selection of the ε value. If ε is too high, only one policy tree
will be left unpruned. The algorithm will run very quickly,
but its accumulated value is likely to be small. If ε is too
low, then our algorithm becomes the same as Hansen et al.,
and faces difficulty finding solutions to larger problems and
horizons. The second parameter of concern is the number
of iterations of ε-pruning. We can choose to run ε-pruning
until no more policies can be removed, but the possible error
using this method is high. Alternatively, we can choose to
run ε-pruning only once per horizon, followed by the regular
pruning of Hansen et al. We experimented with both cases
and present the results.

The first algorithm is described in Table 2. This approach
ε-prunes for each agent once per step and then prunes nor-
mally until no policy is removed by any agent. Using this
algorithm, the resulting solution can be bounded by 2Tε.
The second algorithm is similar to the first, but ε-pruning
is performed each step until convergence. This results in an
error bound that depends on the number of possible poli-
cies for the agents for horizon T . Stricter error bound for
both methods may also be calculated during execution of
the algorithm.

For each of these algorithms, we implemented a binary
search over values of ε to search for a good value for the
given problem. The algorithm is initialized with a given
value of ε, and it then runs ε-pruning on the problem. We
refer to this approach as SingleDPSearch if only one step of
ε-pruning is used for each agent or MultipleDPSearch if ε-
pruning is used until convergence is reached. If the pruning
algorithm does not terminate in a given amount of time (10
minutes per step) with a given amount of memory (2GB),
we increase the value of ε and try it again. If the pruning
algorithm succeeds, then we decrease the value of epsilon
and see if we can achieve a higher quality. This may not
find the best value of ε as larger values of epsilon may not
allow the problem to be solvable, while smaller values permit
solutions, but it allows for high quality solutions without an
exhaustive search. It is also worth noting that this is an
anytime algorithm that will quickly return a solution and
then increases its quality as time permits.

We also experimented with implementations that start
with an epsilon value of zero and raise ε as needed. We use
a parameter called MaxTrees. We proceed with a restric-
tion that we will only backup a certain number of policies,
MaxTrees, for the next step. If a pruning step results in
more policies than MaxTrees, we raise ε, reprune, and try
again, until we are left with less than MaxTrees policies.
For our experiments, we chose a MaxTrees value of 30.

This reflected the largest number of policies that our exper-
imental workstation could backup in a reasonable amount of
time. Because MaxTrees limits the number of policies, this
implementation could be applied to problems with larger
horizons.

6.1 Broadcast problem
A small DEC-POMDP problem used by Bernstein et al. [1]

was a simplified two agent networking example. This prob-
lem has 4 states, 2 actions and 5 observations. At each time
step, each agent must choose whether or not to send a mes-
sage. If both agents send, there is a collision and neither gets
through. A reward of 1 is given for every step a message is
successfully sent over the channel and all other actions re-
ceive no reward. Agent 1 has a 0.9 probability of having a
message in its queue on each step and agent 2 has only a
0.1 probability. The domain is initialized with only agent 1
possessing a message.

Our results, given in Table 3, show that both versions
of DPSearch are able to find high quality solutions. Up to
horizon 10, solutions found are the same quality as MBDP
Seuken and Zilberstein [6]. At horizon 100 there is a small
dropoff. The MaxTrees variant is able to obtain solutions
with high value, but the value is a small amount less than
the DPSearch algorithms.

Running time was sensitive to the number of policy trees
retained in each step. Thus, the MaxTrees algorithm ran in
14.9 seconds for horizon 100. The DPSearches took hours to
produce the horizon 100 solution in the table. However, one
can note that the running time of DPSearch is somewhat
configurable by the user. DPSearch can be terminated at
any point, and it will output a solution. If we use the do-
main’s reward function to choose an intial value for ε that
is guaranteed to overprune, DPSearch will immediately pro-
duce a solution that retains one policy for each horizon.
It then halves epsilon, until at some point it uses an ep-
silon that underprunes, resulting in too many policies. After
some period of time, depending on when the user configures
DPSearch to time out, epsilon is increased, and more poli-
cies are pruned. This continues until the user is satisfied
with the solution quality.

6.2 Tiger problem
A more challenging domain with 2 states, 3 actions and

2 observations called the multiagent tiger problem was in-
troduced by Nair et al. [5]. In this problem, there are two
doors. Behind one door is a tiger and behind the other is a
large treasure. Each agent may open one of the doors or lis-
ten. If either agent opens the door with the tiger behind it,
a large penalty is given. If the door with the treasure behind
it is opened and the tiger door is not, a reward is given. If
both agents choose the same action (i.e., both opening the
same door) a larger positive reward or a smaller penalty is
given to reward this cooperation. If an agent listens, a small
penalty is given and an observation is seen that is a noisy
indication of which door the tiger is behind. While listening
does not change the location of the tiger, opening a door
causes the tiger to be placed behind one of the door with
equal probability.

Our results, given in Table 4, show that conducting mul-
tiple iterations of ε-pruning for each time step is better than
performing a single iteration. Both versions of DPSearch
found solutions up to horizon 10, at which point the num-



Horizon SingleDPSearch MultipleDPSearch MaxTrees MBDP Optimal

3 2.99 2.99 1.90 2.99 2.99
4 3.89 3.89 3.71 3.89 3.89
5 4.79 4.79 4.70 4.79 x
6 5.69 5.69 3.89 5.69 x
7 6.59 6.59 6.16 6.59 x
8 7.49 7.49 7.15 7.49 x
9 8.39 8.39 5.93 8.39 x
10 9.29 9.29 8.51 9.29 x
100 83.41 83.71 73.10 90.29 x

Table 3: Broadcast channel values on different horizons using three different ε-pruning algorithms and Seuken
and Zilberstein’s MBDP. Optimal values are also provided for horizons that can be solved optimally.

ber of trees became intractable for useful values of epsilon.
For larger horizons, DPSearch would solve problems by rais-
ing epsilon to a large value, and prune every policy ex-
cept one for each agent. MaxTrees performed worse than
DPSearch on very small horizons, but then would catch up
for larger horizons. By keeping the number of trees small,
it was able find better solutions for some larger horizons
than DPSearch. MBDP exceeded the performance of all
the epsilon-pruning algorithms that we tried. This is most
likely due to the importance of start state information for
this problem. While MBDP only retains trees that it finds
important for a given start state, our ε-pruning methods at-
tempt to retain all trees that may be important for any start
state. This makes it more difficult to find concise tree sets
for this problem, especially for larger horizons.

Timing was sensitive to the same issues noted in the Broad-
cast domain. DPSearch would produce its best solution for
horizon 100 in a matter of seconds, whereas for horizon 10
it took about an hour. MaxTrees took 1200 seconds for
a MaxTrees value of 30. Timing was not overly sensitive
to the additional iterations conducted in multipleDPsearch,
as opposed to singleDPsearch. For each step, we observed
that most pruning was done right away. That is, in multi-
pleDPsearch, agent 0 would prune a large number of policies,
then agent 1 would also prune a large number of policies,
just like in singleDPsearch. But then when agent 0 would
reprune (which is only done in MultipleDPSearch), it would
only prune a smaller number of agents in this second prun-
ing iteration, and this second iteration would be much faster.
Indeed, although we do not prove a bound on the repruning
iterations in this paper, we never observed more than 6 or
7 iterations of repruning for any horizon step.

7. CONCLUSION
In this paper, we showed that we were able to scale up

dynamic programming for decentralized POMDPs to arbi-
trary horizons while maintaining high quality results. These
results are produced in an efficient manner that includes a
bound on how far the solutions are from the optimal value.
By adjusting the number of trees retained in each step of
the dynamic programming a trade-off between running time
and solution quality may be made. Future directions of this
research may include formalizing this tradeoff, so that the
agent is wiser in choosing how many policies to retain for
the next step.

Our approach is able to obtain solutions to larger prob-
lems, which contrasts it to the past pruning technique of

Hansen et al. Also, although Seuken and Zilberstein’s MBDP
is similarly able to solve large problems with higher solu-
tion quality, it cannot find a solution within a given bound.
MBDP is able to find these solutions by assuming knowledge
of the initial state, which it uses for its heuristic search. Such
a belief state may not always be available when the agents’
policies need to be constructed. It is conceivable that the
nature of the domain may be revealed to the agents ahead
of time, but the location of the tiger, or the specifics of the
initial conditions, may only be revealed at the start of execu-
tion, and the agents will already need to have policies ahead
of time. Furthermore, it is possible to combine ε-pruning
with an approach such as MBDP. The MBDP agents would
then use ε-pruning instead of traditional pruning to prune
their search space. This would allow start state information
to be used when present and may increase solution quality.

8. REFERENCES
[1] D. S. Bernstein, E. Hansen, and S. Zilberstein.

Bounded policy iteration for decentralized POMDPs. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh,
Scotland, 2005.

[2] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially
observable stochastic games with common payoffs. In
Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, New
York, NY, 2004.

[3] Z. Feng and E. A. Hansen. Approximate planning for
factored POMDPs. In Proceedings of the Sixth
European Conference on Planning, Toledo, Spain, 2001.

[4] E. A. Hansen, D. S. Bernstein, and S. Zilberstein.
Dynamic programming for partially observable
stochastic games. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, San
Jose, CA, 2004.

[5] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and
S. Marsella. Taming decentralized POMDPs: Towards
efficient policy computation for multiagent settings. In
Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Acapulco, Mexico,
2003.

[6] S. Seuken and S. Zilberstein. Memory-bounded
dynamic programming for DEC-POMDPs. In
Proceedings of the Twentieth International Joint



Horizon SingleDPSearch MultipleDPSearch MaxTrees MBDP Optimal

1 -2.0 -2.0 -2.0 -2.0 -2.0
2 -4.0 -4.0 -4.0 -4.0 -4.0
3 5.19 5.19 -6.0 5.19 5.19
4 -11.5 -6.7 -21.0 4.80 4.80
5 -22.4 -23.0 -54.0 5.38 x
6 -45.3 -42.6 -56.0 9.91 x
7 -53.0 -66.0 -58.0 9.67 x
8 -81.0 -81.0 -73.0 9.42 x
9 -135.0 -83.0 -88.0 12.57 x
10 -150.0 -98.0 -90.0 13.21 x
50 -750.0 -750.0 -620.0 46.91 x
100 -1500.0 -1500.0 -1500.0 93.24 x

Table 4: Tiger values on different horizons using three different ε-pruning algorithms and Seuken and Zilber-
stein’s MBDP. Optimal values are also provided for horizons that can be solved optimally.

Conference on Artificial Intelligence, Hyderabad, India,
2007.

[7] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, 2005.

[8] P. Varakantham, R. Maheswaran, T. Gupta, and
M. Tambe. Towards efficient computation of quality
bounded solutions in POMDPs. In Proceedings of the
Twentieth International Joint Conference on Artificial
Intelligence, Hyderabad, India, 2007.


