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Abstract. Many approaches have been introduced for representing and solving
multiagent coordination problems. Unfortunately, these methods make assump-
tions that limit their usefulness when combined with human operators and real-
life hardware and software. In this paper, we discuss the problem of using agents
in conjunction with human operators to improve coordination as well as possible
models that could be used in these problems. Our approach – Space Collaboration
via an Agent Network (SCAN) – enables proxy agents to represent each of the
stakeholder agencies in a space setting and shows how the SCAN agent network
could facilitate collaboration by identifying opportunities and methods of collab-
oration. We discuss this approach as well as the challenges in extending models to
1) take advantage of human input, 2) deal with the limited and uncertain informa-
tion that will be present and 3) combat the scalability issues in solution methods
for a large number of decentralized agents. As a step toward dealing with limited
information, we propose the shared MDP model, which allows private and shared
information to be expressed separately.

1 Introduction

In today’s world, people are increasingly connected to many other people and many
sources of information, providing more opportunities than ever for tasks such as work-
ing more efficiently with others and discovering helpful information. Unfortunately, the
vast scale of information can be overwhelming. As computers become more powerful
and pervasive, software in the form of personal assistant agents can provide support in
many situations.

For example, with the increased deployment and use of space assets, a number of
interesting and challenging problems have come to the fore. The persistent nature of
space surveillance (i.e., 24/7 operations), the mass of data, the varied data sources, and
the heterogeneous needs of consumers and producers throughout the community all
point to a pressing need for an enhanced Space Situational Awareness (SSA) picture,
one that can only be achieved by a coordinated, collaborative approach to the collection,
dissemination and sharing of information.

For the foreseeable future, the challenges in the U.S. National Space Policy will
demand human-in-the-loop participation. This is particularly relevant given the amount
and importance of data and knowledge not held in any database, or streaming in bits



through the ionosphere, but that resides in the minds of individuals or the institutional
knowledge of a team. The criticality of an enhanced situational awareness and its sub-
sequent deployment suggests that we integrate these methods within the existing work-
flow, obviating the need to add additional tools.

The solution to this problem requires a coherent, integrated approach, viewing the
space domain as a socio-technical system, within which the human plays an integral
part. Several diverse agencies are stakeholders and produce and/or consume informa-
tion related to space. Each agency has its own organizational structure and protocols,
so the solution must be versatile enough to allow for effective inter-agency collabora-
tion while still maintaining the standard practices of each. Further, the human operator
network alone is not sufficient to create adequate SSA. There is an enormous amount
of data recorded from sensors on satellites, ground stations and other periodic collec-
tors. The human operator is overloaded by the transmission, capture, cataloging, and
sense making of these data. The optimal solution for enhanced SSA is a synergistic,
collaborative effort between networks of humans and automated agents.

The Space Collaboration via an Agent Network (SCAN) approach enables proxy
agents to represent each of the stakeholder agencies and facilitate collaboration by iden-
tifying opportunities and methods for collaboration. This allows humans to have access
to large amounts of data through their agents, while personalizing them given the users
specific preferences and capabilities. These agents can then communicate with each
other with varying levels of input from the user for tasks ranging from retrieving infor-
mation, securing the services of another agency or team formation for complex tasks.

Many models have been developed for solving decentralized problems requiring co-
operation. For SCAN, we assume a sequential problem in which a series of decisions
need to be made, each affecting the next. Limiting these models to those based on de-
cision theory, a large number of models can still be used [2, 4, 5, 10, 14]. Nevertheless,
each of these models makes assumptions that cause it to be inappropriate for a domain
such as SCAN. These assumptions include: a full model of the problem with the value
other agents derive from all actions or the results of these actions, perfect knowledge
of the current state of the system (or a common estimate), a shared objective function,
a centralized solution method. An ideal model for our domain would relax these as-
sumptions to permit only local knowledge and solution methods, self-interested agents,
model uncertainty and independence between groups of agents.

The remainder of this paper is organized as follows. We first discuss the SCAN
domain in more detail as well as the progress made to date. We also discuss several
models that could be used to represent this problem and their shortcomings. Finally,
we discuss key assumptions that we are interested in relaxing in these approaches and
the challenges involved in doing so. The goal in this project is to produce a system of
personal assistant agents with accompanying solution methods that maintain tractability
and high solution quality.

2 Overview of SCAN approach

The approach used in SCAN represents each of the stakeholder agencies for space with
proxy agents and facilitates collaboration by identifying opportunities and methods for



collaboration. It demonstrates the suitability of our human-agent solution to address
the three critical aspects above, that is: 1) Knowledge and mental models of human
operators, 2) Collaboration methods and barriers to collaboration and 3) Integrating
solutions that conform to preferred workflows.

A variety of factors shape the opportunities for collaboration and the constraints on
collaboration. The SCAN Agent architecture incorporates these components into the
SCAN Proxy Agent Architecture. The need to collaborate varies based on an interac-
tion of the demands of the mission, the architecture of the team and its resources, and
the distribution of expertise within the team. Collaboration becomes necessary when
mission-critical expertise is distributed among multiple people, and resources and re-
sponsibilities are likewise divided between people.

A team’s ability to collaborate depends on a number of factors, including avail-
able technology, team members collaboration skills, and team composition. The factors
affecting the ability to collaborate directly affect the products of collaboration (e.g.,
assessments and plans), as well as the apparent coordination of the team as a whole.
Collaborative critical thinking is intended to provide active support to teams above and
beyond the three factors affecting a team’s ability to collaborate. Figure 1 shows a top-
level diagram of our proposed solution: Space Collaboration via an Agent Network
(SCAN). It shows proxy agents, each of which represents a stakeholder for space. We
implemented an initial version of this infrastructure by developing agent interactions to
carry out the use case(s), and tested the resultant model by generating results to show
dynamic constraints, changing parameters, and making modifications to the use cases(s)
that show the benefit of agent use. This solution will fit integrally into the current work-
flow, without the need for additional tools for users to learn, and will make privacy
issues explicit.
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Fig. 1. Proxy agents being used to facilitate collaboration between heterogeneous stakeholders.



Note that our approach to SCAN is to have the human remain in control and drive
the collaboration. The proxy agent is designed to facilitate the human operators and
point them in the right direction to improve interagency collaboration. Human operators
will not be surprised or superseded by the SCAN proxy agent’s actions.

3 The SCAN framework

In conceiving an agent-based architecture, we identified the following benefits to indi-
vidual agencies of agent-based collaboration: 1) Fusion/Integration of agency plans, 2)
Locating potential collaboration opportunities, 3) Forewarning: An agency may antici-
pate future events based on an alert from another agency, 4) Increased Quality/Accuracy
of data, 5) Facilitating levels of automated collaboration, 6) Detecting collaboration fail-
ures, 7) Adjusting to realtime changes in policy/capabilities, 8) Learning preferences of
agencies, 9) Persuading agencies to cooperate through incentives. We selected areas 1),
2), and 7) as areas for further study.

3.1 Use case

In order to study the above, we constructed a working Use Case. The requirements for
the Use Case were: Scalability: The initial Use Case should describe a simple problem
that can easily scale to more complex problems. This allows us to demonstrate our
solution initially in an easily controllable environment, but also set the stage for our
solution to handle a larger set of more complex problems. Generalizability: The Use
Case should be representative of a general class of collaboration problems, so that the
solution will be applicable to the needs of other agencies as well as those mentioned
in the Use Case. The Use Case was based on interviews with space weather analysts
from the Air Force Weather Agency (AFWA), and their information needs as primary
producers of information on environmental effects to agencies such as the National Air
and Space Intelligence Center (NASIC), the Joint Space Operations Center (JSpOC),
and the Air Operations Center (AOC)

We identified two important facets to examine in developing the use case: (P1) How
does the SCAN agent know when to initiate collaboration? (P2) What is the message
structure necessary to handle collaboration? The message structure will be driven by
the type of collaboration, therefore (P1) must be considered before (P2). For (P1), the
following sequence of steps should take place in the Use Case: (S1) NASIC’s commu-
nication to the satellite goes down (S2) NASICs SCAN agent attempts to diagnose the
reasons (S3) Two causes are identified, a solar flare or a system problem (S4) Collab-
oration IDs are generated for each of the two causes (S5) NASICs SCAN agent sends
a query to the other agents to collaborate (S6) Agents on behalf of the other agencies
provide an affirmative response to the collaboration request (S7) The agencies are con-
nected.

This protocol is motivated by Signaling System 7 (SS7) of the telephone network
[13] which separates data from service. This property is particularly desirable, as it
allows an agency to limit the amount of data it discloses to non-collaborating agencies.
In the future, the topology of the SCAN agents will be further refined.



3.2 Basic model

From the perspective of a SCAN agent receiving collaboration requests, this agent is
called the Collaboration Facilitator (CF). The requesting agent is called the CR. As
stated previously, each SCAN agent will have a model of the other agents and agencies.
The model couldl be used to derive such information as an arrival rate of resource re-
quests. Based on the model of the requests coming in, the model couldl also predict a
service rate of these requests. The model will also predict the benefits of each collabo-
ration from each organization. Likewise, from the perspective of the CF, it is possible
that a collaboration initiated by another agency will require collaboration with a third
agency, and that only the CF and not the CR knows about this collaboration. In this
case, it will NOT be the role of the CF to request collaboration with the third agency.
This could reproduce the well-known “dining philosophers” problem from Operating
Systems literature which is essentially that a bottleneck results when multiple processes
compete for a limited set or resources. As a consequence of that bottleneck, system per-
formance is degraded. Instead, the CF agent passes the information about the 3rd party
back to the CR agent and the CR agent submits the request for collaboration to the third
agency.

The motivation behind this model is that a SCAN agent receiving a collaboration
request may be able to make decisions like: (1)“Well, technically I could collaborate
you; after all I have enough resources to do it. However I know I’m about to get some
high priority requests from important agencies soon, so... collaboration request denied.”
(2)“I can’t collaborate with you right now. But my model says I’ll be free in a few hours,
do you want to book my time in advance?”

4 Multiagent models of interest

To model the type of problems described above, we need to consider the following
requirements: sequential decisions, uncertainty regarding outcomes and other agents’
decisions and decentralized control. Sequential decisions are needed because agents’
decisions at the current time will affect the future outcomes. That is, suggesting to
collaborate with one agency rather than another may have consequences in terms of
time and resources required, affecting future collaboration possibilities. Uncertainty is
present in these scenarios as well considering that information may be unavailable or
outside forces could cause the situation to change. Also, users may decline collabora-
tion and the actions of the other agents are often unseen, causing uncertainty about the
other agents. The system must also be decentralized for similar reasons. Agents must
make choices based solely on local information due to the lack of updates from other
agents. This local information may also be uncertain or incomplete information about
the human user or other humans and agents in the system.

This type of modeling can be accomplished with decision-theoretic approaches. In
general, these representations have probabilities which represent the uncertainty in ac-
tion outcomes and seek to maximize an objective function in an attempt to optimize the
sequence of decisions by the agents. As agents are built for ever more complex envi-
ronments, methods that consider the uncertainty in the system have strong advantages.
Developing effective frameworks for reasoning under uncertainty is a thriving research



area in artificial intelligence and we discuss some of these approaches below. These
models are briefly discussed below and summarized in Table 1.

4.1 DEC-POMDPs

A decentralized partially observable Markov decision process (DEC-POMDP) [4] can
be defined with the tuple: 〈I, S, {Ai}, P,R, {Ωi}, O, T 〉with I , a finite set of agents, S,
a finite set of states with designated initial state distribution b0,Ai, a finite set of actions
for each agent, i P , a set of state transition probabilities: P (s′|s,a), the probability of
transitioning from state s to s′ when the set of actions a are taken by the agents, R, a
reward function: R(s,a), the immediate reward for being in state s and taking the set
of actions, a Ωi, a finite set of observations for each agent, i, O, a set of observation
probabilities: O(o|s′,a), the probability of seeing the set of observations o given the
set of actions a was taken which results in state s′, T , a horizon or number of steps after
which the problem terminates.

A DEC-POMDP involves multiple agents that operate under uncertainty based on
different streams of observations. At each step, every agent chooses an action based
on their local observation histories, resulting in a global immediate reward and a local
observation for each agent. Note that because the state is not directly observed, it may
be beneficial for the agent to remember its observation history. A local policy for an
agent is a mapping from local observation histories to actions while a joint policy is a
set of local policies, one for each agent in the problem. The goal is to maximize the
total cumulative reward until the horizon is reached, beginning at some initial distribu-
tion over states. In the infinite-horizon problem, T is infinity and the decision making
process unfolds over an infinite sequence of steps. In order to maintain a finite sum over
the infinite-horizon, in these cases a discount factor, 0 ≤ γ < 1, is employed.

The DEC-POMDP model is very general, but has a very high complexity (NEXP-
complete1). Algorithms for solving DEC-POMDPs also typically assume that all model
parameters are known in advance and the solution is found in a centralized manner, pro-
viding policies that each agent can implement in a decentralized way. This model also
assumes no communication (except as part of the observations) and full cooperation
between the agents. The high complexity and large number of assumptions make the
DEC-POMDP model currently inappropriate for the scenarios we are interested in for
SCAN with a large number of agents with limited knowledge of the full problem model.

Communication and learning have also been studied in the DEC-POMDP model.
Recent work has examined using communication for online planning in DEC-POMDPs
[18]. This type of work could be useful in our context because communication is used
when inconsistencies are detected between the agents. Unfortunately, it still requires
knowledge of the full model and a DEC-POMDP to be solved for some number of
steps. Rather than assuming the model is known, it can also be learned or policies can
be learned directly [7, 16]. Direct policy learning may be an appropriate approach in
that it does not require a model, but in order to calculate the gradient the model must be
sampled. This sampling requires many instances and still is not guaranteed to converge
to an equilibrium.

1 This results in doubly exponential complexity as long as P!=NP.



4.2 DEC-MDPs and MMDPs

We can restrict DEC-POMDPs in various ways to simplify solution calculations. For
instance, we can assume that each agent can fully observe its own local state, but not
the global state. This is a form of the DEC-MDP model [2], which has been shown to
have more efficient solutions in some cases, but in general has the same complexity as
the general model (NEXP-complete) [4]. If we consider problems in which the agents
have independent transitions and observations and a structured reward model (IT-IO
DEC-MDPs), the complexity drops to NP-complete [3]. Recent work has shown that
subclasses of DEC-POMDPs which have independent rewards, but dependent obser-
vations and transitions as well as those with certain structured actions retain the same
complexity as the general problem [1]. Some other modeling assumptions and the re-
sulting complexity are studied in [9], but none of these seems appropriate for our case
as they continue to assume centralized solution methods and knowledge of the model.

DEC-MDPs can be further simplified by assuming that the state of the problem
is fully observed by each agent, resulting in a multiagent MDP (MMDP) [5]. There
has been work on efficient planning solutions for these problems (modeled as fac-
tored MDPs) [10], which allow algorithms to exploit independence between agents.
While this is a useful quality (which is discussed in more detail in the context of ND-
POMDPs), centralized solution methods are used and full model knowledge is required,
limiting the applicability of these models to our scenario.

Model Pros Cons
DEC-POMDPs Very rich model of cooperative agents Assumes known model parameters,

fully cooperative, high complexity

IO-IT DEC-MDPs Somewhat rich, Limiting model assumptions
(interact only through rewards),

less complex than full model Assumes known model parameters
fully cooperative

MMDPs Low complexity Limiting model assumptions
(centralized knowledge),

Assumes known model parameters,
fully cooperative

ND-POMDPs Exploits locality, distributed solution, Limiting model assumptions
(very limited interaction),

less complex than full model Assumes some model parameters
fully cooperative

Graphical games Allows self interest, exploits locality Assumes some model parameters,
not sequential

I-POMDPs Allows self interest, exploits locality Assumes known model parameters,
high complexity

Table 1. Model pros and cons for distributed personal assistant domains.



4.3 ND-POMDPs

Another way of simplifying DEC-POMDPs is to assume agents interact in a limited
way based on locality. This assumption often considers agents that can only interact
with their neighbors and thus is more scalable in the number of agents in the problem.
This has been studied using the networked distributed POMDP (ND-POMDP) model
for the finite-horizon case [14] as well as a more general factored models [15, 17].

The ND-POMDP model is similar to the DEC-POMDP model except for the follow-
ing: states can be factored S = ×Si×Su for each set of states for each agent i and an un-
affected state set, actions and observations can be factored similarly withA = ×Ai and
Ω = ×Ωi for each agent, transition independence where the unaffected state and each
agent transition independently P (s′|s, a) = P (s′u|su)

∏
i P (s

′
i|si, ai) and observation

independence where O(o|s′, a) =
∏

iOi(o
′
i|si, ai). Also, rewards can be broken up

based on neighboring agents and summed asR(s, a) =
∑

l(sl1, . . . , slk, su, 〈al1, . . . , alk〉)
where l represents a group of k = |l| neighboring agents. The ND-POMDP model also
assumes that a the belief state (the state distribution estimate) is known by all agents.

A solution to an ND-POMDP can be computed in a distributed manner using mes-
sage passing to converge to a local optimum. This approach can be very efficient in
cases where the agents are only loosely connected. Nevertheless, strong assumptions
are still made such as knowing the model in the local neighborhood and additive re-
wards across neighborhoods.

4.4 Game theoretic representations

If we assume that agents may have different interests that may not necessarily align
perfectly (which is likely to be the case in many real-world scenarios), we could use
a game theoretic approach. A model that retains the idea of agents loosely connect
into neighborhoods is the graphical game [12]. This approach combats the tabular (and
thus exponential) representation of n-agent games by using an undirected graph where
two agents are connected if they can affect each others’ payoffs. Assumptions in this
model are that each agent can calculate a best response, which means that it knows
the payoffs for the different actions given the other agents’ choices. This is also not
a sequential model, so all possible horizon T policies would have to be considered as
actions, resulting in an exponential increase in action size and intractability to solve.

Sequential game theoretic models have also been studied. A generalization of DEC-
POMDPs to the case where agents may have different rewards results in a partially
observable stochastic game (POSG). Thus, if we assume POSGs with common pay-
offs for all agents, it is equivalent to the DEC-POMDP model [11]. This model relaxes
the assumption that all agents are fully cooperative, but retains the intractability and
knowledge of the model assumed by the DEC-POMDP. Another game theoretic view
of multiagent POMDPs from the Bayesian perspective is the interactive POMDP (I-
POMDP) model [8]. An extension of the I-POMDP model to graphical representations,
allowing agent independence to be exploited is the interactive dynamic influence dia-
gram (I-DIDs) [6]. While both of these models are interesting in that they can represent
problems with estimates of other agent behavior based on observations that are seen,
a full model is again assumed and complexity is at least as high as the corresponding
DEC-POMDP models.



5 Dealing with private information

One weakness of the decision-theoretic models discussed in the previous section is
the assumption that agents will have full knowledge of each others models. This is
somewhat mitigated when only local agents are considered (as in an ND-POMDP), but
even these local agents must share their information before a decentralized solution can
be found. In a real-world scenario, such as SCAN, we cannot assume the agents will
have knowledge of the other agent’s model: states, actions, observations, let alone their
transition and observation probabilities or rewards values.

There may be privacy or security reasons for not sharing this information. For in-
stance, individuals may not want to disclose their full schedules or preferences and
organizations do want to share proprietary information. More specifically, Chris may
have a preference for meeting with Paul over Nathan which he would rather not divulge
(especially to Nathan!). Also, there may be several other projects that a person is work-
ing on that have no direct relationship to a possible collaboration between entities, but
they be affected in some way. For example, I may not want to share my schedule for all
projects that I am working on, but I would consider changing my schedule to collabo-
rate on a particularly important or interesting project. This could change depending on
who is working on the project, when it is being scheduled, different travel locations etc.
Nevertheless, planning must be accomplished based on this limited model information.
To represent these problems, we describe a new model, the shared MDP, which is an
initial step towards dealing with shared and private information.

5.1 Shared MDP model

We present the shared MDP model, but this could be extended to the POMDP case. In
a shared MDP, each agent, i, consists of an MDP with Si, Ai, Pi, Ri and Ti, the states,
actions, transitions, rewards and horizon for agent i’s model. There may be some set
of states which are shared by a set of agents. For agent i, we denote the set of shared
states as Ss

i . In this case, the transitions and rewards for the shared states depend on all
agents that are in the shared states at that time.

More formally, we consider S = ∪iSi the full set of states for all agents, D(s) =
{i|s ∈ Si} the possible set of decision-makers at state s as well as joint rewardR(s,aD(s))
and transitions for each agent i Pi(s

′|s,aD(s)). We define a private state as an agent’s
state that is not shared by any other agent. That is, state s is private for agent i if
D(s) = i. Note that D(s) represents all agents that have state s in their MDP, but some
or all of these agents may be in a private state at the given time and therefore do not
affect the rewards and transitions of the other agents. In these cases, we can replace the
action of the agents in private states with a dummy action or omit them altogether.

Proposition 1. A shared MDP with no shared states is equivalent to a set of indepen-
dent MDPs.

Proof is straightforward and thus omitted.

Proposition 2. A shared MDP with no private states and common transition functions
is equivalent to an MMDP.



Proof is straightforward and again omitted. In general, agents will have full knowledge
of the (common) state of the system as well as the joint transitions and rewards. This is
also the case if agents’ MDPs are subsets of other agents’ MDPs.

The interesting (and realistic) case occurs when each agent has a set of private states
that are not shared with the others. A shared MDP could also be solved centrally as
one large MDP, but this requires sharing private and secure information with a central
agency (by communicating the details of the private model as well as the shared one).
A central approach would also introduce a single point of failure and make it more
difficult to add or remove agents over time. As a result, we explore fully decentralized
solution methods.

5.2 Example shared MDP

An example shared MDP with two agents is shown in Figure 2. Here, S1 = {s1, s2}
and S2 = {s2, s3}, resulting in shared state s2 and private states s1 and s3 for agents 1
and 2 respectively. We also assume A1 = A2 = {a1, a2}.

Fig. 2. Shared MDP with two agents. Agent 1 contains states 1 and 2, while agent 2 contains
states 2 and 3. State 2 is a shared state.

The dynamics for agent 1 in the private state will be that a1 causes the agent to stay
in the private state, P (s1|s1, a1) = 1, while a2 causes the agent to transition to the
shared state P (s2|s1, a2) = 1. Agent 2 has the same dynamics P (s3|s3, a1) = 1 and
P (s2|s3, a2) = 1. Note the agent subscript is omitted for private states. In the shared
state, if both agents take the same action, each agent transitions back to its private
state. That is, P1(s

1|s2, a11, a12) = 1, P1(s
2|s2, a11, a22) = 1, P1(s

2|s2, a21, a12) = 1,
P1(s

1|s2, a21, a22) = 1. The same can be written for agent 2’s P2. When only one
agent is in the shared state, its dynamics are the same as those for the private state,
P1(s

1|s2, a1) = 1, P1(s
2|s2, a2) = 1, P2(s

3|s2, a1) = 1 and P2(s
2|s2, a2) = 1.

If R1(s
1, a1) = R1(s

1, a2) = 10, R2(s
3, a1) = R2(s

3, a2) = −10 and for both
agents, R(s2, a11, a

1
2) = R(s2, a11, a

2
2) = R(s2, a21, a

1
2) = R(s2, a21, a

2
2) = 0, and when

only one agent is in s2 R(s2, a1) = R(s2, a2) = −2 then there is no cooperative
solution to this problem in which both agents attain their highest values. This is because
agent 1 will gain higher reward for being in its private state and thus will attempt to



coordinate with agent 2 to choose the same action to transition accordingly. On the
contrary, agent 2 will gain higher value for staying in the shared state and thus will
attempt to choose a different action than agent 1. These differences can be seen in
the optimal policies for each agent’s MDP. Assuming an infinite horizon problem with
discount of 0.9, agent 1 produces a value of 100 starting in s1 by always choosing action
a1, while if both agents start in s2 a value of 90 can be achieved if both agents choose
the same action on the first step and then agent 1 chooses a1 thereafter. For each step
that the same action is not chosen, value is lost by agent 1. This is in contrast to agent
2, who achieves at most -9 after starting in s2 and cooperating with agent 1 to choose
the same action, while it could attain a value of 0 if both agents always chose different
actions. Starting in s3, agent 2 can attain a value of -10 by choosing a2 and choosing
the opposite action as agent 1 if that agent is in the shared state s2. If agent 1 is not in
the shared state for any other step, a value of -28 can be attained by always choosing
a2.

5.3 Solutions for shared MDPs

It can be shown that in the shared MDP example above, starting from s2, agent 1 can
ensure that it receives at least 80 by randomly choosing either action in s2. A similar
worst case value can be found for agent 2, which again would randomly choose actions
in s2 when agent 1 is present to stay in that state as long as possible. This solution can be
found by transforming a shared MDP into a competitive problem. This is appropriate
since the presence of private states may cause each agent’s value to be different for
taking the same set of actions in the same state (since the value of an action in a state
depends on on all subsequent rewards that can be obtained, shared or private).

To produce a solution to any shared MDP, it is necessary to combine solutions for
the private and shared aspects of each agent’s MDP. Algorithm 1 shows how a policy
for agent i can be found. This algorithm constructs and solves a game (for the Nash
equilibria, NE) from solving MDPs that consider all possible policies for all agents for
shared states of the shared MDP. That is, it first constructs a PolicySet, which consists
of all mappings from shared states Ss

i of agent i to actions for all agents which also
contain that shared state. For each agent and each of these policy mappings, an MDP
is solved which consists of the private states of the agent’s MDP and the fixed policy
given by PolicySet for the shared states. These MDP values are then used to determine
a Nash equilibrium (if we assume a unique one is found) which serves as the policy for
agent i.

In the case that multiple equilibria are found, coordination mechanisms or equilibria
refinements can be used. In order to coordinate, the agents could share the equilibria
found for the shared states to determine a single one that can be played (ensuring that
policies for the shared states are known to all agents). Also, more efficient ways for
finding policies in Algorithm 1 can be utilized. This could include not considering all
possible policies for the other agents in PolicySet, but rather some subset, which could
be based on heuristic value. If matching equilibria cannot be found, the algorithm could
be repeated (with different parameters) until a solution is found.

In practice, we are interested in finding a pure strategy Nash equilibrium as a de-
terministic solution is preferred by our users. This will often allow us to determine a



Algorithm 1 SOLVESHAREDMDP(i)
1: PolicySet← {}
2: for all s,∈ Ss

i do
3: Policy(s)← null
4: for all j,∈ D(s) do
5: for all a,∈ Aj do
6: PolicySet.Add(sj ,a)
7: for all p,∈ PolicySet do
8: Value(Ss

i ,p)← SolvePrivateMDP(Ss
i , p)

9: Policy← SolveForNE(Value)
10: return Policy

solution to the problem much more quickly and only resort to using Algorithm 1 when
a pure strategy NE cannot be found. We will attempt to discover a NE with iterated best
response as shown in Algorithm 2. That is, each agent begins with a random policy (or
one previously found) for the shared states and, while keeping the other agents’ policies
fixed, an agent determines a best response for its MDP. This new best response policy
for the shared states is now fixed, along with other agents’ policies, while the next agent
determines a best response. This continues until no agent changes its policy, resulting
in a Nash equilibrium. Unfortunately, it might be the case that there are no pure strategy
NE in the given problem, causing the agent policies to continue changing forever. Cur-
rently, the algorithm checks for these oscillations by making sure the total number of
changes by the agents is less than the total number of possible policies (mn where m is
the number of strategies and n is the number of agents). More sophisticated analysis of
oscillation could also be used to determine when Algorithm 1 should be used to find a
mixed strategy. In practice, it will often be the case that several pure strategy NE exist,
allowing a solution to be found quickly.

Algorithm 2 SOLVESHAREDMDPDETERMINISTIC

1: Policies← RandomPols()
2: Converged← 0
3: Oscillate← false
4: while Converged < n− 1 or Oscillate < possSolutions do
5: for all i ∈ I do
6: Policies(i)← BestResponse(Policies(−i))
7: if IsChanged(Policies(i)) then
8: Converged← 0
9: else

10: Converged++
Oscillate++

11: if Converged=n-1 then
12: return Policies
13: else
14: return false



6 Conclusion

In this paper, we discussed a real-world domain for facilitating collaboration between
organizations and people, the SCAN proxy agents. We described the characteristics
of this domain which require sequential and decentralized decision-making. Various
decision-theoretic models for representing these problems are presented along with
their shortcomings in this domain. In order to begin to address these shortcomings,
we present one approach for representing and solving problems with private and shared
information as a shared MDP. This is an initial step towards providing decentralized
solutions to sequential collaboration problems with private information. In the future,
we are interested in further extending decision-theoretic models so they can be applied
in this context. This work will include other model assumptions that better fit the real-
world data that is generated during this project. These algorithms will be implemented
and tested in the SCAN domain.
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