
Optimal Fixed-Size Controllers for Decentralized POMDPs

Christopher Amato, Daniel S. Bernstein and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

Solving decentralized partially observable Markov decision processes (DEC-POMDPs)
is a difficult task. Exact solutions are intractable in all but the smallest problems and
approximate solutions provide limited optimality guarantees. As a more principled alter-
native, we present a novel formulation of an optimal fixed-size solution of a DEC-POMDP
as a nonlinear program. We discuss the benefits of this representation and evaluate sev-
eral optimization methods. While the methods used in this paper only guarantee locally
optimal solutions, a wide range of powerful nonlinear optimization techniques may now
be applied to this problem. We show that by using our formulation in various domains,
solution quality is higher than a current state-of-the-art approach. These results show
that optimization can be used to provide high quality solutions to DEC-POMDPs while
maintaining moderate memory and time usage.

1 Introduction

While a large body of work has been developed for partially observable Markov decision processes
(POMDPs), their multiagent counterpart, decentralized POMDPs (DEC-POMDPs), have only
recently gained popularity. The DEC-POMDP models the more general problem of a set of
agents which possess joint outcomes based on the actions of all agents. Each agent must then
make decisions based on imperfect information of the system state or uncertainty about the
other agents. Solutions then seek to maximize shared reward using solely local information for
each agent.

Applications include robot control [2, 4] and networking [3, 7]. Robots typically have sensors
that provide uncertain and incomplete information about the state of the environment and
the location of the other robots. This lack of information must be factored into the planning
process. In a decentralized network, each node must make decisions about when and where to
send packets without full knowledge of the structure or actions of the rest of the network. Other
applications are e-commerce and space exploration systems.

Several exact and approximate algorithms have recently been developed to solve DEC-
POMDPs [2, 3, 4, 7, 8]. Current exact algorithms that use dynamic programming often require
an intractable amount of space even though an optimal or near-optimal solution may be concise.
DEC-POMDP approximation algorithms can operate with a limited amount of memory, but as a
consequence may provide solutions that are unboundedly below the optimal. We propose a new
approach that addresses the space requirement of DEC-POMDP algorithms while maintaining
well-defined optimality guarantees. This approach formulates the optimal fixed-size solution to

the DEC-POMDP as a nonlinear program (NLP), thus allowing a wide range of powerful non-
linear optimization techniques to be applied. While the NLP algorithms used in this paper only
guarantee a locally optimal solution, the optimization permits a principled approximation when
the optimal solution is infeasible.

In this paper, we first present some background on the DEC-POMDP model and current
algorithms used to solve it. We then describe some flaws in these methods and, as an alternative,
present a nonlinear program that represents the optimal fixed-size solution. Lastly, experimental
results are provided comparing two locally optimal nonlinear optimization methods and a current
state-of-the-art DEC-POMDP approximation algorithm. For a range of domains and controller
sizes, higher-valued controllers are found with the NLP, suggesting that high quality, concise
controllers can be found in many diverse DEC-POMDP domains.

2 DEC-POMDP model and solutions

We first review the decentralized partially observable Markov decision process (DEC-POMDP)
model and how to represent solutions as finite state controllers. For clarity, we present the model
for two agents as it is straightforward to extend it to n agents.

A two agent DEC-POMDP can be defined with the following tuple:
M = 〈S,A1, A2, P, R,Ω1,Ω2, O〉
with

• S, the set of states with designated initial state distribution b0

• A1 and A2, the sets of actions

• P , the state transition probabilities: P (s′|s, a1, a2), the probability of transitioning to
state s′ given the previous state was s and actions a1 and a2 were taken by agents 1 and
2 respectively

• R, the reward function: R(s, a1, a2), the immediate reward for being in state s and agent
1 taking action a1 and agent 2 taking action a2

• Ω1 and Ω2, the sets of observations

• O, the observation probabilities: O(o1, o2|s′, a1, a2), the probability of agents 1 and 2 seeing
observations o1 and o2 respectively given agent 1 has taken action a1 and agent 2 has taken
action a2 causing the state to transition to s′

At each step, every agent chooses an action based on their local observation histories, resulting
in an immediate reward and an observation for each agent. Histories are used because the true
state is unknown. Solutions to DEC-POMDPs, or policies, are defined by mappings from local
observation histories to actions for each agent. We focus on maximizing the infinite horizon
discounted reward, thus we employ a discount factor, 0 ≤ γ < 1. Also, communication may take
place in a DEC-POMDP, but is not explicitly modeled or assumed.

As a way to model DEC-POMDP policies with finite memory, finite state controllers provide
an appealing solution. Each agent’s policy can be represented as a local controller and the
resulting set of controllers supply the joint policy. Each finite-state controller can formally be
defined by the tuple 〈Q,ψ, η〉, where Q is the finite set of controller nodes, ψ : Q → ∆A is the
action selection model for each node, and η : Q× A × O → ∆Q represents the node transition
model for each node given an action was taken and an observation seen. For two agents, the
value for starting in agent 1’s node q1 and agent 2’s node q2 at state s is given by

V (q1, q2, s) =
∑
a1,a2

P (a1|q1)P (a2|q2)[R(s, a1, a2)+

γ
∑
s′
P (s′|a1, a2, s)

∑
o1,o2

O(o1, o2|s′, a1, a2)
∑
q′
1,q′

2

P (q′
1|q1, a1, o1)P (q′

2|q2, a2, o2)V (q′
1, q

′
2, s

′)]

This is also referred to as the Bellman equation. Note that the values can be calculated offline
in order to determine controllers for each agent that can then be executed online for distributed
decision making.

3 Previous work

Several exact and approximate DEC-POMDP algorithms have been developed recently, but each
has significant drawbacks. Most notably, DEC-POMDP exact algorithms have been developed
by Hansen et al. [7] and Becker et al. [2] while approximate algorithms have been developed by
Nair et al. [8], Emery-Montemerlo et al. [4] and Bernstein et al. [3].

While Hansen et al.’s approach allows the general DEC-POMDP to be solved optimally, it
requires an intractable amount of memory for any but the smallest problems. This method
generalizes dynamic programming for the POMDP case and builds up a controller one step
at a time. At each step, new nodes are added for all possible action and observation pairs,
an exponential increase. Nodes which have lesser value for all possible controllers of the other
agents are then removed. This process continues until the controllers are no longer changed
by the improvement phase. While this method guarantees that a controller arbitrarily close
to optimal will be found, the controller may be very large and many unnecessary nodes may
be generated along the way. This is exacerbated by the fact that the algorithm cannot take
advantage of an initial state distribution and must attempt to improve the controller for any
initial state.

In order to combat the high complexity of Hansen et al.’s approach, Becker et al. developed
an algorithm that is able to take advantage of the structure of certain DEC-POMDPs to find an
optimal solution much more efficiently. It was found that if each agent has full local information
(such as its own location, battery level, etc.), and independent transitions (i.e., each agent’s
actions only affect that agent), the problem complexity drops considerably (NP-complete versus
NEXP-complete) and coordination is still possible as the rewards in the system remain dependent
on the actions of all agents. The algorithm is able to solve larger problems than Hansen’s method,
but does not scale well as problem size increases. While this approach identifies an interesting
DEC-POMDP subclass, there are many instances where these assumptions do not hold.

As an alternative to exact methods, several DEC-POMDP approximation algorithms have
been developed. Two of the best techniques are those of Nair et al. and Emery-Montemerlo
et al. Both algorithms iterate through the set of agents, holding all policies fixed except one
and choosing the best policy for that agent. This continues until there is no change in the
policies selected. While this approach will allow a locally optimal solution to be found, it
may be very poor and still requires the space of all policies for a single agent to be searched.
Nair et al. propose a way to scale up their algorithm to larger problems by incorporating
dynamic programming, but effects are limited in practice. Emery-Montemerlo et al. scale up
their algorithm by approximating the problem by a series of simpler ones. While this increases
solvable problem size, it decreases solution quality.

Bernstein et al. use a different approach called decentralized bounded policy iteration (DEC-
BPI) to find an approximate solution. Fixed-size controllers are used for each agent and improved

by a linear program. The linear program attempts to improve each controller by examining the
value of taking a different first action and then transitioning into the old controller. If the
value is higher for controllers of the other agents, the change is made. This allows memory to
remain fixed, but provides only a locally optimal solution. This is due to the linear program
considering the old controller values from the second step on, and the fact that improvement
must be over all possible controllers of the other agents. As the number of agents or size of
controllers grows, this later drawback is likely to severely hinder improvement. Bernstein et al.
allow each agent’s controller to be correlated by using a shared information in a “correlation
device.” This improves solution quality, but also increases solution size that may be better used
in the each agent’s controller.

4 Nonlinear optimization approach

Due to the high space complexity of finding an optimal solution for a DEC-POMDP, fixed-size
solutions are very appealing. Fixing memory balances optimality and computational concerns
and should allow high quality solutions to be found when compared with other current ap-
proximation methods. Using Bernstein et al.’s method reduces problem complexity by fixing
controller size, but only locally optimal solutions can be found. Also, each agent’s controller is
improved separately without consideration for the knowledge of the initial problem state, thus
reducing solution quality. Both of these limitations can be eliminated by modeling a set of
optimal controllers as a nonlinear program (NLP). By setting the value as a variable and using
constraints to maintain validity, the parameters can be updated in order to find the globally
optimal solution over the infinite horizon of the problem. Also, the NLP improves and evaluates
the controllers of all agents at once for a given initial state in order to make the best possible
use of the controller size.

Compared with other DEC-POMDP algorithms, the NLP approach makes more efficient
use of memory than the exact methods, and unlike approximate methods, provides theoretical
guarantees. Rather than adding nodes and then attempting to remove those that will not
improve the controller, we search for the best controllers of a fixed size. The NLP is also able to
take advantage of the start distribution, thus making better use of its size. Contrary to Becker
et al.’s algorithm, it is able to solve the general DEC-POMDP problem and unlike approximate
methods, the optimal solution to the NLP provides the optimal fixed size controllers for each
agent.

The NLP approach has already shown promise in the POMDP case. In a previous paper [1],
we have modeled the optimal fixed-size controller for a given POMDP as a NLP and with locally
optimal solution techniques produced consistently higher quality controllers than a current state-
of-the-art method. The success of the NLP in the single agent case suggested a similar approach
could also be successful in multiagent problems.

4.1 Nonlinear problem model

The nonlinear program seeks to optimize the value of fixed-size controllers given a initial state
distribution and the DEC-POMDP model. The parameters of the two agent version of this prob-
lem are the joint action selection probabilities at each node of the two controllers P (a1, a2|q1, q2),
the joint node transition probabilities P (q′

1, q
′
2|q1, q2, a1, a2, o1, o2) and the values of each node

in each state, V (q1, q2, s). This approach differs from Bernstein et al.’s approach in that it ex-
plicitly represents the node values as variables. To ensure that the values are correct given the
action and node transition probabilities, nonlinear constraints must be added to the optimiza-

For variables: x(q1, q2, a1, a2), y(q1, q2, a1, a2, o1, o2, q
′
1, q

′
2) and z(q1, q2, s)

Maximize ∑
s

b0(s)z(q
0
1, q

0
2, s)

Given the Bellman constraints:

∀q1, q2, s z(q1, q2, s) =
∑
a1,a2

x(q1, q2, a1, a2)
[
R(s, a1, a2)+

γ
∑
s′
P (s′|s, a1, a2)

∑
o1,o2

O(o1, o2|s′, a1, a2)
∑
q′
1,q′

2

y(q1, q2, a1, a2, o1, o2, q
′
1, q

′
2)z(q

′
1, q

′
2, s

′)
]

Independence constraints:

∀a1, q1, q2
∑
a2

x(q1, q2, a1, a2) =
∑
a2

x(q1, q
c
2, a1, a2)

∀a2, q1, q2
∑
a1

x(q1, q2, a1, a2) =
∑
a1

x(qc
1, q2, a1, a2)

∀a1, a2, q1, q2, o1, o2, q
′
1

∑
q′
2

y(q1, q2, a1, a2, o1, o2, q
′
1, q

′
2) =

∑
q′
2

y(q1, q
c
2, a1, a

c
2, o1, o

c
2, q

′
1, q

′
2)

∀a1, a2, q1, q2, o1, o2, q
′
2

∑
q′
1

y(q1, q2, a1, a2, o1, o2, q
′
1, q

′
2) =

∑
q′
1

y(qc
1, q2, a

c
1, a2, o

c
1, o2, q

′
1, q

′
2)

And probability constraints:
∀q1

∑
a1,a2

x(q1, q
c
2, a1, a2) = 1

∀q2
∑
a1,a2

x(qc
1, q2, a1, a2) = 1

∀q1, o1, a1

∑
q′
1,q′

2

y(q1, q
c
2, a1, a

c
2, o1, o

c
2, q

′
1, q

′
2) = 1

∀q2, o2, a2

∑
q′
1,q′

2

y(qc
1, q2, a

c
1, a2, o

c
1, o2, q

′
1, q

′
2) = 1

∀q1, q2, a1, a2 x(q1, q2, a1, a2) ≥ 0 and ∀q1, q2, o1, o2, a1, a2 y(q1, q2, a1, a2, o1, o2, q
′
1, q

′
2) ≥ 0

Table 1: The nonlinear program for finding the optimal fixed-size controller. Vari-
able x(q1, q2, a1, a2) represents P (a1, a2|q1, q2), variable y(q1, q2, a1, a2, o1, o2, q

′
1, q

′
2) represents

P (q′
1, q

′
2|q1, q2, a1, a2, o1, o2), variable z(q1, q2, s) represents V (q1, q2, s), q

0
1 is the initial controller

node for agent 1, and q0
2 is the initial controller node for agent 2. Superscripted c’s such as qc

1

represent arbitrary fixed values.

tion. These constraints are the Bellman equations given the policy determined by the action and
transition probabilities. Constraints are also added to ensure distributed action selection and
node transitions for each agent. We must also ensure that all probabilities are valid numbers
between 0 and 1.

Table 1 describes the nonlinear program used to find the optimal two agent controller. The

value of designated initial local nodes is maximized given the initial state distribution and
the necessary constraints. The independence constraints guarantee that action selection and
transition probabilities can be summed out for each agent by ensuring that they do not depend
on any information that is not local. Note that we provide the two agent version of the NLP,
but it is straightforward to extend it to n agents.

Theorem 1 An optimal solution of the NLP results in optimal stochastic controllers for the
given size and initial state distribution.

Proof. The optimality of the controllers follows from the NLP constraints and maximization of
given initial nodes at the initial state distribution. The Bellman equation constraints restrict the
value variables to valid amounts based on the chosen probabilities, the independence constraints
guarantee distributed control and the maximum value is found for the initial nodes and state.
Hence, this produces optimal controllers.

4.2 Nonlinear solution techniques

Constrained optimization seeks to minimize or maximize an objective function based on equality
and inequality constraints. When the objective and all constraints are linear, this is called a
linear program (LP). As our formulation contains some nonlinear constraints, it is a nonlinearly
constrained optimization problem or nonlinear program. In general, our problem is nonconvex
making it often intractable to solve exactly. Essentially, nonconvex problems may have multiple
local maxima as well as global maxima.

Fortunately, a wide range of nonlinear programming algorithms have been developed that
are able to efficiently solve nonconvex problems with many variables and constraints. Methods
may also be combined to promote convergence and improve solution quality. Locally optimal
solutions can be guaranteed, but at times, globally optimal solutions can also be found. For
example, merit functions, which evaluate a current solution based on fitness criteria, can be used
to improve convergence and the problem space can be made more convex by approximation or
domain information.

For this paper, we used freely available nonlinearly constrained optimization solvers called
snopt [6] and filter [5] on the NEOS server (http://www-neos.mcs.anl.gov/neos/). Each al-
gorithm finds solutions by a method of successive approximations called sequential quadratic
programming (SQP). SQP uses quadratic approximations which are then more efficiently solved
with quadratic programming (QP) until a solution to the more general problem is found. A QP
is typically easier to solve, but must have a quadratic objective function and linear constraints.
In snopt, the objective and constraints are combined and approximated to produce the QP. A
merit function is also used to guarantee convergence from any initial point. Filter also uses SQP,
but adds a “filter” which tests the current objective and constraint violations against those of
previous steps in order to promote convergence. The DEC-POMDP and nonlinear optimiza-
tion models were described using a standard optimization language AMPL and gradients were
calculated by the NEOS solver.

5 Experimental results

In each experiment, we compare Bernstein et al.’s DEC-BPI with NLP solutions using filter and
snopt for a range of controller sizes. Each algorithm was run until convergence was achieved
with ten different random initial controllers, and the mean values and times are reported. The

nodes BPI ind BPI cor NLP algs

1 4.687 6.290 9.1
2 4.068 7.749 9.1
3 8.637 7.781 9.1
4 7.857 8.165 9.1

Table 2: Values for Bernstein’s independent and correlated controllers compared with NLP
results in the broadcast channel domain

times reported for each NLP method can only be considered estimates due to running each
algorithm on external machines with uncontrollable load levels. DEC-BPI also allows solutions
to be improved by correlating each agent’s controller through shared information. Although
this technique was not used in the nonlinear algorithms, we include results with a two state
correlation device as another source of comparison. Future work could include a similar device
for the nonlinear formulation.

5.1 Broadcast channel

A small DEC-POMDP used by Bernstein et al. was a simplified two agent networking example.
This problem has 4 states, 2 actions and 5 observations. At each time step, each agent must
choose whether or not to send a message. If both agents send, there is a collision and neither
gets through. A reward of 1 is given for every step a message is successfully sent over the channel
and all other actions receive no reward. Agent 1 has a 0.9 probability of having a message in its
queue on each step and agent 2 has only a 0.1 probability. The domain is initialized with only
agent 1 possessing a message and a discount factor of 0.9 was used.

Table 2 shows the values produced by Bernstein et al.’s approach. Both nonlinear algorithms
produce the same value, 9.1 for each controller size. In all cases this is a higher value than that
produced by Bernstein’s independent and correlated approaches. It turns out that the policy
found by the NLP approach is for only agent 1 to send messages. Since it has a 0.9 probability of
having a message to send, a vast majority of the time, the channel is used. A more sophisticated
policy might be possible, but the fact that Bernstein et al.’s algorithm did not find this simple
policy while each NLP method did shows the promise of the NLP approach.

The time used by each algorithm is shown in Table 3. As expected, as controller size grows,
the computation time also grows. Both NLP algorithms require more time than either version of
BPI, and the mean time used by filter in this domain is higher than that of snopt while the same
controller values are produced. As noted above, solution quality is also higher using nonlinear
optimization. Either NLP approach can produce a one node controller in an amount of time
similar to each DEC-BPI method and that solution is both more concise and higher valued.

nodes snopt filter DEC-BPI DEC-BPI corr

1 1s 1s < 1s < 1s
2 2s 3s < 1s 2s
3 14s 764s 2s 7s
4 188s 4061s 5s 24s

Table 3: Broadcast channel mean optimization times using NLP methods snopt and filter as
well as those for DEC-BPI

Recycling Robots

0

5

10

15

20

25

30

35

1 2 3 4

number of nodes

q
u

a
li

ty
 (

v
a
lu

e
)

snopt
filter
DEC-BPI
DEC-BPI corr

Figure 1: Recycling robots values using NLP methods snopt and filter as well as those using
DEC-BPI

5.2 Recycling robots

As another comparison, we have extended the Recycling Robot problem [9] to the multiagent
case. The robots have the task of picking up cans in an office building. They have sensors to
find a can and motors to move around the office in order to look for cans. The robots are able to
control a gripper arm to grasp each can and then place it in an on-board receptacle. Each robot
has three high level actions: (1) search for a small can, (2) search for a large can or (3) recharge
the battery. In our two agent version, the larger can can only be retrieved if both robots pick
it up at the same time. Each agent can decide to independently search for a small can or to
attempt to cooperate in order to receive a larger reward. If only one agent chooses to retreive
the large can, no reward is given. For each agent that picks up a small can, a reward 2 is given
and if both agents cooperate to pick the large can, a reward of 5 is given. The robots have

nodes snopt filter DEC-BPI DEC-BPI corr

1 1s 1s < 1s < 1s
2 2s 4s < 1s 1s
3 26s 64s 1s 3s
4 523s 635s 3s 10s

Table 4: Recycling robots mean optimization times using NLP methods snopt and filter as well
as those for DEC-BPI

Metting in a Grid

0

1

2

3

4

5

6

7

1 2 3 4

number of nodes

q
u

a
li
ty

 (
v
a
lu

e
)

snopt
filter
DEC-BPI
DEC-BPI corr

Figure 2: Metting in a 2x2 grid values using NLP methods snopt and filter as well as those using
DEC-BPI

the same battery states of high and low, with an increased likelihood of transitioning to a lower
state after attempting to pick up the large can. Each robot’s battery power depends only on its
own actions and each agent can fully observe its own level, but not that of the other agent. If
the robot exhausts the battery, it is picked up and plugged into the charger and then continues
to act. The two robot version used in this paper has 4 states, 3 actions and 2 observations.

We can see in Figure 1 that in this domain higher quality controllers are produced by using
nonlinear optimization. Both NLP methods permit higher mean values than independent con-
trollers using BPI for all controller sizes. The correlated controllers achieve values comparable
to snopt for three node controllers, but are otherwise lower then either NLP method. Filter is
particularly effective with two and three node controllers and provides values similar to snopt in
other cases. Value improvements using filter compared to DEC-BPI with independent controllers
range from 195% for one node controllers to 26% for four node controllers.

The times depicted in Table 4 show that even a locally optimal solution of the NLP requires
more time than DEC-BPI for each controller size. We also notice that smaller controllers are
able to produce higher value using the NLP, allowing more concise and efficient solutions. For
instance, either NLP algorithm generates higher quality two node controllers in similar time to
independent DEC-BPI controllers and less time than correlated DEC-BPI controllers with four
nodes.

nodes snopt filter DEC-BPI DEC-BPI corr

1 3s 2s 1s 2s
2 4s 5s 8s 31s
3 54s 110s 39s 151s
4 873s 2098s 118s 638s

Table 5: Meeting in a 2x2 grid mean optimization times using NLP methods snopt and filter as
well as those for DEC-BPI

5.3 Meeting in a grid

The last domain is much larger than those above. In this problem, two agents must meet in a 2
by 2 grid with no obstacles. The available actions are left, right, up and down and stay. Only
walls to the left and right can be observed. Action transitions are noisy and a reward of 1 is
given for each step the agents share the same square. This is a domain with 16 states, 5 actions
and 2 observations.

A graph of the mean values for each controller size is shown in Figure 2. In this case we see
a dramatic difference between the quality of DEC-BPI solutions and each nonlinear algorithm.
While both NLP algorithms perform similarly, they produce controllers with nearly twice the
value of independent BPI controllers for each size and 20% to 70% increases over the correlated
controllers.

The mean time taken for convergence is shown in Figure 5. This domain shows a more
favorable performance by nonlinear optimization techniques. Both NLP algorithms require less
time than either DEC-BPI method for two node controllers, and when correlated controllers are
considered, snopt and filter require less time in two of four problem instances. Also, two and
three node controllers produced by the NLP have higher value while requiring less time than
either DEC-BPI approach using four nodes.

6 Conclusion

We introduced a novel formulation of a fixed-size solution for a DEC-POMDP as a type of
nonlinear program. The above experiments using nonlinear optimization show a significant im-
provement over the current state-of-the art. Consistently higher valued controllers are produced
by using a NLP than those produced by Bernstein et al.’s method. While the time taken to find
even a locally optimal solution to the NLP can be higher, the fact that higher values can be found
with smaller controllers using the NLP suggests using more powerful optimization techniques on
smaller controllers can be very productive. The combination of start state knowledge and more
advanced optimization allows us to make efficient use of the limited space of the controllers.
These results show that this method can allow compact optimal or near-optimal controllers to
be found for large DEC-POMDPs.

In the future, we plan to explore more specialized algorithms for the NLP representation and
conduct a more exhaustive comparison with other DEC-POMDP solution methods. The general
nonlinear optimization algorithms performed well in this paper, but algorithms more suitable for
the problem may greatly increase scalability. Comparisons with other DEC-POMDP algorithms
will further evaluate the usefulness of this approach in various domains.

7 Acknowledgments

We would like to thank Marek Petrik for helpful discussions of this work. This work was sup-
ported in part by the Air Force Office of Scientific Research (Grant No. FA9550-05-1-0254) and
by the National Science Foundation (Grant No. 0535061). Any opinions, findings, conclusions
or recommendations expressed in this manuscript are those of the authors and do not reflect the
views of the US government.

References

[1] C. Amato, D. S. Bernstein, and S. Zilberstein. Solving POMDPs using quadratically con-
strained linear programs. In Proceedings of the Ninth International Symposium on Artificial
Intelligence and Mathematics, Fort Lauderdale, FL, 2006.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman. Solving transition-independent decen-
tralized Markov decision processes. Journal of AI Research, 22:423–455, 2004.

[3] D. S. Bernstein, E. Hansen, and S. Zilberstein. Bounded policy iteration for decentralized
POMDPs. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, 2005.

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for
partially observable stochastic games with common payoffs. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems, New York,
NY, 2004.

[5] R. Fletcher, S. Leyffer, and P. L. Toint. On the global convergence of a filter-SQP algorithm.
SIAM Journal of Optimization, 13:44–59, 2002.

[6] P. E. Gill, W. Murray, and M. Saunders. Snopt: An SQP algorithm for large-scale constrained
optimization. SIAM Review, 47:99–131, 2005.

[7] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, San Jose, CA, 2004.

[8] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
2003.

[9] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

