
Learning for Decentralized Control of Multiagent Systems in Large,
Partially-Observable Stochastic Environments

Miao Liu
LIDS, MIT

Cambridge, MA
miaoliu@mit.edu

Christopher Amato
Dept.of CS, U. of New Hampshire

Durham, NH
camato@cs.unh.edu

Emily P. Anesta, J. Daniel Griffith
Lincoln Laboratory, MIT

Lexington, MA
{eanesta, dan.griffith}@ll.mit.edu

Jonathan P. How
Dept.of AeroAstro, MIT

Cambridge, MA
jhow@mit.edu

Abstract

Decentralized partially observable Markov decision
processes (Dec-POMDPs) provide a general framework
for multiagent sequential decision-making under uncer-
tainty. Although Dec-POMDPs are typically intractable
to solve for real-world problems, recent research on
macro-actions (i.e., temporally-extended actions) has
significantly increased the size of problems that can be
solved. However, current methods assume the underly-
ing Dec-POMDP model is known a priori or a full simu-
lator is available during planning time. To accommodate
more realistic scenarios, when such information is not
available, this paper presents a policy-based reinforce-
ment learning approach, which learns the agent policies
based solely on trajectories generated by previous in-
teraction with the environment (e.g., demonstrations).
We show that our approach is able to generate valid
macro-action controllers and develop an expectation-
maximization (EM) algorithm (called Policy-based EM
or PoEM), which has convergence guarantees for batch
learning. Our experiments show PoEM is a scalable
learning method that can learn optimal policies and im-
prove upon hand-coded “expert” solutions.

Introduction
Multi-agent and multi-robot systems represent important so-
lutions to many real-world problems. For example, in dis-
aster situations, such as earthquakes, hurricanes, or terror-
ist attacks, it is urgent that trapped survivors can be found
and rescued within 48 hours. Otherwise, the chance of find-
ing victims alive decreases substantially (Grayson 2014). To
solve a search and rescue (SAR) problem efficiently, a team
of ground and aerial vehicles have to be deployed to lo-
cate, rescue and medically stabilize survivors trapped in haz-
ardous spaces. This SAR problem, in its most general form,
can be formulated as a decentralized partially observable
Markov decision process (Dec-POMDP) (Oliehoek 2012;
Amato et al. 2013), where a team of agents must cooper-
ate to optimize some global objective in the presence of
uncertainty. Moreover, each agent has to make decisions
based on its own local observations when there are no other
agents in the effective communication range. Researchers

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have made significant progress on numerous related applica-
tions, including transportation (Amato et al. 2015b), extra-
planetary exploration (Bernstein et al. 2001), and traffic con-
trol (Wu, Zilberstein, and Jennings 2013). However, current
Dec-POMDP methods have limited scalability.

Recent research has addressed the more scalable macro-
action based Dec-POMDP (MacDec-POMDP) case where
each agent has macro-actions (temporally-extended ac-
tions), which may require different amounts of time to ex-
ecute (Amato, Konidaris, and Kaelbling 2014; Amato et
al. 2015a). However, current MacDec-POMDP methods re-
quire knowing domain models a priori. Unfortunately, for
many real-world problems, such as SAR, the domain model
may not be available.

To solve Dec-POMDPs when domain models are unavail-
able or access to simulators is limited (due to high cost or
security reasons), previous work (Wu, Zilberstein, and Jen-
nings 2013; Liu et al. 2015) adopted model-free reinforce-
ment learning (RL) strategies and EM algorithms (Demp-
ster, Laird, and Rubin 1977) to optimize finite-state con-
trollers (FSCs). However, these methods are designed for
solving primitive action based problems; directly applying
them to learn policies from macro-action level data does
not guarantee that learned controllers are executable because
neither the differing execution times nor the initial condi-
tions of the macro-actions are considered.

To learn policies in the macro-action case, we propose
a novel policy-based RL approach to generate valid FSCs
from the macro-action level trajectories collected by previ-
ous interactions with the environment (e.g. demonstration).
Our method first constructs a validity map (VM) which de-
fines the valid macro-actions based on histories that have
been seen. Then, a policy-based expectation maximization
(PoEM) algorithm, is developed that optimizes the policy
subject to the validity map constraints. Our methods adopt a
special type of FSC, a Mealy machine (Amato, Bonet, and
Zilberstein 2010), for policy representations. The Mealy ma-
chine offers a natural representation of the macro-action va-
lidity information while also being concise.

Our proposed algorithm is linear in the number of agents
and at most quadratic in the problem size, making it scal-
able to large domains. In practice, these trajectories can be
generated by a simulator or a set of real-world experiences
that can be provided. This batch data scenario is general and

realistic, as it is widely adopted in learning from demonstra-
tion (Martins and Demiris 2010). Moreover, the proposed
algorithm performs off-policy batch learning to improve the
policy with guaranteed convergence. Our experiments show
PoEM is a scalable method that can learn optimal poli-
cies for a benchmark problem and outperform a hand-coded
(suboptimal) policy, when given examples from its execu-
tion, in a large domain inspired by SAR problems.

Background and Problem Statement
Dec-POMDPs generalize POMDPs to the multiagent, de-
centralized setting. Multiple agents operate under uncer-
tainty based on partial views of the world, with execution
unfolding over a bounded or unbounded number of steps. At
each step, every agent chooses an action (in parallel) based
on locally observable information and then receives an ob-
servation. The agents share a single reward function based
on the actions of all agents, making the problem cooperative,
but their local views mean that execution is decentralized.

A Dec-POMDP can be represented as a tuple
〈N,A, S, Z, T,Ω, R, γ〉, where N is a finite set of
agent indices; A = ⊗nAn and Z = ⊗nZn respectively
are sets of joint actions and observations, with An and
Zn available to agent n. At each step, a joint action
~a = (a1, · · · , a|N |) ∈ A is selected and a joint observation
~z = (z1, · · · , z|N |) is received; S is a set of finite world
states; T : S×A×S → [0, 1] is the state transition function
with T (s′|s,~a) denoting the probability of transitioning to
s′ after taking joint action ~a in s; Ω : S × A × Z → [0, 1]
is the observation function with Ω(~z|s′,~a) the probability
of observing ~o after taking joint action ~a and arriving in
state s′; R : S × A → R is the reward function with
r(s,~a) the immediate reward received after taking joint
action ~a in s; γ ∈ [0, 1) is a discount factor. Because each
agent lacks access to other agents’ observations, each agent
maintains a local policy πn, defined as a mapping from
local observation histories to actions. A joint policy consists
of the local policies of all agents. For an infinite-horizon
Dec-POMDP with initial state s0, the objective is to find a
joint policy π = ⊗nπn, such that the value of π starting
from s0, V π(s0) = E

[∑∞
t=0 γ

tr(st,~at)|s0, π
]
, is maxi-

mized. Specifically, given ht = {a0:t−1, z0:t} ∈ Hn, the
history of actions and observations up to t, the policy πn
probabilistically maps ht to at: Hn ×An → [0, 1].

A MacDec-POMDP with (local) macro-action extends
the MDP-based options (Sutton, Precup, and Singh 1999)
framework to Dec-POMDPs. Formally, a MacDec-POMDP
is defined as a tuple 〈N,A,M, S, Z,O, T,Ω, R, γ〉, where
N,A, S, Z, T,Ω, R and γ are the same as defined in the
Dec-POMDP; O = ⊗On are sets of joint macro-action
observations which are functions of the state; M ⊗ Mn

are sets of joint macro-actions, with Mn = 〈Imn , βmn , πmn 〉,
where Imn ⊂ HM

n is the initiation set that depends on
macro-action observation histories, defined as hMn,t =

{o0
n,m

1
n, · · · , ot−1

n ,mt
n} ∈ HM

n , βmn : S → [0, 1] is a
stochastic termination condition that depends on the under-
lying states, and πmn :Hn ×Mn → [0, 1] is an option policy
for macro-action m (Hn is the space of primitive-action and

observation). Macro-actions are natural representations for
robot or human operation for completing a task (e.g., navi-
gating to a way point or placing an object on a robot).

MacDec-POMDPs can be thought of as decentralized
partially observable semi-Markov decision processes (Dec-
POSMDPs) (Amato et al. 2015a; Omidshafiei et al. 2015),
because it is important to consider the amount of time that
may pass before a macro-action is completed. The high
level policy for each agent Ψn, can be defined for choos-
ing macro-actions that depends on macro-action observation
histories. Given a joint policy, the primitive actions at each
step is determined by the high-level policy to choose the
MA, and the MA policy chooses the primitive action. The
joint high level policies and macro-action policies can be
evaluated as: V Ψ(s0) = E

[∑∞
t=0 γ

tr(st,~at)|s0, π,Ψ
]
. In

this paper, our goal is to optimize a high-level policy based
solely on macro-actions and macro-action observations (i.e.,
the underlying Dec-POMDP is unknown).

An FSC is a compact way to represent a policy as a
mapping from histories to actions. Formally, a stochas-
tic FSC for agent n is defined as a tuple Θn =
〈Qn,Mn, On, δn, λn, µn〉, where, Qn is the set of nodes;
Mn and On are the output and input alphabets (i.e., the
macro-action chosen and the observation seen); δn : Qn ×
On × Qn → [0, 1] is the node transition probability, i.e.,
δn(q, o, q′) = Pr(q′|q, o); λ0

n : Qn × Mn → [0, 1]
is the output probability for node q0

n, such that mn,0 ∼
λ0
n(qn,0,mn,0) = Pr(mn,0|qn,0); λn : Qn × On ×
Mn → [0, 1] is the output probability for nodes 6= q0

n
that associates output symbols with transitions, i.e. mn,τ ∼
λn(qn,τ , on,τ ,mn,τ) = Pr(mn,τ |qn,τ , on,τ); µ : Qn →
[0, 1] is the initial node distribution qn,0 ∼ µn = Pr(qn,0).
This type of FSC is called Mealy machine (Amato, Bonet,
and Zilberstein 2010), where an agent’s local policy for ac-
tion selection λn(q, o,m) depends on both current controller
node (an abstraction of history) and immediate observation.
By conditioning action selections on immediate observa-
tions, a Mealy machine can use this observable information
to help ensure a valid macro-action controller is constructed.
We will discuss the validity issue in the next section.

A Dec-POMDP problem can be transformed into an in-
ference problem and then efficiently solved by an EM algo-
rithm. Previous EM methods (Kumar and Zilberstein 2010;
Kumar, Zilberstein, and Toussaint 2015) have achieved suc-
cess in scaling to larger problems, but these methods require
a Dec-POMDP model both to construct a Bayes net and to
evaluate policies. When the exact model parameters T , Ω
and R are unknown, an RL problem must be solved instead.
To this end, EM has been adapted to model-free RL set-
tings to optimize FSCs (Wu, Zilberstein, and Jennings 2013;
Liu et al. 2015). Here, we adopt similar strategy to learn
control polices for MacDec-POMDPs. Towards this end, we
define the following global empirical value function.

Definition 1. (Global empirical value function) Let D(K)=
{(~ok0 ~mk

0r
k
0 · · ·~okTk ~m

k
Tk
rkTk)}Kk=1 be a set of episodes result-

ing from |N | agents who choose macro-actions accord-
ing to Ψ = ⊗nΨn, a set of arbitrary stochastic policies
with pΨn(m|h) > 0, ∀ action m, ∀ history h. The global

empirical value function is defined as V̂
(
D(K); Θ

) def.
=∑K

k=1

∑Tk
t=0

γt(rkt−Rmin)
∏t
τ=0

∏|N|
n=1 p(m

k
n,τ |h

k
n,τ ,Θn)∏t

τ=0

∏N
n=1 p

Ψn (mkn,τ |hkn,τ)
where

hkn,t = (mk
n,0:t−1, o

k
n,1:t), 0 ≤ γ < 1 is the discount and

Rmin is the minimum reward 1.
Essentially, definition 1 provides an off-policy learn-

ing objective: given data D(K) generated from a set
of behavior policies Ψ, find a set of parameters Θ =

{Θi}|N |i=1 such that V̂
(
D(K);Θ

)
is maximized. Here, we as-

sume factorized policy representation p(~mk
0:τ |~h1:τ ,Θ) =∏|N |

n=1 p(m
k
n,τ |hkn,τ ,Θn) to accommodate decentralized

policy execution.
Previous work (Wu, Zilberstein, and Jennings 2013; Liu

et al. 2015) has solved primitive action-based Dec-POMDP
problems. However these methods are not directly appli-
cable for macro-action problems; the controllers generated
might be invalid, because the macro-action execution de-
pends on certain initial conditions, which might not be
available in RL settings. To combat this issue and ensure
a learned macro-action controller is valid and optimal, we
learn and add constraints to the policy optimization prob-
lem. These constraints encode validity information extracted
from trajectories that are given.

Learning Valid Controllers
Assuming a valid macro-action level dataset D(K) =
{(~ok0 ~mk

0r
k
0 · · ·~okTk ~m

k
Tk
rkTk)}Kk=1, including macro-actions,

observations, and rewards at fixed time intervals (primitive
time-steps) is generated by some random behavior policy,
Ψ, the question we want to ask is, without the knowledge
of underlying MacDec-POMDP model, can we learn a valid
controller from these trajectories? To answer this question,
we first give the following definitions.
Definition 2. A macro-action,mt, is said to be valid with re-
spect to a trajectory dt−1 = (o0,m0 · · · , ot−1), if the prob-
ability of observing ht = (dt−1,mt) is positive.
Definition 3. Define pΨ(h) to be probability of generating
a trajectory h under policy Ψ. Let εp be the smallest positive
probability associated with a trajectory generated according
to pΨ(h).

Since we assume trajectories generated from Ψ are valid,
we can count the number of unique trajectories and esti-
mate the value of the behavior policy V̂ Ψ. We follow a sim-
ilar analysis to (Kearns, Mansour, and Ng 1999) to obtain a
bound for the number of samples that are necessary to give
an accurate estimate of policy value.
Theorem 4. Let Ψ be a valid stochastic policies in an arbi-
trary MacDec-POMDP, M. Let KV trajectories be gener-
ated by using a generative model for M following policy
Ψ, and let V̂ Ψ(s0) be the corresponding empirical value
defined as V̂ Ψ(s0) = 1

KV

∑K
k=1

∑Tk
t=1 γ

trkt . If KV =

1Rmin ensures the summands in V̂
(
D(K); Θ

)
are positive,

hence applying Jensens inequality to log V̂
(
D(K); Θ

)
is legal, as

it will be seen in the section deriving the PoEM algorithm.

0

m1

m2

m3

1

5

3

go1

o2

m2

m1

2

4

g

g

g

go1

o1

m1

m1

o2 o1

o1o3

o4

o2

Initial controller:

m1 go1

0

m1 m2

m3

1

3

go1

o2

m2

2 g

go1

m1

o2

o1

o3

o4

Reduced controller (validity graph):

o3

Figure 1: An example of a valid macro-action controller gen-
erated from a set of trajectories.

O
(
((Rmax −Rmin)/(1− γ)ε

)2
log(2/δ)), then with prob-

ability at least 1− δ, |V Ψ(s0)− V̂ Ψ(s0)| ≤ ε.

Proof. For any state s0 and policy Ψ, we have Rmin/(1 −
γ) ≤ V Ψ(s) ≤ Rmax/(1 − γ). Given a large enough
K, we have P(|V Ψ(s0) − V̂ Ψ(s0)| ≤ ε) = 1 − δ. Fur-
ther, given the independence of trajectories generated by the
same policy Ψ, we can apply the Chernoff bound to de-
rive an estimate of V Ψ(s0) (starting from the same state),

P(|V ψ(s0) − V̂ Ψ(s0)| ≥ ε) ≤ 2e
− 2ε2Kv

(Rmax−Rmin)2 . Solving
this inequality for K gives us the following

KV ≤ O
([

Rmax −Rmin
ε(1− γ)

]2

log(2/δ) (1)

Therefore, we can claim with finite number of samples,
the value of a policy Ψ can be accurately estimated.

Moreover, we can estimate the probability of an macro-
action m, given a history, h, as p̂Ψ(m|h), which provides
validity information of m. Therefore, we can claim the fol-
lowing.

Theorem 5. Given a history, h, which is valid under policy
Ψ (i.e., pΨ(h) > 0), let p̂Ψ(h) = 1

Kp

∑Kp
k=1 I

(
hkt , h

)
, where

I(·) is the indicator function, when Kp is large enough, then
with probability at least 1− δ, |pΨ(h)− p̂(h)| ≤ η < εp.

Proof. Since we assume Ψ is a valid random policy, the
trajectories collected by following Ψ must be valid. If
pΨ(h) = εp > 0, we can have a large enough Kp, such
that P(|pΨ(h)− p̂(h)| ≤ η) = 1− δ with η < εp. Given the
independence of trajectories generated by the same policy,
applying Chernoff bound, we have P(|pΨ(h) − p̂Ψ(h)| ≥
η) = δ ≤ 2e−2Kpη

2

. Solving this inequality for Kp gives us
the following bound

Kp ≤ O
(
η−2 log(2/δ)

)
. (2)

Theorem 5 shows that for any valid trajectory, we can bound
the number of samples to confirm it is valid.

Remark 6. Since there are finitely many unique trajecto-
ries generated from policy Ψ, we can bound the number of
samples for learning a full validity map.

From trajectories to valid controllers
The mapping encoded by p̂Ψ(hn) provides the validity infor-
mation of all the trajectories, hn ∈ HM

n . To obtain a more
concise representation, we convert the validity map into a
set of constraints that can be used for controller parameter

optimization. To do so, assuming all the trajectories begin at
the same initial state and end when the goal condition has
been satisfied. Similar to previous methods (Amato and Zil-
berstein 2009), we first create a controller by converting all
distinct trajectories into a tree, with the root node denoting
the initial controller nodes, and the leaf nodes correspond-
ing to the goal, hence a branch of the tree corresponds to a
unique trajectory seen in the dataset. Then, starting from the
leaf nodes, we combine redundant nodes to obtain a reduced
controller. Figure. 1 illustrates the procedure for construct-
ing a validity map for controllers. Denote the validity map
by GΨ = 〈ρn, ωn, νn, 〉, with ρn(q, o,m) = 1 if there is a
direct link from node q to macro-action m and an observa-
tion over this link, otherwise ρn(q, o,m) = 0. ωn encoding
nodes transitions and νΨ

n indicating initial nodes can be con-
structed in similar ways. To ensure the learned FSC is valid,
we give the following definition.

Definition 7. Let GΨ be the validity map for FSC con-
structed according to the procedure described in the pre-
vious section (from the trajectories generated by policy Ψ),
a controller Θ is said to be admissible with respect to GΨ, if
the following conditions are satisfied:

1. If p(m|h,GΨ) = 0, then (m|h,Θ) = 0,
2. If p(m|h,GΨ) > 0, then (m|h,Θ) ≥ 0.

This admissibility condition forces the policy parameter-
ized by Θ to only take actions that belongs to trajectories
seen before. By leveraging this definition, we can use any
optimization algorithms to generate valid macro-action con-
trollers. Here we developed an EM algorithm to achieve the
goal of controller optimization.

MacDec-POMDP Policy Learning by
Expectation Maximization

After building the validity graph GΨ, we aim to improve the
policy using the available dataset. Again, the assumption is
that neither the model nor simulator are available to provide
additional data for evaluation. Combining the validity con-
straints with the empirical value function given in Defini-
tion 1 results a constrained off-policy optimization problem.
However, direct maximization of V̂

(
D(K); Θ

)
is difficult;

instead, we augment V̂
(
D(K); Θ

)
with controller node se-

quences {~q k0:t : k = 1 . . . ,K, t = 1 : Tk} and maximize the
lower bound of the logarithm of V̂

(
D(K); Θ

)
(obtained by

Jensen’s inequality):

ln V̂
(
D(K); Θ

)
= ln

∑
k,t,~q k0:t

fkt (~q k0:t|Θ̃)r̃kt p(~m
k
0:t,~q

k
0:t|~o

k
1:t,Θ)

fkt (~q k0:t|Θ̃)

≥
∑

k,t,~q k0:t

fkt (~q k0:t|Θ̃) ln
r̃ kt p(~m

k
0:t,~q

k
0:t|~o

k
1:t,Θ)

fkt (~q k0:t|Θ̃)

def.
= lb(Θ|Θ̃), (3)

where fkt (~q k0:t|Θ̃) = r̃kt p(~m
k
0:t, ~q

k
0:t|~o k1:t, Θ̃)/V̂ (D(K); Θ̃),

and {f(~q k0:t|Θ̃) ≥ 0} satisfy the normalization constraint∑K
k=1

∑Tk
t=0

∑
~q k0:t

fkt (~q k0:t|Θ̃) = K with Θ̃ the most recent

estimate of Θ, and r̃kt =γtrkt /
∏t
τ=0 p

Ψ(~mk
τ |hkτ),∀t, k are

reweighted rewards, leading to the following constrained op-
timization problem

max{
fkt

(
~q k0:t;Θ̃

)}
,Θ

lb(Θ|Θ̃)

subject to: Θ = Θ̃� GΨ

p(~m k
0:t~q

k
0:t; Θ̃) =

∏|N |
n=1 p(m

k
n,0:t, q

k
n,0:t|o kn,0:t, Θ̃n),∑K

k=1

∑Tk
t=0

∑|Q1:|N||
q kn,0:t=1

fkt (~q k0:t; Θ̃) = K (4)

where � is the Hadamard product, which encodes the valid-
ity constraints from GΨ (learned from the previous section).

Based on the previous problem formulation (4), an EM
algorithm is derived to learn the macro-action FSCs. Algo-
rithmically, the main steps involve alternating between com-
puting the lower bound of the log empirical value function
(E-step) and parameter estimation (M-step). The complete
algorithm is summarized in Algorithm 1, and computational
details are discussed in the section below.

Computation of Value Function (E-step) In E-step, the
controller nodes distribution p(~q k0:t|~mk

0:t, ~o
k

1:t, Θ̃) and the ac-
tion selection probability p(~mk

0:t|~o k1:t, Θ̃)∀t, k are updated
based on Θ̃ obtained in the previous M-step. Hence, we can
obtain an updated value function

V̂
(
D(K); Θ̃

)
= 1

K

∑
k,t r̃

k
t

∏|N |
n=1 p(m

k
n,0:t|okn,1:t, Θ̃n)

def.
= 1

K

∑
k,t σ

k
t (Θ̃n) (5)

which is equivalent to policy-evaluation using all available
episodes with the rewards are reweighted by the action selec-
tion probability p(~mk

0:t|~ok1:t, Θ̃) to reflect the improved value
of a new policy.

Update of Policy Parameters (M-step) In the M-
step, the policy parameters is updated by Θ =

arg maxΘ∈F lb(Θ|Θ̃), subject to normalization and validity
constraints. Specifically, define

ξt,τn,k(un, vn)
def.
= p(qkn,τ =un,q

k
n,τ+1 =vn|mk

n,0:t, o
k
n,1:t,Θ̃n)

φt,τn,k(un)
def.
= p(qkn,τ = un|mk

n,0:t, o
k
n,1:t, Θ̃n). (6)

Expanding the lower bound of ln V̂
(
D(K); Θ

)
and keeping

the terms related to Θ, we have

lb
(
Θ|Θ̃

)
∝
∑
k,t σ

k
t (Θ̃)

∑|N |
n=1

{∑|Qn|
un=1 φ

t,0
n,k(un) lnµunn

+
∑t
τ=0

[∑|Qn|
vn=1φ

n,k
t,τ (un) lnλn(mk

n,τ , o
k
n,τ , un)

+
∑|Qn|
un,vn=1 ξ

t,τ
n,k(un, vn) ln δn(un, o

k
n,τ+1, vn)

]}
.

Therefore, an analytic solution to the problem Θ =

arg maxΘ∈F lb(Θ|Θ̃) can be obtained as

λn(un, on,mn)∝
∑
k,t,τ

σkt (Θ̃)φt,τn,k(un)I(mn,on)(m
k
n,τ , o

k
n,τ)

×ρn(un, on,mn),∀n ∈N, un,∈Qn,mn∈Mn, on ∈On.(7)

δ, µ are updated in similar ways and their update equa-
tions are included in the supplemetary materials (URL) .

Algorithm 1 POEM

Require: Episodes D(K) and the number of agents |N |,
lower bound LB0 = −Inf , ∆LB = 1, Iter = 0;

1: Construct a validity map GΨ

2: while ∆lb < 10−3 do
3: for k = 1 to K, n = 1 to |N | do
4: Compute p(mk

n,0:t|okn,1:t, Θ̃) and forward-
backward variables {αn,k} and {βn,k},∀t

5: end for
6: Iter = Iter + 1
7: Compute lbIterusing (5)
8: ∆lb = (lbIter − lbIter−1)/lbIter−1

9: for n = 1 to |N | do
10: Compute the ξ and φ variables,
11: Update Θn using (7)
12: end for
13: end while
14: return Controller parameters, {Θn}|N |n=1.

These updates constitute a policy-improvement step where
the reweighted rewards are used to further improve policies.

Both the above steps require ξt,τn,k(un, vn), which are

computed based on ατn,k = p
(
qkn,τ |m k

n,0:τ , o
k
n,1:τ , Θ̃n

)
and

βt,τn,k=
p(m k

n,τ+1:t|q
k
n,τ ,o

k
n,τ+1:t,Θ̃n)∏t

τ′=τ p(m
k
τ |h kn,τ′ ,Θ̃n)

, ∀n, k, t, τ . The (α, β) are

forward-backward messages. The computation details are
provided in the supplementary materials (URL).

Convergence Analysis
The PoEM algorithm is guaranteed to monotonically in-
crease the empirical value function over successive itera-
tions and converges to a local maximum. The convergence
property is summarized by theorem 8.

Theorem 8. Define F =
{

Θ = {Θn}|N |n=1 with Θn =

〈Qn,Mn, On, δn, λn, µn〉 :
∑|Qn|
un=1 µn(un) = 1,∑|Mn|

mn=1 λn(mn, on, , un) = 1,
∑|Qn|
un=1 δn(vn, on, un) =

1, vn = 1 · · · |Qn|,mn = 1 · · · |Mn|, on = 1 · · · |On|
}

,

and Θ(n) be a sequence produced by the iterative update
Θ(i+1) = arg maxΘ∈F lb(Θ|Θ(i)), where Θ(0) is an arbi-
trary initialization, then {Θ(i)}i≥0 monotonically increases
V̂
(
D(K); Θ

)
, until convergence to a maximum.

Proof. Note that lb(Θ|Θ̃) in (3) is maximized when
fkt (~qk0:t|Θ̃) = r̃kt p(~m

k
0:t, ~q

k
0:t|~ok1:t,Θ)/V̂ (D(K); Θ), which

turns the inequality into an equality, that is lb(Θ|Θ) =

ln V̂
(
D(K); Θ

)
. Hence, according to (3),

lb(Θ|Θ̃) ≤ lb(Θ|Θ) = ln V̂
(
D(K); Θ

)
(8)

holds for any Θ and Θ̃.
Then we solve for Θ̃ = arg maxΘ∈F lb(Θ|Θ̃). Since Θ̃

increases lb(Θ|Θ̃), we have

ln V̂
(
D(K); Θ̃

)
= lb(Θ̃|Θ̃) ≥ lb(Θ|Θ̃) (9)

Figure 2: A 6×6 NAMO problem (left); The performance of Al-
gorithm 1 as a function of η% of data generated from an optimal
policy using different sizes of training samples K (right).

Combining (8) and (9), we have ln V̂
(
D(K); Θ̃

)
=

lb(Θ̃|Θ̃) ≥ lb(Θ|Θ̃) ≥ lb(Θ|Θ) = ln V̂
(
D(K); Θ

)
.

Starting from Θ(0), we can iterate between these two
steps to solve for Θ(i+1) = arg maxΘ∈F lb(Θ̃|Θ(i)),
which satisfy V̂

(
D(K); Θ(i)

)
≤ V̂

(
D(K); Θ(i+1)

)
≤ · · · .

Since V̂
(
D(K); Θ̃(i)

)
is upper bounded, by monotone con-

vergence theorem, {Θ(i)} converges to a maximum of
V̂
(
D(K),Θ).

Computational complexity
The time complexity of Algorithm 1 in each iteration is sum-
marized in Table 1, assuming the averaged episode length is
T and averaged nodes number is |Q|, which are the same
for all agents. In Table 1, the worst case refers to the case
when there is a nonzero reward at every step in an episode
(dense reward), while the best case is that nonzero reward
is received only at the terminal step in each episode. Hence
in general the algorithm scales linearly with the number of
episodes and the number of agents. The time dependency on
T is between linear and quadratic.

Table 1: Computational Complexity of Algorithm 1.
VARIABLES BEST CASE WORST CASE

α/β Ω(|N ||Q|2KT) O(|N ||Q|2KT)
ξ/φ Ω(|N ||Q|2KT) O(|N ||Q|2KT 2)
σk
t Ω(K) O(KT)

Θ Ω(|N ||Q|2KT) O(|N ||Q|2KT 2)

Experiments
We evaluate Algorithm 1 on a multi-robot navigation bench-
mark and a large domain motivated by SAR problems.

A multi-robot benchmark
We first consider a multi-robot navigation among mov-
able obstacles (NAMO) problem, introduced in (Amato,
Konidaris, and Kaelbling 2014). Here as shown in Figure 2,
both agents are trying to reach a goal location “G”, but have
to move obstacles in order to reach it.

(a) (b) (c)

1 2 3 4 5 10 20 40 50 H(26)

−1

0

1

2

3

4

5

|Q
n
|

C
um

ul
at

iv
e

re
w

ar
d

η=75%
η=85%
η=95%
η=100%

(d)

Figure 3: (a) A SAR domain (diamonds represent victims with colors indicate health, circles and cross represent UGV and UAV respectively);
(b) Testing performance using different number of training sample K and percentage of hand-coded policies η; (c) Testing performance of
policies with different FSC sizes.

For this problem, a batch of episodes is collected by a
combination of random action selection and actions pro-
vided by a MaDec-POMDP algorithm (Option-based dy-
namic programming (O-DP)) (Amato, Konidaris, and Kael-
bling 2014). Let η% be the probability that the agents fol-
low the O-DP policy and 1 − η% be the probability that
the agents take random actions. The use of an O-DP pol-
icy is similar to access to a domain expert, but by adding
random actions, we can observe performance as our ex-
pert data becomes more noisy. For each run of algorithm 1,
K = 30, 100, 300 episodes of 10 steps are used to learn the
FSCs with |Qn| = 20,∀n ∈ N , and the learned policies
are evaluated by the accumulated reward averaged over 100
test episodes of 10 steps. For η = [1, 4, 12.5, 25, 50, 100],
the corresponding testing results are plotted in Figure 2. It
can be seen that our method can learn high-quality poli-
cies without needing much domain experts information. In
fact, our experiments already show higher-valued policies
can be learned with a large amount of noisy trajectories (as
K increases). Figure 2 also shows the actual smallest set-
ting for η when PoEM learns the optimal policy depends
on the amount of episodes. With a small percentage of ex-
pert knowledge (η = 25) and large enough amount of data
(K = 300), PoEM is able to recover the optimal policy.

A Search and Rescue (SAR) Problem
To further demonstrate the scalability and learning efficiency
of the proposed algorithm, we designed a SAR problem
involving a team of heterogeneous agents: one unmanned
aerial vehicle (UAV) and three unmanned ground vehicles
(UGVs). The scenario begins after a natural disaster strikes
the simulated world. These agents operate in a 20 × 10
gridworld (shown in figure 3(a)), where there are 6 rescue
sites with different distance to a muster. There are six vic-
tims, with varying initial levels of criticality. Each victim’s
health degrades linearly with time. The speed of UAV is
three times faster than UGV, but only the UGVs can pick-
up victims. For a UGV, there are 1120 observations encoded
by the set ΩUGV = SL × SS × SV × OL × OV , where
SL = {site 1,..., site 6, muster} is a set of self location;
SS = {holding victim, not holding victim} is a set of self
states; SV = {has victims needing help, no victims need-
ing help, unknown, critical victims } is the set of states of
the victim at an agent’s current location; OV is the state of

the victim at OL, the other location (from communication),
and there are 8 macro-actions, including go to one of the six
sites, retrieve a victim at one site (retrieve) and go to muster
(and drop off victim). For the UAV, there are 560 observa-
tions (assuming the UAV cannot hold victims) and 7 macro-
actions, including going to the muster and going to one of
the six sites. All vehicles begin in the muster and commu-
nication can happen bidirectionally when two vehicles are
within a range (which is larger for UAV-UGV communica-
tion than for UGV-UGV communication). Noise exists in all
observations, communications and actions (all of which are
assumed to succeed with probability 0.95). The reward is +1
for each victim brought back to muster alive and−1 for each
victim who dies.

This SAR domain significantly extends previous bench-
marks (mostly have two agents) not only in terms of agent
numbers, but also state/action/observation numbers. Given
its large problem size, unknown model and the stochasticity
in observations and communication, it is difficult to gener-
ate an optimal policy with existing solvers. Instead, a do-
main expert (from a large government laboratory) created
a heuristic controller, which is complex and works well (a
visualization of the graph describing the heuristic policy fi-
nite state machine is attached in the supplementary mate-
rials (URL). The value of hand-coded policy is estimated
based on 1000 runs with randomly placed victims and the
mean reward is 4.22 (pink dotted line in Figure 3(b)).

To evaluate PoEM’s performance on the SAR domain, we
test η = [0, 25, 50, 75, 80, 85, 90, 95, 100]. For each setting
of η, 2000 training trajectories (with horizon upper bound
set to 200) are generated. When setting |Qn| = 20 and
K = 1000, the training time is less than 15min on average.
The corresponding testing results are plotted in figure 3(b-
c), from which we can see, a) with a sufficient amount of
samples (K > 100), PoEM is able to achieve policy im-
provement over policies generating training data; b) By us-
ing 1000 trajectories generated from heuristic policy, PoEM
is able to achieve a mean value greater than 5, which is
higher than the value of hand-coded policy; c) Adding a
small amount of noise (5%) to the heuristic policy can help
getting a slightly better performance than purely using hand-
coded policy. Hence the experiments demonstrate PoEM can
achieve policy improvement and is scalable to large prob-
lems. In addition, nine settings of |Qn| are used to exam-

ine the influence of the controller size on policy quality.
As shown in Figure 3(d), the FSCs learned by PoEM ren-
der much higher value than the hand-coded policies (with
x-axis labeled with H) over a wide range of choices for |Qn|
(from 4 to 50), indicating robustness of PoEM to the size of
controller nodes. However, when |Qn| is too small, PoEM
cannot accommodate a good policy. Automatic inference of
the necessary size of controllers can be performed using
nonparametric methods, such as the hierarchical Dirichlet
process (Liu, Liao, and Carin 2011) and stick-breaking pro-
cesses (Liu et al. 2015), which is left for future work.

Conclusions
This paper presents a reinforcement learning method for
coordinating multiple agents in macro-action level Dec-
POMDPs, an important problem that has not been ade-
quately addressed before. Our method solely uses data from
demonstrations in the form of previously executed macro-
action and observation histories as well as rewards to im-
prove future decision making without explicitly requiring
mission models. We showed that our approach is able to
generate valid macro-action controllers and developed an
algorithm called PoEM for batch learning with guaranteed
convergence. Our experimental results show that PoEM can
scale to large problems and outperform hand coded methods
even with limited and noisy data. Theoretical analysis and
empirical results show the proposed method is a promising
tool for solving RL in large MacDec-POMDPs domains.

Acknowledgments
This work is supported in part by the ONR under MURI pro-
gram award #N000141110688 and NSF award #1463945.
The Lincoln Laboratory portion of this work is sponsored
by the Department of the Air Force under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

References
Amato, C., and Zilberstein, S. 2009. Achieving goals in
decentralized POMDPs. In Proc. of the 8th Int’l Conf. on
Autonomous Agents and Multiagent Systems (AAMAS-09).
Amato, C.; Chowdhary, G.; Geramifard, A.; Ure, N. K.; and
Kochenderfer, M. J. 2013. Decentralized control of partially
observable Markov decision processes. In Proc. of the Conf.
on Decision and Control (CDC-13).
Amato, C.; Konidaris, G.; Anders, A.; Cruz, G.; How, J. P.;
and Kaelbling, L. P. 2015a. Policy Search for Multi-
Robot Coordination under Uncertainty. In Proc. of the 2015
Robotics: Science and Systems Conference (RSS-15).
Amato, C.; Konidaris, G. D.; Cruz, G.; Maynor, C. A.; How,
J. P.; and Kaelbling, L. P. 2015b. Planning for decentralized
control of multiple robots under uncertainty. In Int’l Conf.
on Robotics and Automation (ICRA-15). IEEE.
Amato, C.; Bonet, B.; and Zilberstein, S. 2010. Finite-state
controllers based on mealy machines for centralized and de-
centralized POMDPs.

Amato, C.; Konidaris, G. D.; and Kaelbling, L. P. 2014.
Planning with macro-actions in decentralized POMDPs. In
Proc. of the int’l Conf. on Autonomous agents and multi-
agent systems (AAMAS-14).
Bernstein, D.; Zilberstein, S.; Washington, R.; and Bresina,
J. 2001. Planetary rover control as a Markov decision pro-
cess. In Int’l Symp. on AI, Robot. & Automation in Space.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Maximum
likelihood from incomplete data via the EM algorithm. J.
Royal Statistical Society B 39:1–38.
Grayson, S. 2014. Search & Rescue using Multi-Robot Sys-
tems. http://www.maths.tcd.ie/˜graysons/
documents/COMP47130_SurveyPaper.pdf.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 1999. Approxi-
mate planning in large POMDPs via reusable trajectories. In
Proc. of the Annual Conf. on Neural Information Processing
Systems (NIPS-99).
Kumar, A., and Zilberstein, S. 2010. Anytime planning for
decentralized POMDPs using expectation maximization. In
Proc. of the 26th Conf. on Uncertainty in Artificial Intelli-
gence (UAI-10).
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2015. Prob-
abilistic inference techniques for scalable multiagent deci-
sion making. Journal of Artificial Intelligence Research
53(1):223–270.
Liu, M.; Amato, C.; Liao, X.; How, J. P.; and Carin, L. 2015.
Stick-Breaking Policy Learning in DEC-POMDPs. In Proc.
of the 24th Intĺ Joint Conf. on Artificial Intelligence (IJCAI-
15).
Liu, M.; Liao, X.; and Carin, L. 2011. Infinite regionalized
policy representation. In Proc. of the 28th Int’l Conf. on
Machine Learning (ICML-11), 769–776.
Martins, M. F., and Demiris, Y. 2010. Learning multi-
robot joint action plans from simultaneous task execution
demonstrations. In Proceedings of the 9th Int’l Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS-10).
Oliehoek, F. A. 2012. Decentralized POMDPs. In Rein-
forcement Learning. Springer. 471–503.
Omidshafiei, S.; akbar Agha-mohammadi, A.; Amato, C.;
and How, J. P. 2015. Decentralized control of partially
observable markov decision processes using belief space
macro-actions. In Int’l Conf. on Robotics and Automation
(ICRA-15). IEEE.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence
112(1):181–211.
Supplementary. http://www.mit.edu/˜miaoliu/
publications/AAAI2016_supplementary.pdf.
Wu, F.; Zilberstein, S.; and Jennings, N. R. 2013. Monte-
carlo expectation maximization for decentralized POMDPs.
In Proc. of the 23rd Int’l Joint Conf. on Artificial Intelligence
(IJCAI-13).

