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Uncertainty 

Let action At = leave for airport t minutes before flight  
Will At get me there on time?  
 
Problems: 
1.  partial observability (road state, other drivers’ plans, etc.)  
2.  noisy sensors (traffic reports) 
3.  uncertainty in action outcomes (flat tire, etc.) 
4.  immense complexity of modeling and predicting traffic  
 
Hence a purely deterministic (logical) approach either 
1) risks falsehood: “A25 will get me there on time” or 2) leads to 
conclusions that are too weak for decision making: 
“A25 will get me there on time if there’s no accident on the 
bridge and it doesn’t rain and my tires remain intact etc etc.”  



Probability 

Probabilistic assertions summarize effects of 
 - laziness: failure to enumerate exceptions, qualifications, etc.  
 - ignorance: lack of relevant facts, initial conditions, etc.  

 
Subjective or Bayesian probability: 
Probabilities relate propositions to one’s own state of 
knowledge  

 - e.g., P (A25|no reported accidents) = 0.06 
 
These are not claims of a “probabilistic tendency” in the current 
situation (but might be learned from past experience of similar 
situations)  
 
Probabilities of propositions change with new evidence:  

 - e.g., P (A25|no reported accidents, 5 a.m.) = 0.15  



(Discrete) random variables 

What is a random variable? 
 
Discrete random variable, X, can take on many (possibly infinite) values, called the 
state space or domain A={1,2,3,4,5,6} (e.g., a die) 

a is a random variable this is the domain of a 

Another example: 
 
Suppose b denotes whether it is raining or clear outside: 



Probability distribution 

A probability distribution associates each with a probability of occurrence, 
represented by a probability mass function (pmf). 
A probability table is one way to encode the distribution: 

All probability distributions must satisfy the following: 
 
1. 
 
2. 



Two pmfs over a state space of X={1,2,3,4}  

Example pmfs 



Writing probabilities 

For example: 
 
 
 
But, sometimes we will abbreviate this as: 



Types of random variables 

Propositional or Boolean random variables 
- e.g., Cavity (do I have a cavity?) 
- Cavity = true is a proposition, also written cavity  

Discrete random variables (finite or infinite) 
 - e.g., Weather is one of ⟨sunny, rain, cloudy, snow⟩  
 - Weather = rain is a proposition 
- Values must be exhaustive and mutually exclusive  

Continuous random variables (bounded or unbounded)  
 - e.g., Temp < 22.0  



Continuous random variables 

Cumulate distribution function (cdf), F(q)=(X<q) with P(a<X≤b)=F(b)-F(a)  

Probability density function (pdf),                        with    

Express distribution as a parameterized function of value: 
- e.g.,  P(X = x) = U[18, 26](x) = uniform density between 18 and 26  

 

 

 

 

 

Here P is a density; integrates to 1. 

 P(X = 20.5) = 0.125 really means 

f (x) = d
dx
F(x) P(a < X ≤ b) =

a

b

∫ f (x)Probability for continuous variables

Express distribution as a parameterized function of value:
P (X = x) = U [18, 26](x) = uniform density between 18 and 26

0.125

dx18 26

Here P is a density; integrates to 1.
P (X =20.5) = 0.125 really means

lim
dx→0

P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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limdx→0 P(20.5 ≤ X ≤ 20.5 + dx) / dx = 0.125



Joint probability distributions 

Given random variables: 

The joint distribution is a probability 
assignment to all combinations: 

As with single-variate distributions, joint distributions must satisfy: 

or: 

1. 

2. 

P(X1 = x1 ∧ X2 = x2 ∧…∧ Xn = xn )Sometimes written as: 

Prior or unconditional probabilities of propositions 
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72  
correspond to belief prior to arrival of any (new) evidence  
 



Joint probability distributions 

Joint distributions are typically written in table form: 

How many entries do I need here? 



Marginalization 

Given P(T,W), calculate P(T) or P(W)... 



Marginalization 

X	 Y	 P	

+x	 +y	 0.2	

+x	 -y	 0.3	

-x	 +y	 0.4	

-x	 -y	 0.1	

X	 P	

+x	

-x	

Y	 P	

+y	

-y	



Conditional Probabilities 

Conditional or posterior probabilities  
 - e.g., P(cavity|toothache) = 0.8 

 - i.e., given that toothache is all I know  

Notation for conditional distributions: P(Cavity|Toothache) = 2-
element vector of 2-element vectors 
 
If we know more, e.g., cavity is also given, then we have P(cavity|
toothache, cavity) = 1 

 - Note: the less specific belief remains valid after more 
evidence arrives, but is not always useful 
 
New evidence may be irrelevant, allowing simplification 

 - e.g., P(cavity|toothache, redsoxwin)=P(cavity|toothache)=0.8  
 
This kind of inference, sanctioned by domain knowledge, is crucial 



Conditional Probabilities 

Conditional probability:                               (if P(B)>0 ) 
 
Example: Medical diagnosis 
 
Product rule: P(A,B) = P(A ∧ B) = P(A|B)P(B)  
 
Marginalization with conditional probabilities: 
 
 
 
This formula/rule is called the law of of total probability 
 
Chain rule is derived by successive application of product rule: 
P(X1,...,Xn) = P(X1,...,Xn−1) P(Xn|X1,...,Xn−1) 
= P(X1,...,Xn−2) P(Xn−1|X1,...,Xn−2) P(Xn|X1,...,Xn−1) = ... 
= Πn

i=1 P(Xi|X1,...,Xi−1) 

P(A | B) = P(A,B)
P(B)

P(A) = P
b∈B
∑ (A | B = b)P(B = b)



Conditional Probabilities 

Probability that it is sunny given that it is hot. 



Conditional Probabilities 

P(b)	P(a)	

P(a,b)	Product rule 

Calculate the conditional probability using the product rule: 



Conditional Probabilities 

X	 Y	 P	

+x	 +y	 0.2	

+x	 -y	 0.3	

-x	 +y	 0.4	

-x	 -y	 0.1	

§  P(+x	|	+y)	?	
	
	
	
	

§  P(-x	|	+y)	?	
	
	
	
	

§  P(-y	|	+x)	?	
	

	
		



Conditional distribution 

Given P(T,W), calculate P(T|w) or P(W|t)... 



Conditional distribution 

Given P(T,W), calculate P(T|w) or P(W|t)... 



Conditional distribution 

Given P(T,W), calculate P(T|w) or P(W|t)... 



Conditional distribution 

Given P(T,W), calculate P(T|w) or P(W|t)... 



Normalization 

Given P(T,W), calculate P(T|w) or P(W|t)... 

Can we avoid explicitly  
computing this? 



Normalization 

Select corresponding elements 
from the joint distribution 

Scale the numbers so 
that they sum to 1 



Normalization 

Select corresponding elts 
from the joint distribution 

Scale the numbers so 
that they sum to 1. 

The only purpose of this denominator is to make the 
distribution sum to one. 
– we achieve the same thing by scaling. 



Normalization 

X	 Y	 P	

+x	 +y	 0.2	

+x	 -y	 0.3	

-x	 +y	 0.4	

-x	 -y	 0.1	

P(X	|	Y=-y)	?	

? ? 



Independence 

A and B are independent iff 
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)  

P(Toothache, Catch,Cavity,Weather) 
= P(Toothache, Catch, Cavity)P(Weather)  

 

 
 

 

32 entries reduced to 12; for n independent biased coins, 2n → n  

Absolute independence powerful but rare  

Dentistry is a large field with hundreds of variables, none of which are 
independent. What to do?  

Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch

Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?
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Conditional independence 

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries  

If I have a cavity, the probability that the probe catches in it doesn’t 
depend on whether I have a toothache:  

(1) P(catch|toothache, cavity) = P(catch|cavity) 

The same independence holds if I haven’t got a cavity:  

(2) P(catch|toothache, ¬cavity) = P(catch|¬cavity)  

Catch is conditionally independent of Toothache given Cavity:  

P(Catch|Toothache, Cavity) = P(Catch|Cavity)  

Equivalent statements:  

 P(Toothache|Catch, Cavity)=P(Toothache|Cavity) 

 P(Toothache, Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)  



Conditional independence 

Write out full joint distribution using chain rule:  

P(Toothache, Catch, Cavity) 

 = P(Toothache|Catch, Cavity)P(Catch, Cavity) 

 = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)  

 = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)  

2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)  

In most cases, the use of conditional independence reduces the 
size of the representation of the joint distribution from 
exponential in n to linear in n.  

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.  



Bayes’ Rule 

Thomas Bayes? 



Bayes’ Rule 

It's easy to derive from the product rule: 

Solve for this 



Using Bayes’ Rule 



Using Bayes’ Rule 

It's often easier to estimate this But harder to estimate this 



Bayes’ Rule Example 

meningitis 

Suppose you have a stiff neck... 

Suppose there is a 70% chance of meningitis if you have a stiff neck: 

Suppose you have a stiff neck... 

stiff neck 

What are the chances that you have meningitis? 



Bayes’ Rule Example 

meningitis 

Suppose you have a stiff neck... 

Suppose there is a 70% chance of meningitis if you have a stiff neck: 

Suppose you have a stiff neck... 

stiff neck 

What are the chances that you have meningitis? 

We need a little more information... 



Bayes’ Rule Example 

Prior probability of meningitis 

Prior probability of stiff neck 



Bayes’ Rule Example 

§  Given:	

	
	
	
	
§ What	is	P(W|dry)?		

R	 P	

sun	 0.8	

rain	 0.2	

D	 W	 P	

wet	 sun	 0.1	

dry	 sun	 0.9	

wet	 rain	 0.7	

dry	 rain	 0.3	



Bayes’ rule and conditional independence 

P(Cavity|toothache,catch) 
= αP(toothache,catch|Cavity)P(Cavity) 
= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)  

This is an example of a naive Bayes model: 
P(Cause, Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)  

 

 

 

 

Total number of parameters is linear in n  

Bayes’ Rule and conditional independence

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)ΠiP(Effecti|Cause)

Toothache

Cavity

Catch

Cause

Effect1 Effectn

Total number of parameters is linear in n
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Making decisions under uncertainty 

Suppose I believe the following:  
 P(A25 gets me there on time|...) = 0.04  
 P(A90 gets me there on time|...) = 0.70  
 P(A120 gets me there on time|...) = 0.95  
 P (A1440 gets me there on time|...) = 0.9999  

Which action to choose?  



Making decisions under uncertainty 

Suppose I believe the following:  
 P(A25 gets me there on time|...) = 0.04  
 P(A90 gets me there on time|...) = 0.70  
 P(A120 gets me there on time|...) = 0.95  
 P (A1440 gets me there on time|...) = 0.9999  

Which action to choose?  
Depends on my preferences for missing flight vs. airport 

cuisine, etc.  
Utility theory is used to represent and infer preferences 
Decision theory = utility theory + probability theory  



Rational decision making requires reasoning 
about one’s uncertainty and objectives  

Previous section focused on uncertainty  

This section will discuss how to make rational 
decisions based  
on a probabilistic model and utility function  

Focus will be on single step decisions, next week 
we will consider sequential decision problems  

Making decisions under uncertainty 



An agent chooses among prizes (A, B, etc.) and 
lotteries, i.e., situations with uncertain prizes  

Lottery L=[p,A; (1−p),B] 

Notation:  

A ≻ B         A preferred to B

A ∼ B         indifference between A and B 

A ≿ B        B not preferred to A

Preferences 



Idea: preferences of a rational agent (not a human!) must obey 
constraints 

Rational preferences ⇒ behavior describable as maximization of 
expected utility  

The Axioms of Rationality: 

Rational preferences 



Violating the constraints leads to self-evident 
irrationality  

For example: an agent with intransitive preferences 
can be induced to give away all its money  

If B ≻ C, then an agent who has C would pay (say) 1 
cent to get B  

If A ≻ B, then an agent who has B would pay (say) 1 
cent to get A  

If C ≻ A, then an agent who has A would pay (say) 1 
cent to get C  

Rational preferences 



The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes 

 

Example: How long to get to the airport? 
 

 

0.25	 0.50	 0.25	Probability:	

20	min	 30	min	 60	min	Time:	
35	
min	

x	 x	 x	+	 +	

Reminder: Expectations 



Mean, μ, or expected value: 

Discrete:  

Continuous: 

Variance: 

Mean and variance 

 
E[X]= x

x∈X
∑ P(x)

 
E[X]= x

x∫ P(x)dx

 var[X]= E[(X − µ)2 ]



Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): 
Given preferences satisfying the constraints there exists a real-
valued function U such that  

U(A)≥U(B) ⇔ A≿B 

U(A) > U(B) ⇔ A ≻ B

U(A) = U(B) ⇔ A ∼ B

 

MEU principle: Choose the action that maximizes expected utility  

Maximizing expected utility (MEU) 

U([p1, s1;…; pn , sn ]) = pi
i
∑ U(si )



Note: an agent can be entirely rational (consistent 
with MEU) without ever representing or 
manipulating utilities and probabilities  

E.g., a lookup table for perfect tic-tac-toe  

Although a utility function must exist, it is not unique  

If U′(S)=aU(S)+b and a and b are constants with 
a>0, then preferences of U′ are the same as U  

E.g., temperatures in Celcius, Fahrenheit, Kelvin 

Preferences lead to utilities 



Agent has made some (imperfect) observation o of the state of 
the world  

If the agent executes action a, the probability the state of the 
world becomes s′ is given by P(s′ | o, a)  

Preferences on outcomes is encoded using utility function U(s) 

Expected utility: 

Principal of maximum expected utility says that a rational agent 
should choose the action that maximizes expected utility a∗ 
=argmaxa EU(a|o)  
 

MEU continued 



When building a decision-making or decision-support system, it is often helpful to infer 
the utility function from a human 

Utilities map states to real numbers. Which numbers?  

Standard approach to assessment of human utilities: compare a given state A to a 
standard lottery Lp that has  

“best possible prize” u⊤ with probability p 

“worst possible catastrophe” u⊥ with probability (1 − p)  

Adjust lottery probability p until A ∼ Lp

Alternatively, set best possible utility to 1 and worst possible to 0

Utilities: preference elicitation 



Normalized utilities: u⊤ = 1.0, u⊥ = 0.0  

Micromorts: one-millionth chance of death  

Useful for Russian roulette, paying to reduce product risks, etc.  

QALYs: quality-adjusted life years 

Useful for medical decisions involving substantial risk  

Note: behavior is invariant w.r.t. positive linear transformation  

 

With deterministic prizes only (no lottery choices), only ordinal utility can be 
determined, i.e., total order on prizes  

Utility scales 



Money does not behave as a utility function 

Given a lottery L with expected monetary value EMV(L), usually U(L) < 
U(EMV(L)), i.e., people are risk-averse 

Utility curve: for what probability p am I indifferent between a prize x 
and a lottery [p,$M; (1−p),$0] for large M? 

Typical empirical data, extrapolated with risk-prone behavior (utility of 
money is proportional to the logarithm of the amount):  

Money 



Who prefers the lottery at different values of p? (M=10,000)  

 

Student group utility 



Probability is a rigorous formalism for uncertain knowledge 

Joint probability distribution specifies probability of every 
atomic event  

Queries can be answered by summing over atomic events 

For nontrivial domains, we must find a way to reduce the 
joint size  

Independence and conditional independence provide the 
tools  

Next time: sequential decision making! 

Summary 


