
Reinforcement Learning 
 
Chris Amato  
Northeastern University 
 
Some images and slides are used from: Rob Platt, 
CS188 UC Berkeley, AIMA 



Previous session discussed sequential decision making 
problems where the transition model and reward 
function were known  

In many problems, the model and reward are not 
known in advance  

Agent must learn how to act through experience with 
the world  

This session discusses reinforcement learning (RL) 
where an agent receives a reinforcement signal 

Reinforcement Learning (RL) 



Exploration of the world must be balanced with 
exploitation of knowledge gained through 
experience  

Reward may be received long after the important 
choices have been made, so credit must be 
assigned to earlier decisions  

Must generalize from limited experience  

Challenges in RL 



Conception of agent 

Agent World 

act 

sense 



RL conception of agent 

Agent World 

a 

s,r 

Agent takes actions 

Agent perceives states and rewards 

Transition model and reward function are initially unknown to the agent! 
– value iteration assumed knowledge of these two things... 



Value iteration 

We know the probabilities of moving in 
each direction when an action is executed 

We know the reward function 



Reinforcement Learning 

We know the probabilities of moving in 
each direction when an action is executed 

We know the reward function 



The different between RL and value iteration 

Offline	Solu+on	
(value	itera+on)	

Online	Learning	
(RL)	



Value iteration vs RL 

RL still assumes that we have an MDP 
 

  

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actions: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Value iteration vs RL 

Cool	

Warm	

Overheated	

RL still assumes that we have an MDP 
 – but, we assume we don't know T or R 



S+ll	assume	a	Markov	decision	process	(MDP):	
A	set	of	states	s	∈	S	

A	set	of	ac+ons	(per	state)	A	

A	model	T(s,a,s’)	

A	reward	func+on	R(s,a,s’)	

S+ll	looking	for	a	policy	𝜋(s)	
	

New	twist:	don’t	know	T	or	R	
I.e.	we	don’t	know	which	states	are	good	or	what	the	ac+ons	do	

Must	actually	try	ac+ons	and	states	out	to	learn	

Reinforcement Learning 



Example: Learning to Walk 

Ini+al	 A	Learning	Trial	 ALer	Learning	[1K	
Trials]	

[Kohl	and	Stone,	ICRA	2004]	



Example: Learning to Walk 

Ini+al	
[Kohl	and	Stone,	ICRA	2004]	



Example: Learning to Walk 

Training	
[Kohl	and	Stone,	ICRA	2004]	



Example: Learning to Walk 

Finished	
[Kohl	and	Stone,	ICRA	2004]	



Video of Demo Crawler Bot 



Model-based RL 

a. choose an exploration policy 
 – policy that enables   
  agent to explore all   
  relevant states 

 
b. follow policy for a while 
 
c. estimate T and R 

1. estimate T, R by 
averaging experiences 
 
2. solve for policy in MDP 
(e.g., value iteration) 



Model-based RL 

1. estimate T, R by 
averaging experiences 
 
2. solve for policy in MDP 
(e.g., value iteration) 

a. choose an exploration policy 
 – policy that enables   
  agent to explore all   
  relevant states 

 
b. follow policy for a while 
 
c. estimate T and R 

Number of times agent reached s' by taking a from s 

Set of rewards obtained when reaching s' by taking a from s 



Input	
Policy	𝜋		

Assume:	𝛾	=	1	

Observed	Episodes	
(Training)	 Learned	Model	

A	

B	 C	 D	

E	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

E,	north,	C,	-1	
C,	east,			A,	-1	
A,	exit,				x,	-10	

Episode	1	 Episode	2	

Episode	3	 Episode	4	

E,	north,	C,	-1	
C,	east,			D,	-1	
D,	exit,		x,	+10	

T(s,a,s’).	
	

T(B,	east,	C)	=	1.00	
T(C,	east,	D)	=	0.75	
T(C,	east,	A)	=	0.25	

…	
	

	

R(s,a,s’).	
	

R(B,	east,	C)	=	-1	
R(C,	east,	D)	=	-1	
R(D,	exit,	x)	=	+10	

…	

Example: Model-based RL 



Prioritized sweeping uses a priority queue of states to update (instead 
of random states)  

 Key point: set priority based on (weighted) change in value 

Pick the highest priority state s to update  

Remember current utility Uold = U(s)  

Update the utility: U(s)←maxa[R(s,a)+γ ∑s’T(s’|s,a)U(s’)] 

Set priority of s to 0

Increase priority of predecessors s’:  

 increase priority of s’ to T(s|s’,a’)|Uold − U(s)| 

Prioritized sweeping 



Bayesian approach involves specifying a prior over T and R 

Update posterior over T and R based on observed transitions  
and rewards  

Problem can be transformed into a belief state MDP , with b a 
probability distribution over T and R 

•  States consist of pairs (s,b) 

•  Transition function T(s’,b’|s,b,a) 

•  Reward function R(s’,b’,a) 

High-dimensional continuous states of belief-state MDP makes 
them difficult to solve  

Bayesian RL 



1. estimate T, R by 
averaging experiences 
 
2. solve for policy in MDP 
(e.g., value iteration) 

Model-based RL 

a. choose an exploration policy 
 – policy that enables   
  agent to explore all   
  relevant states 

 
b. follow policy for a while 
 
c. estimate T and R 

Number of times agent reached s' by taking a from s 

Set of rewards obtained when reaching s' by taking a from s 

What is a downside of  
this approach? 



Model-based vs Model-free learning 

Goal:	Compute	expected	age	of	students	in	this	class	

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]	

Unknown	P(A):	
“Model	Based”	

Unknown	P(A):	
“Model	Free”	

Why	does	this	
work?		Because	
samples	appear	
with	the	right	
frequencies.	

Why	does	this	
work?		Because	
eventually	you	
learn	the	right	

model.	



Simplified task: policy evaluation 
Input: a fixed policy 𝜋(s) 
You don’t know the transitions T(s,a,s’) 
You don’t know the rewards R(s,a,s’) 
Goal: learn the state values 
 

In this case: 
Learner is “along for the ride” 
No choice about what actions to take 
Just execute the policy and learn from experience 
This is NOT offline planning!  You actually take actions in the 

world. 
 

Policy evaluation 



Goal: Compute values for each state under 𝜋 
 

Idea: Average together observed sample values 
Act according to 𝜋 
Every time you visit a state, write down what the sum of 

discounted rewards turned out to be 
Average those samples 

 

This is called direct evaluation 

Direct evaluation 



Input	Policy	
𝜋	

Assume:	𝛾	=	1	

Observed	Episodes	
(Training)	

Output	Values	

A	

B	 C	 D	

E	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

B,	east,	C,	-1	
C,	east,	D,	-1	
D,	exit,		x,	+10	

E,	north,	C,	-1	
C,	east,			A,	-1	
A,	exit,				x,	-10	

Episode	1	 Episode	2	

Episode	3	 Episode	4	

E,	north,	C,	-1	
C,	east,			D,	-1	
D,	exit,				x,	+10	

A	

B	 C	 D	

E	

+8	 +4	 +10	

-10	

-2	

Example: Direct evaluation 



What’s	good	about	direct	evalua+on?	
It’s	easy	to	understand	

It	doesn’t	require	any	knowledge	of	T,	R	

It	eventually	computes	the	correct	average	
values,	using	just	sample	transi+ons	

	

What	bad	about	it?	
It	wastes	informa+on	about	state	
connec+ons	

Each	state	must	be	learned	separately	

So,	it	takes	a	long	+me	to	learn	

Output	Values	

	A	

	B	 	C	 	D	

	E	

+8	 +4	 +10	

-10	

-2	

If	B	and	E	both	go	to	
C	under	this	policy,	
how	can	their	values	

be	different?	

Problems with direct evaluation 



Sample-Based	Policy	Evalua+on 

§  We	want	to	improve	our	es+mate	of	V	by	compu+ng	these	averages:	
	
	
	
	

§  Idea:	Take	samples	of	outcomes	s’	(by	doing	the	ac+on!)	and	average	
	
	
	

	
	
	
	
	

  

RL: model-free learning approach to estimating the 

value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

p(s)

s

s, p(s)

s1'



Sample-Based	Policy	Evalua+on 

§  We	want	to	improve	our	es+mate	of	V	by	compu+ng	these	averages:	
	
	
	
	

§  Idea:	Take	samples	of	outcomes	s’	(by	doing	the	ac+on!)	and	average	
	
	
	

	
	
	
	
	

  

RL: model-free learning approach to estimating the 

value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

p(s)

s

s, p(s)

s1's2'



Sample-Based	Policy	Evalua+on 

§  We	want	to	improve	our	es+mate	of	V	by	compu+ng	these	averages:	
	
	
	
	

§  Idea:	Take	samples	of	outcomes	s’	(by	doing	the	ac+on!)	and	average	
	
	
	

	
	
	
	
	

  

RL: model-free learning approach to estimating the 

value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

p(s)

s

s, p(s)

s1's2' s3'



Sample-Based	Policy	Evalua+on 

§  We	want	to	improve	our	es+mate	of	V	by	compu+ng	these	averages:	
	
	
	
	

§  Idea:	Take	samples	of	outcomes	s’	(by	doing	the	ac+on!)	and	average	
	
	
	

	
	
	
	
	

  

RL: model-free learning approach to estimating the 

value function

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 We want to improve our estimate of V by computing these 
averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and 
average

p(s)

s

s, p(s)

s1's2' s3'



Suppose we have a random variable X and we want to estimate the 
mean from samples x1,…,xk  

After k samples  

Can show that 

Can be written 

Learning rate α(k) can be functions other than 1, loose k  
conditions on learning rate to ensure convergence to mean  

If learning rate is constant, weight of older samples decay  
exponentially at the rate (1 − α)

Forgets about the past (distant past values were wrong anyway) 

Update rule  

x̂k =
1
k

xi
i=1

k

∑
x̂k = x̂k−1 +

1
k
(xk − x̂k−1)

x̂k = x̂k−1 +α (k)(xk − x̂k−1)

x̂← x̂ +α (x − x̂)

Sidebar:	incremental	es+ma+on	of	mean	



TD Value Learning 

§  Big	idea:	learn	from	every	experience!	
§ Update	V(s)	each	+me	we	experience	a	transi+on	(s,	a,	s’,	r)	
§ Likely	outcomes	s’	will	contribute	updates	more	oLen	
	

§  Temporal	difference	learning	of	values	
§ Policy	s+ll	fixed,	s+ll	doing	evalua+on!	
§ Move	values	toward	value	of	whatever	successor	occurs:	
running	average	(incremental	mean)	

	
	
	
	

	

Sample	of	V(s):	

Update	to	V(s):	

Same	update:	

  

TD Value Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Big idea: learn from every experience!

 Update V(s) each time we experience a 
transition (s, a, s’, r)

 Likely outcomes s’ will contribute updates 
more often

 Temporal diBerence learning of values

 Policy still Cxed, still doing evaluation!

 Move values toward value of whatever 
successor occurs: running average

p(s)

s

s, p(s)

Sample of V(s):

Update to V(s):

Same update:

s'



TD Value Learning: example 

Assume:	𝛾	=	1,	
α	=	1/2	

Observed	Transi+ons	

0	

0	 0	 8	

0	

A	

B	 C	 D	

E	

States	



TD Value Learning: example 

Observed	Transi+ons	

B,	east,	C,	-2	

0	

0	 0	 8	

0	

0	

-1	 0	 8	

0	

A	

B	 C	 D	

E	

States	
Observed reward 

Assume:	𝛾	=	1,	
α	=	1/2	



TD Value Learning: example 

Observed	Transi+ons	

B,	east,	C,	-2	

0	

0	 0	 8	

0	

0	

-1	 0	 8	

0	

0	

-1	 3	 8	

0	

C,	east,	D,	-2	

A	

B	 C	 D	

E	

States	

Assume:	𝛾	=	1,	
α	=	1/2	

Observed reward 



What's the problem w/ TD Value Learning? 



What's the problem w/ TD Value Learning? 

Can't turn the estimated value function into a policy! 
 
This is how we did it when we were using value 
iteration: 
 
 
 
 
Why can't we do this now? 



What's the problem w/ TD Value Learning? 

Can't turn the estimated value function into a policy! 
 
This is how we did it when we were using value 
iteration: 
 
 
 
 
Why can't we do this now? 
 
 
Solution: Use TD value learning to estimate Q*, not V* 



Detour:	Q-Value	Itera+on	

§  Value iteration: find successive (depth-limited) values 
§ Start with V0(s) = 0, which we know is right 
§ Given Vk, calculate the depth k+1 values for all states: 

 
 
 
 
§  But Q-values are more useful, so compute them instead 

§ Start with Q0(s,a) = 0, which we know is right 
§ Given Qk, calculate the depth k+1 q-values for all q-states: 



Full reinforcement learning: generate optimal policies 
(like value iteration) 
You don’t know the transitions T(s,a,s’) 
You don’t know the rewards R(s,a,s’) 
You choose the actions now 
Goal: learn the optimal policy / values 
 

In this case: 
Learner makes choices! 
Fundamental tradeoff: exploration vs. exploitation 
This is NOT offline planning!  You actually take actions in 

the world and find out what happens… 

Ac+ve	Reinforcement	Learning	



Model-free (temporal difference) learning 
Experience world through episodes 
 
 
Update estimates each transition 
 
Over time, updates will mimic Bellman 

updates 
 

 
 

 
 
 

 

r	

a	

s

s,	a	

s’	

a’	

s’,	a’	

s’’	

Model-free	RL	



Q-Learning	

§  Q-Learning: sample-based Q-value iteration 
 
 
 
§  Learn Q(s,a) values as you go 

§ Receive a sample (s,a,s’,r) 
§ Consider your old estimate: 
§ Consider your new sample estimate: 

 
 
 

§ Incorporate the new estimate into a running average: 



Q-Learning	video	--	Crawler	



Q-Learning:	proper+es	

Q-learning converges to optimal Q-values if: 
 
1. it explores every s, a, s' transition sufficiently often 
 
2. the learning rate approaches zero (eventually) 
 
 
Key insight: Q-value estimates converge even if 
experience is obtained using a suboptimal policy. 
 
This is called off-policy learning 
 



Explora+on	vs.	exploita+on	



Several schemes for forcing exploration 
Simplest: random actions (ℇ-greedy) 

Every time step, flip a coin 
With (small) probability ℇ, act randomly 
With (large) probability 1-ℇ, act on current policy 
 

Problems with random actions? 
You do eventually explore the space, but keep 

thrashing around once learning is done 
One solution: lower ℇ over time 
Another solution: exploration functions 

 

How	to	explore?	



Q-Learning	video	–	Crawler	with	epsilon-greedy	



When to explore? 
Random actions: explore a fixed amount 
Better idea: explore areas whose badness is not 

 (yet) established, eventually stop exploring 
 

Exploration function 
Takes a value estimate u and a visit count n, and 

 returns an optimistic utility, e.g. 
 

 
 
Note: this propagates the “bonus” back to states that lead to 

unknown states as well! 
     

Modified	Q-Update:	

Regular	Q-Update:	

Explora+on	func+ons	



Q-Learning	video	–	Crawler	with	explora+on	func+on	



Q-learning will converge to the 
optimal policy  

However, Q-learning typically requires 
a lot of experience  

Utility is updated one step at a time  

Eligibility traces allow states along a 
path to be updated  

Q-Learning	



Even if you learn the optimal policy, you 
still make mistakes along the way! 

Regret is a measure of your total mistake 
cost: the difference between your 
(expected) rewards, including youthful 
suboptimality, and optimal (expected) 
rewards 

Minimizing regret goes beyond learning to 
be optimal – it requires optimally 
learning to be optimal 

Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret 

Regret	



Basic Q-Learning keeps a table of all q-values 
 

In realistic situations, we cannot possibly 
learn about every single state! 
Too many states to visit them all in training 
Too many states to hold the q-tables in memory 

 

Instead, we want to generalize: 
Learn about some small number of training states 

from experience 
Generalize that experience to new, similar 

situations 
This is a fundamental idea in machine learning, 

and we’ll see it over and over again 
 

Generalizing	across	states	



We	discover	through	
experience	that	this	

state	is	bad:	

In	naïve	Q-
learning,	we	
know	nothing	
about	this	state:	

Or	even	this	one!	

Example:	Pac-man	



Q-Learning	video	– Pacman	Tiny	



Solution: describe a state using a vector 
of features (properties) 
Features are functions from states to real 

numbers (often 0/1) that capture important 
properties of the state 

Example features: 
Distance to closest ghost 
Distance to closest dot 
Number of ghosts 
1 / (dist to dot)2 

Is Pacman in a tunnel? (0/1) 
…… etc. 

Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food) 

Feature-based	representa+ons	



Using a feature representation, we can write a q function (or value 
function) for any state using a few weights: 

 

 

 
 

Advantage: our experience is summed up in a few powerful 
numbers 

 

Disadvantage: states may share features but actually be very 
different in value! 

Linear	value	func+ons	



Q-learning with linear Q-functions: 
 
 
 
 
 
Intuitive interpretation: 

Adjust weights of active features 
E.g., if something unexpectedly bad happens, blame the features 

that were on: disprefer all states with that state’s features 
 

Formal justification: online least squares 

Exact Q’s 

Approximate Q’s 

Approximate	Q-learning	



Example:	Q-Pacman	



0 20 0 

20 

40 

0 10 20 30 40 

0 
10 

20 
30 

20 
22 
24 
26 

Prediction: Prediction: 

Linear	Approxima+on:	Regression	



0 20 0 

Error or “residual” 

Prediction 

Observation 

Op+miza+on:	Least	Squares	



Approximate	q	update	
explained:	

Imagine	we	had	only	one	point	x,	with	features	f(x),	target	value	y,	and	
weights	w:	

“target”	 “predic+on
”	

Minimizing	error	



0 2 4 6 8 10 12 14 16 18 20 -15 

-10 

-5 

0 

5 

10 

15 

20 

25 

30 

Degree 15 polynomial 

Overfirng:	Why	limi+ng	capacity	can	help	



Problem: often the feature-based policies that work well (win 
games, maximize utilities) aren’t the ones that approximate V / Q 
best 
E.g. your value functions from project 2 were probably horrible estimates of 

future rewards, but they still produced good decisions 
Q-learning’s priority: get Q-values close (modeling) 
Action selection priority: get ordering of Q-values right (prediction) 
We’ll see this distinction between modeling and prediction again later in the 

course 

 

Solution: learn policies that maximize rewards, not the values that 
predict them 

 

Policy search: start with an ok solution (e.g. Q-learning) then fine-
tune by hill climbing on feature weights 

Policy	search	



Simplest policy search: 
Start with an initial linear value function or Q-function 
Nudge each feature weight up and down and see if your policy 

is better than before 
 

Problems: 
How do we tell the policy got better? 
Need to run many sample episodes! 
If there are a lot of features, this can be impractical 
 

Better methods exploit lookahead structure, sample 
wisely, change multiple parameters… 

Policy	search	



[Andrew	Ng]	

Policy	search:	autonomous	helicopter	



Reinforcement learning is a computational approach 
to learning intelligent behavior from experience  

Exploration must be carefully balanced with 
exploitation  

Credit must be assigned to earlier decisions  

Must generalize from limited experience  

Next session will start looking at graphical models for 
representing uncertainty 

Summary	



Known	MDP:	Offline	Solu+on	

Goal 	 	 	 	 	Technique	
	
Compute	V*,	Q*,	𝜋* 	 	Value	/	policy	itera+on	
	
Evaluate	a	fixed	policy	𝜋	 	Policy	evalua+on	
	
	

Unknown	MDP:	Model-Based	 Unknown	MDP:	Model-Free	

Goal 	 	 	 	Technique	
	
Compute	V*,	Q*,	𝜋* 	VI/PI	on	approx.	MDP	
	
Evaluate	fixed	policy		𝜋 	PE	on	approx.	MDP	
	
	

Goal 	 	 	 	 	Technique	
	
Compute	V*,	Q*,	𝜋* 	 	Q-learning	
	
Evaluate	a	fixed	policy		𝜋 	Value	Learning	
	
	

Overview:	MDPs	and	RL	


