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Overview

• Define the cooperative multi-agent RL (MARL) problem

• Quickly describe background on deep RL

• Discuss the current state-of-the art for the different classes of solutions

• Centralized training and execution

• Decentralized training and execution: IQL, decentralized REINFORCE, deep 
extensions

• CTDE: VDN, QMIX, QPLEX, MADDPG, MAPPO

• Identify misconceptions/issues with current methods

• Applications, code, other topics, and the future (LLMs?)



Cooperative MARL

• Cooperative case represented as Decentralized POMDP: <I, S, {Ai}, T, R, {Ωi}, O, >

• I, a finite set of agents

• S, a set of states 

• Ai, each agent’s set of actions 

• T, the state transition model: 𝑃(𝑠′|𝑠, 𝒂)

• R, the reward model: 𝑅(𝑠, 𝒂)

• Ωi, each agent’s finite set of observations

• O, the observation model: 𝑃(𝒐|𝑠′, 𝒂)

• h, horizon or discount 
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Cooperative MARL

• Cooperative case represented as Decentralized POMDP: <I, S, {Ai}, T, R, {Ωi}, O, >

• I, a finite set of agents

• S, a set of states 

• Ai, each agent’s set of actions 

• T, the state transition model: 𝑃(𝑠′|𝑠, 𝒂)

• R, the reward model: 𝑅(𝑠, 𝒂)

• Ωi, each agent’s finite set of observations

• O, the observation model: 𝑃(𝒐|𝑠′, 𝒂)

• h, horizon or discount 

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a set of optimal policies for each agent i*: Hi → Ai that maximize joint objective   

Decentralized partially observable execution



Deep RL background
D(R)QN and PG/AC



DRQN

• Use a neural network to 
approximate Q(h,a)

• Learn a history representation ෨ℎ

• Output all Q-values for a history 
to make argmaxing easier

Target network

Replay buffer

Hausknecht and Stone –

AAAI fall symposia 15

https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf


Advantage Actor-Critic (A2C)

• Policy gradient with policy 
and value models

• Probabilistic (or continuous) 
policy

• Learn a history 
representation ෨ℎ

• On-policy updates



Centralized MARL
Models and methods



Centralized MARL

Assumptions:

• a centralized controller chooses actions for each 
agent, a

• each agent takes the chosen actions a = ⟨a1,...,an⟩,

• the centralized controller observes the resulting 
observations o = ⟨o1,...,on⟩

• the (centralized) algorithm/controller observes o (and 
a) and the joint reward r

Note: Not a Dec-POMDP (or POSG) anymore since execution is centralized

Centralized

Actor

Centralized

Critic



Centralized MARL (DRQN version)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

• DRQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

Helps with scalability

Helps with partial observability

For learning rate 𝛼

Joint history

𝑄 𝒉, 𝒂 ← 𝑄 𝒉, 𝒂 + 𝛼δ 𝛿 = 𝑄 𝒉, 𝒂 − 𝑟 + 𝛾max
𝒂′

𝑄 𝒉, 𝒂′



Centralized MARL methods

• Now just a (factored) single-agent problem

• Multi-agent MDP or POMDP (not Dec-POMDP/POSG)

• Can use any single-agent RL method

• But it doesn’t scale well

• And assumes centralized information and control

• Some methods exploit multi-agent factorization but not very active

• Coordination graphs [Guestrin et al., 2001]

• AlphaStar [Vinyals et al., 2019]



Decentralizing centralized solutions

Easy to ‘decentralize’ in a MMDP or MPOMDP

• MMDP

• S → A or S → Ai

• MPOMDP

• H → A or H → Ai

Hard in a Dec-POMDP

Once you have H → A how do you get Hi → Ai ?



Decentralized MARL
Models and methods



Decentralized MARL

Assumptions:

• each agent, i,  observes its current observation, oi, 
and takes action ai at the resulting history, hi,

• the (decentralized) algorithm/controller sees the 
same information (oi  and ai ) as well as the joint 
reward r.

Actor1

Actorn

Critic1

Criticn



Decentralized MARL

• Agents each learn separately

• Assumes training and execution are decentralized (e.g., lack of 
communication)

• Is more scalable

• The realistic case for POSGs and online learning in Dec-POMDPs

• Each agent i learns a policy that maps from local histories to local actions    i: 
Hi → Ai

• Can also use any single-agent method here

• May be nonstationarity but there are many methods for dealing with that

• Many improvements: Distributed Q, ICML-00; Hysteretic Q, IROS-07, 
ICML-17; Lenient Q JMLR-08, AAMAS-18; Likelihood Q, AAMAS-20; IPPO 
arxiv-20

Actor1

Actorn

Critic1

Criticn



Decentralized Action-Value 
Methods
IQL, Distributed Q, Hysteretic Q, Lenient Q

Deep extensions 

Note: these methods were originally developed for the fully observable case



Independent Q-Learning (IQL)

• Just apply Q-learning pretending the other agents don’t exist

Tan – ICML 93

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496


Independent Q-Learning (IQL)

• Just apply Q-learning pretending the other agents don’t exist

• Where do the observations and joint rewards come from?

Tan – ICML 93

𝑃(𝒐|𝑠′, 𝒂) 𝑃(𝑠′|𝑠, 𝒂)

𝑅(𝑠, 𝒂)

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496


Important hidden information

• Agents don’t exist by themselves!

• Assumes other agents are acting according to some (fixed) policies

• Then learns as if in a POMDP where other agents are part of the environment:

• This is where non-stationarity comes from!

• Other learning agents change their policies over time

𝑃s are empirical probabilities from data during training



IQL properties

• IQL may not converge (Tan ICML 93)

• Convergence properties of Q-learning in Dec-POMDPs is an open question! 

• Usually performs poorly (often used as a baseline)

• Note even with optimal Q-values, agents may not select the optimal action 
without coordination when multiple actions are optimal (like equilibrium 
selection) 



Improving IQL with optimism

Distributed Q-learning (Lauer and Riedmiller ICML 00)

• Optimal in deterministic domains but problematic with stochasticity

Hysteretic Q-learning (Matignon et al. IROS 07)

with

• Use two learning rates

• Can be used in stochastic domains



Improving IQL with optimism

• Lenient Q-learning (Wei and Luke JMLR 16)

• Update on positive TD or randomly based on how many times the history-
action pair has been visited

• But need to maintain counts for those 



Extension to the 
deep case -
IDRQN

• Just DRQN applied to the 
multi-agent case

• Still needs other agents to 
act

Tampuu et al. – Plos one 17

Based on other agents

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395


Extension to the 
deep case -
IDRQN

• Just DRQN applied to the 
multi-agent case

• Still needs other agents to 
act

• Independent buffers cause 
poor performance (non-
stationarity)

Tampuu et al. – Plos one 17

Based on other agents

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395


Decentralized MARL (Dec-HDRQN)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Hysteresis (Matignon et al., IROS 07): two learning rates 𝜶 and 𝜷 (with 𝜷 < 𝜶) 

• Still use DRQN (Hausknecht and Stone, arXiv 15) if partially observable

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Helps with coordination

Helps with scalability

Helps with partial observability

For learning rate 𝛼

𝑄 ℎ𝑖 𝑎𝑖 ← 𝑄 ℎ𝑖 , 𝑎𝑖 + 𝛼δ 𝛿 = 𝑄 ℎ𝑖 , 𝑎𝑖 − 𝑟 + 𝛾max
𝑎𝑖
′
𝑄 ℎ𝑖 , 𝑎𝑖

′
Local history

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf


Decentralized Hysteretic DQN (Dec-HDRQN)

• Dec-HDRQN algorithm overview

• Use idea from previous slide to help with 
cooperation, scalability and partial observability

• Each agent learns concurrently (not 
independently)

• Use decentralized Concurrent Experience Replay 
Trajectories (CERTs) (synchronized buffers) to 
stabilize learning

• Current decentralized methods (e.g., IPPO) also use 
some form of concurrent learning

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf


Other deep decentralized methods

• Several other extensions of tabular and single agent methods

• Deep lenient Q-learning (Palmer et al. AAMAS 18)

• Only for the fully observable case

• Add leniency values to the replay buffer                          for

• Likelihood Q-learning (Lyu et al. AAMAS 20)

• Uses distributional RL to estimate when other agents are exploring and use 
that info to adjust learning rate



Decentralized Policy Gradient 
Methods
Decentralized REINFORCE, IAC, IPPO



Decentralized REINFORCE

• Extends single agent 
REINFORCE (Williams 92)

• Simple but has 
convergence guarantees!

• joint gradient can be 
decomposed into 
decentralized 
gradients

• I.e., this algorithm 
converges to the same 
values as a 
centralized algorithm 
(over decentralized 
policies)

• Assumes concurrent 
learning

Peshkin et al. – UAI 00

Note: this version generalizes the original algorithm which was defined for finite-state controllers

Based on other agents

Monte Carlo returns

Policy but no value function

https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003


Independent actor critic (IAC)

• Extends 
Decentralized 
REINFORCE to 
the Actor Critic 
case

Foerster et al. – AAAI 18

Policy and value model

On-policy error

Update both models

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf


Other decentralized PG methods

• Can extend any single-agent PG method to the multi-agent case

• Independent PPO (IPPO) (de Witt et al. 20)

• A version of IAC with PPO as the base RL method

• Yu et al. (22) version uses parameter sharing (not DTE)

• More about IPPO and MAPPO in the CTDE discussion

• Not a very active area 



Other topics

• Parameter sharing

• Agents share the same copy of policy and/or value networks

• I consider this a form of CTDE (since it assumes centralized info)

• Decentralized methods can easily use parameter sharing to potentially improve 
performance

• Relationship with CTDE

• Centralized PG equal to decentralized PG so maybe not that different?

• Other forms of decentralization

• Communication during execution using ‘networked’ agents, e.g. (Zhang et al. 18)



Centralized Training for 
Decentralized Execution (CTDE) 
MARL
Models and methods



Centralized training for decentralized execution 
(CTDE)

Assumptions

• each agent, i,  observes its current observation, oi, and 
takes action ai at the resulting history, hi, like DTE

• the (centralized) algorithm/controller observes joint 
information 𝒐 and 𝒂 and the joint reward r (and 
possibly other information such as the underlying state 
s) like CTE

By far the most common type of (cooperative) MARL

Actor1

Actorn

Centralized

Critic



Centralized training for decentralized execution 
(CTDE)

• Train offline for online execution

• Can use centralized info offline

• Still need to execute in a decentralized manner

• CTDE has become the dominant form of 
(cooperative) MARL

• Many methods: MADDPG, NeurIPS-17; COMA 
AAAI-18; QMIX, ICML-18; QPLEX, ICML-21; 
MAPPO, NeurIPS DB-22

Actor1

Actorn

Centralized

Critic



CTDE Action-Value Methods
Value function factorization: VDN, QMIX, and QPLEX



Value function factorization methods

• Basic idea: 

• Learn individual Q-values per agent as well as a 
form of joint Q-function

• During training, learn individual Q-values from 
joint one

• During execution, each agent uses individual Q-
values to select actions



Value decomposition networks (VDN)

• The first deep value function factorization/decomposition 
method

• Represents joint Q-value as a sum of individual Q-
values:

• Trains solely based on (joint) RL loss

• Simple, scalable, but limited joint Q-value representation

DRQN

Sunehag et al. – arXiv 17

https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296


VDN algorithm

Only argmax over individual Q-functions

Learn from the joint Q-values

Target network



QMIX

• Extends VDN to represent monotonic functions 

• (implemented with positive weights in mixer)

• Also, use state as input to mixer (with hypernetwork)

• Still argmax over indiv. Q-functions and train based on the joint 
loss

• Can’t represent all Q-functions but still a state-of-the-art method

Rashid et al. – ICML 18

DRQN

https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf


Definition: Individual-Global-Max

For a joint action-value function Q(h,a) where h= ⟨ℎ1, … , ℎ𝑛⟩ is a joint action-observation 
history, if there exist individual functions [Qi] such that:

Then [Qi] satisfy IGM for Q at h

• This is the main principle value factorization/decomposition methods: the argmax of the 
joint value function is the same as the argmax of the individual Q-functions

• VDN and QPLEX satisfy this (as do QTRAN, QPLEX, etc.)

Individual Global-Max (IGM) Son et al.– ICML 19 (QTRAN)

https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf


QPLEX
Extends IGM to the advantage case

Definition: Advantage-based IGM

For joint and individual advantages:  

A(h,a) = Q(h,a)-V(h) where V(h)= max
𝐚

Q(h,a) and  Ai(hi,ai)= Qi(hi,ai)-Vi(hi) where Vi(hi)=max
𝑎𝑖

Qi(hi,ai)

For a joint action-value function Q(h,a) where h= ⟨ℎ1, … , ℎ𝑛⟩ is a joint action-observation history, if there 
exist individual functions [Qi] such that:

Then [Qi] satisfy IGM for Q at h

• This is subtle but important! Non-standard advantage makes then 0 for optimal action and negative 
otherwise! Used a a constraint to represent the full IGM function class

Wang et al.– ICLR 21

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV


QPLEX architecture

• Architecture is a bit complicated but it performs 
well 

• Can sometimes outperform QMIX and is a 
state-of-the-art method

• Other recent value factorization/decomposition 
methods but not clear they outperform QMIX 
and QPLEX 

Wang et al.– ICLR 21

DRQN

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV


State in value function factorization

• Is it cheating/wrong to use state during training?

• QMIX: Sound since state information gets 
marginalized out

• QPLEX:

• Sound since similar to QMIX

• Less general with state (can’t represent all IGM 
functions)

• Weighted QMIX: Probably not sound as uses 
separate state-conditioned weights

Note: The paper also introduces a new algorithm DualMIX which I don’t discuss here

Marchesini et al.,--AAMAS 25



State in value function factorization

Why is the state helpful?

Benefit of state unclear in theory but may be 
helpful in practice 

Tried the methods with state (s), a random (r) 
value, or a 0 value

Other information can outperform state info!

Marchesini et al.,--AAMAS 25



CTDE Policy Gradient Methods
Centralized critics: MADDPG, COMA, and MAPPO



Actor critic with a centralized critic

• Have an actor for each agent

• Learn a ’centralized’ Q-function

• Update each actor using this joint Q-value:

• Update the joint Q-value using the joint info:



A basic centralized critic approach

A policy network for each agent

A joint value network

Joint error calculation

The gradient using 

Loop over agents

Use joint Q to update agent policies



MADDPG

• Designed for competitive or cooperative problems

• Off-policy (so uses reply buffer like DQN)

• Continuous action, so uses a Deterministic PG (Silver et al., ICML-14)

• Defined policies based on a single observation but should be:

• Learn centralized critic from the reply buffer and using target network θ-

• MADDPG is no longer widely used but the centralized critic have been adopted

Lowe et al.—NeurIPS 17

Note: For the cooperative CTDE case we assume a single shared critic among agents, do not consider learning policy models of the other agents, and do not consider

ensembles of other agent policies to improve robustness. 

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf


Counterfactual Multi-Agent Policy Gradients 
(COMA) 

• Centralized critic along with a counterfactual baseline to potentially help with variance 
and credit assignment

• Calculate a per-agent advantage considering that difference between with the agent 
did and the expected Q-value from policy and fixing other agents: 

• Is implemented with agent ids to only require a single centralized critic network (rather 
than one per agent)

• On-policy so the critic is updated as usual: 

• Policy network update uses Ai instead of Q:

• COMA is also not widely used but very influential

Foerster et al.–AAAI 18

Note: COMA originally used state instead of history in the advantage and Q-values but this is incorrect as I’ll discuss later. 

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf


MAPPO 

• MAPPO is a form of a centralized critic method

• Just use PPO as the base RL method

• Actor loss:

• Uses joint advantage: 

• Use GAE but can be computed from V as 𝛅= 

• Uses joint value function and local policy ratio:

• Critic loss:

• Can use other centralized info in the critic (more later)

• Simple, but works well and some form of this often works best

Yu et al. -- NeurIPS DB&B 22

Note: actual details in the paper are unclear so this is a more general version

https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl


IPPO

• Actor loss:

• Uses local advantage: 

• Can also use GAE or other methods (e.g., n-step)

• Ratio same as before:

• The only difference is the use of Ai instead of A

• Critic loss (with clipping):

• Often performs similarly to MAPPO but sometimes lower

de Witt et al. –arXiv 20

https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533


• Centralized critic widely use but misunderstood

• We show in theory:

• Centralized Critic does not foster cooperation any better than Decentralized Critics

• Both unbiased estimates of the decentralized policy

• Centralized Critic exhibits more variance in policy gradient

• In practice:

• Centralized Critic – less bias, more variance

• Decentralized Critics – more bias, less variance

Contrasting Centralized and Decentralized Critics
in Multi-Agent Policy Gradient Lyu, Xiao, Daley and Amato – AAMAS21 Best Paper Nomination

Actor1

Actorn

Centralized

Critic

https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053


Multi-Agent Actor Critic
Decentralized and Centralized Critic

Decentralized actor and critic: pretend the other agents are part of the 

environment (independent per agent)

Decentralized actor and centralized critic: update critic based on 

centralized Q-value and then update each agent’s actor



Critic Centralization Cannot Solve Cooperation
Climb Game

Under uniform policy:

Decentralized 𝑄𝐴𝑙𝑖𝑐𝑒: 

Centralized 𝑸: 

𝑎1 𝑎2 𝑎3

-6.3 -7.6 3.6

Return Values for Climb Game

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Alice

Bob

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Alice

Alice

Bob



Under uniform policy:

Decentralized 𝑄𝐴𝑙𝑖𝑐𝑒: 

Centralized 𝑸: 

𝑎1 𝑎2 𝑎3

-6.3 -7.6 3.6

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Policy gradients for 𝑎1:

∇ log 𝜋 𝑎1; 𝜃 −6.3 𝑤. 𝑝. 1

∇ log 𝜋 𝑎1; 𝜃 +11 𝑤. 𝑝.
1

3

∇ log 𝜋 𝑎1; 𝜃 −30 𝑤. 𝑝.
1

3

∇ log 𝜋 𝑎1; 𝜃 (0) 𝑤. 𝑝.
1

3

when 𝜋𝐵𝑜𝑏 =

Bob

Alice

Alice

Climb Game

𝑎1 𝑎2 𝑎3
1

3

1

3

1

3

Critic Centralization Cannot Solve Cooperation



Learning Value Functions

Centralized Critic
Decentralized

Critic

Actor Actor Actor Actor

Joint*

Local*

Decentralized

Critic

* the return/value/action in the 

joint/local action-history space

Reward signal

Value

Action

Both estimating and updating decentralized policies



Centralized and Decentralized Critic Performance

on StarCraft Multi-Agent Challenge (SMAC), Box Pushing, Particle environments, Target Capture, etc.



Decentralized vs centralized critics

• Theoretically equivalent 

• But that assumes learned critics

• Decentralized critics can be harder to learn

• When other agents change policies

• Higher bias

• Centralized critics can be harder to learn

• Large domains (action, obs, agents)

• Higher variance to marginalize out other agents



State-based Centralized Critics

State information is often available offline in a simulator

Implemented by pioneering Centralized Critic methods

COMA (Foerster et al. 2018), MADDPG (Lowe et al. 2017)

Followed by later methods

SQDDPG (Wang et al. 2020), LIIR (Du et al. 2019), LICA (Zhou et al. 2020),VDAC-mix (Su, Adams, and Beling 2021), DOP (Wang et al. 2021) and 
MACKRL (Schroeder de Witt et al. 2019)

Obvious Advantages of State-based Centralized Critic

Compact, Fully Observable

Obvious Disadvantages of History-based Centralized Critic

Complexity from (potentially long) time horizon

Complexity from combining observations (and actions) from multiple agents

Partially Observable



A Deeper Understanding of State-Based Critics
in Multi-Agent Reinforcement Learning

State-based critics in MARL are popular but misunderstood

We show in theory:

State-based critics may be biased compared to History-based Critics

State-based critics may produce higher variance

We show empirically:

Both critics work well in different domains

Common benchmarks lack partial observability

The state-history-based critic is robust to various domains

Lyu, Baisero, Xiao and Amato – AAAI22

https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf


Centralized critics

Centralized critic

Conditions on history of all agents (joint history 𝒉)

State-based centralized critic

Conditions on the world state 𝑠



Centralized critics

Centralized critic

Conditions on history of all agents (joint history 𝒉)

State-based centralized critic

Conditions on the world state 𝑠

History-state-based centralized critic

Conditions on the joint history 𝒉 and world state 𝑠



Bias Example - Noisy Beverage Domain 

/

25%

75%

/



Q( , ) = 

Q( , ) = 

Q( , ) = 

Q( , ) = 

• History Values



State Values

Q( , ) = = Q( , ) 

Q( , ) = 

…

State value cannot represent the value of a particular history



State Values

Q( , ) = = Q( , ) 

Q( , ) = 

…

Proofs in the paper



Experiments

Tested with advantage actor critic (A2C)

History critic

State critic

State-history critic

Used standard domains: small common 

domains, SMACv1 (Starcraft) and partially 

observable particle environments

Have additional experiments and base actor-

critic methods in the paper
Partially observable particle envs

SMAC v1



Common small environments



SMAC - StarCraft Multi-Agent Challenge



Partially Observable Particle Environments

Observation Radius = 0.8 Observation Radius = 1.6

Predator and Prey



Takeaways

Benchmark problems

• We need harder, more partially observable problems

Methods to use

• Decentralized critics and (centralized) state-history-based often work 
the best

• MAPPO paper had a similar result

• Not really clear why

CTDE

• What is the best way to perform centralized training for decentralized 
execution (that’s both principled and performs well)?



Other CTDE methods

• Many other extensions and approaches: 

• E.g., FACMAC: Use a factored critic (doesn’t need IGM) (Peng et al., 2021)

• Parameter Sharing

• Alternating learning

• (Banerjee et al., 2012, Su et al., 2024)

• Sequential agent updates as in HATRPO and HAPPO (Kuba et al. 2022)

• Other agent modeling, e.g., LOLA (Foerster et al. 2018a)



Other topics

Many other topics in (cooperative) MARL that we don’t have time to cover

• Communication (Zhu et al., 2024)

• Ad hoc teamwork (Mirsky et al., 2022), 

• Model-based methods (Wang et al., 2022)

• Exploration, offline methods, model-based methods, hierarchical methods, role 
decomposition, multi-task approaches, etc. 

https://link.springer.com/article/10.1007/s10458-023-09633-6
https://link.springer.com/chapter/10.1007/978-3-031-20614-6_16
https://arxiv.org/abs/2203.10603


• Traffic signal control (e.g., survey by 
Wei et al. 2021)

• Autonomous vehicle control (e.g., 
survey by Zhang et al. 2024)

• Power systems, etc!

Applications

• Video games (e.g.,AlphaStar (Vinyals
et al., 2019)

• Centralized MARL for a team

• Warehouse robots (Krnjaic et al. 2024)

• Hierarchical CTDE approach

(Bokade et al., 2023)



Multi-agent RL with macro-actions
Xiao, Hoffman, Xia and Amato – ICRA20

https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684


Benchmarks

• Standard domains:

• Multi-agent Particle Envs (MPE) (PyTorch and JAX)

• Overcooked (PyTorch and JAX)

• SMAC v1 and v2 (PyTorch and JAX)

• Many many more inspired by applications



Environments and code

• PettingZoo

• Multi-agent version of gym

• Interface and some environments

• https://pettingzoo.farama.org/

• JAXMARL

• Efficient (JAX-based) baseline methods and environments

• https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

• BenchMARL

• PyTorch baseline methods and environments

• https://github.com/facebookresearch/BenchMARL

• Several more…

https://pettingzoo.farama.org/
https://pettingzoo.farama.org/
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax


MARL and LLMs

• RL is widely used for LLMs

• MARL is not currently used for multi-agent LLMs (to best of my 
knowledge)

• There is no reason it couldn’t be

• Open questions

• Use cases

• Control scheme

• MARLHF

• Training

• Benefits: specialization, robustness, scalability/performance

• Disconnect between academia and industry

https://developer.nvidia.com/blog/introduction-to-llm-agents/

https://www.microsoft.com/en-us/research/project/autogen/



Conclusion

• Cooperative multi-agent reinforcement learning is a very general setting that 
fits with lots of applications

• A lot of work cooperative MARL

• Centralized training and execution

• Decentralized training and execution

• Centralized training for decentralized execution (CTDE)

• Academia and industry are working on improved methods to improve 
scalability and performance



Conclusion

• Many open questions 

• MARL for LLM agents

• Very scalable MARL

• Optimal MARL

• How to best do CTDE

• Multiagent approaches to ML (e.g., GANs, decentralized methods)



Our resources

• Dec-POMDP book

• Background on models and planning methods

• Book draft (An Initial Introduction to Cooperative 
Multi-Agent Reinforcement Learning): 
https://arxiv.org/abs/2405.06161

• Let us know what you think and what should be 
changed/added for the final version!

• Slides will be available

• https://www.khoury.northeastern.edu/home/ca
mato/tutorials.html

https://arxiv.org/abs/2405.06161
https://arxiv.org/abs/2405.06161
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html
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