Basic Probability and Decisions

Chris Amato Northeastern University

Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Uncertainty

Let action A_t = leave for airport *t* minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely deterministic (logical) approach either 1) risks falsehood: " A_{25} will get me there on time" or 2) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge

- e.g., P (A_{25} |no reported accidents) = 0.06

These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:

- e.g., P (A_{25} |no reported accidents, 5 a.m.) = 0.15

(Discrete) random variables

What is a random variable?

Discrete random variable, *X*, can take on many (possibly infinite) values, called the state space or domain $A = \{1, 2, 3, 4, 5, 6\}$ (e.g., a die)

Another example:

Suppose *b* denotes whether it is raining or clear outside:

$$b \in \{rain, clear\} = B$$

Probability distribution

A probability distribution associates each with a probability of occurrence, represented by a *probability mass function (pmf)*.

A probability table is one way to encode the distribution:

$$a \in \{1, 2, 3, 4, 5, 6\} = A$$
 $b \in \{rain, clear\} = B$

All probability distributions must satisfy the following:

1.
$$\forall a \in A, a \ge 0$$

2.
$$\sum_{a \in A} a = 1$$

Example pmfs

Two pmfs over a state space of $X = \{1, 2, 3, 4\}$

Writing probabilities

a	P(a)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

b	P(b)
rain	1/4
clear	3/4

For example:
$$p(a=2)=1/6$$

 $p(b=clear)=3/4$

But, sometimes we will abbreviate this as: $\ p(2)=1/6$

$$p(clear) = 3/4$$

Types of random variables

Propositional or Boolean random variables

- e.g., *Cavity* (do I have a cavity?)
- *Cavity* = *true* is a proposition, also written *cavity*

Discrete random variables (finite or infinite)

- e.g., Weather is one of *(sunny, rain, cloudy, snow)*
- Weather = rain is a proposition
- Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)

- e.g., Temp < 22.0

Continuous random variables

Cumulate distribution function (cdf), F(q)=(X < q) with $P(a < X \le b)=F(b)-F(a)$

Probability density function (pdf), $f(x) = \frac{d}{dx}F(x)$ with $P(a < X \le b) = \int_{a}^{b} f(x)$

Express distribution as a parameterized function of value:

- e.g., P(X = x) = U[18, 26](x) = uniform density between 18 and 26

Here *P* is a density; integrates to 1.

P(X = 20.5) = 0.125 really means

 $\lim_{dx\to 0} P(20.5 \le X \le 20.5 + dx) / dx = 0.125$

Joint probability distributions

Given random variables: X_1, X_2, \dots, X_n

The joint distribution is a probability
assignment to all combinations: $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$ or: $P(x_1, x_2, \dots, x_n)$ Sometimes written as: $P(X_1 = x_1 \land X_2 = x_2 \land \dots \land X_n = x_n)$

As with single-variate distributions, joint distributions must satisfy:

1.
$$P(x_1, x_2, \dots, x_n) \ge 0$$

2. $\sum_{x_1, \dots, x_n} P(x_1, x_2, \dots, x_n) = 1$

Prior or unconditional probabilities of propositions e.g., P (*Cavity* = *true*) = 0.1 and P (*Weather* = *sunny*) = 0.72 correspond to belief prior to arrival of any (new) evidence

Joint probability distributions

Joint distributions are typically written in table form:

Т	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

How many entries do I need here?

Marginalization

Given P(T,W), calculate P(T) or P(W)...

Marginalization

Conditional or posterior probabilities

- e.g., *P*(*cavity*|*toothache*) = 0.8
- i.e., given that toothache is all I know

Notation for conditional distributions: *P*(*Cavity*|*Toothache*) = 2element vector of 2-element vectors

If we know more, e.g., cavity is also given, then we have *P*(*cavity*| *toothache, cavity*) = 1

- Note: the less specific belief remains valid after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification - e.g., *P(cavity|toothache, redsoxwin)=P(cavity|toothache)*=0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability:
$$P(A | B) = \frac{P(A,B)}{P(B)}$$
 (if P(B)>0)

Example: Medical diagnosis

Product rule: $P(A,B) = P(A \land B) = P(A|B)P(B)$

Marginalization with conditional probabilities:

$$P(A) = \sum_{b \in B} P(A \mid B = b) P(B = b)$$

This formula/rule is called the *law of of total probability*

Chain rule is derived by successive application of product rule: $P(X_1,...,X_n) = P(X_1,...,X_{n-1}) P(X_n|X_1,...,X_{n-1})$ $= P(X_1,...,X_{n-2}) P(X_{n-1}|X_1,...,X_{n-2}) P(X_n|X_1,...,X_{n-1}) = ...$ $= \prod_{i=1}^n P(X_i|X_1,...,X_{i-1})$

 $P(sun|hot) \equiv$ Probability that it is sunny *given* that it is hot.

Т	W	P(T,W)
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Calculate the conditional probability using the product rule:

P(+x | +y) ?

Р(-V	+x)	?
· (y	'^/	•

Х	Y	Р
+x	+у	0.2
+x	-y	0.3
-x	+y	0.4
-X	-у	0.1

Given P(T,W), calculate P(T|w) or P(W|t)...

Given P(T,W), calculate P(T|w) or P(W|t)...

W P(W)t = hot0.8 sun P(T,W)Т W 0.2rain hot 0.4 sun 0.1 $P(W|t) = \frac{P(W,t)}{P(t)}$ hot rain 0.2cold sun 0.3 cold rain 1 \mathbf{D} • \ \mathbf{D} 7 7

$$P(sun|hot) = \frac{P(sun, hot)}{P(hot)} = \frac{P(sun, hot)}{P(sun, hot) + P(rain, hot)}$$
$$= \frac{0.4}{0.4 + 0.1}$$

Given P(T,W), calculate P(T|w) or P(W|t)...

Given P(T,W), calculate P(T|w) or P(W|t)...

W P(W t = hot0.8 sun P(T,W)Т W 0.2rain $P(W|t) = \frac{P(W,t)}{P(t)}$ hot 0.4 sun 0.1hot rain cold 0.2sun P(W t = cold) W 0.3 cold rain 0.4 sun 0.6 rain

$$P(sun|cold) = \frac{P(sun, cold)}{P(cold)} = \frac{P(sun, cold)}{P(sun, cold) + P(rain, cold)}$$
$$= \frac{0.2}{0.2 + 0.3}$$

- we achieve the same thing by scaling.

?

-

?

P(X | Y=-y) ?

F	P(X, Y))	_
Х	Y	Р	
+x	+y	0.2	
+x	-y	0.3	
-X	+y	0.4	
-X	- y	0.1	

Independence

32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

P(Toothache, Cavity, Catch) has 23 - 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1)P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity:

(2) P(catch|toothache, ¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:

P(Toothache|Catch, Cavity)=P(Toothache|Cavity)

P(Toothache, Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)

Conditional independence

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)

- = P(Toothache|Catch, Cavity)P(Catch, Cavity)
- = P(Toothache|Catch, Cavity)P(Catch|Cavity)P(Cavity)
- = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

Thomas Bayes?

Bayes' Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

It's easy to derive from the product rule:

$$P(a,b) = P(b|a)P(a) = P(a|b)P(b)$$

Solve for this

Using Bayes' Rule

 $P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$

Using Bayes' Rule

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

But harder to estimate this

It's often easier to estimate this

Bayes' Rule Example

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

Bayes' Rule Example

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

Suppose you have a stiff neck...

Suppose there is a 70% chance of meningitis if you have a stiff neck:

What are the chances that you have meningitis?

We need a little more information...

Bayes' Rule Example

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

P(s|m) = 0.7 P(s) = 0.01 $P(m) = \frac{1}{50000}$ Prior probability of stiff neck
Prior probability of meningitis

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 \times \frac{1}{50000}}{0.01} = 0.0014$$

Bayes' Rule Example

Given:

$$P(D|W)$$

D W P

D	vv	r
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W|dry)?

Bayes' rule and conditional independence

P(Cavity|toothache,catch)

- = αP(*toothache*,*catch*|*Cavity*)P(*Cavity*)
- = αP(*toothache*|*Cavity*)P(*catch*|*Cavity*)P(*Cavity*)

This is an example of a naive Bayes model: $P(Cause, Effect_1, ..., Effect_n) = P(Cause)\Pi_i P(Effect_i | Cause)$

Total number of parameters is linear in *n*

Making decisions under uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time}|...) = 0.04$
- $P(A_{90} \text{ gets me there on time}|...) = 0.70$
- $P(A_{120} \text{ gets me there on time}|...) = 0.95$
- P (A_{1440} gets me there on time|...) = 0.9999 Which action to choose?

Making decisions under uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time}|...) = 0.04$
- $P(A_{90} \text{ gets me there on time}|...) = 0.70$
- $P(A_{120} \text{ gets me there on time}|...) = 0.95$
- P (A₁₄₄₀ gets me there on time|...) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Making decisions under uncertainty

Rational decision making requires reasoning about one's *uncertainty* and *objectives*

Previous section focused on uncertainty

This section will discuss how to make rational decisions based on a *probabilistic model* and *utility function*

Focus will be on single step decisions, next week we will consider sequential decision problems

Preferences

An agent chooses among prizes (*A*, *B*, etc.) and lotteries, i.e., situations with uncertain prizes

Lottery *L*=[*p*,*A*; (*1*-*p*),*B*]

Notation:

- A > B A preferred to B
- *A* ~ *B* indifference between *A* and *B*
- $A \gtrsim B$ B not preferred to A

Rational preferences

Idea: preferences of a rational agent (*not* a human!) must obey constraints

Rational preferences \Rightarrow behavior describable as maximization of expected utility

The Axioms of Rationality:

Orderability $(A \succ B) \lor (B \succ A) \lor (A \sim B)$ Transitivity $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$ Continuity $A \succ B \succ C \Rightarrow \exists p \ [p, A; \ 1-p, C] \sim B$ Substitutability $A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$ Monotonicity $A \succ B \Rightarrow$ $(p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B])$

Rational preferences

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give away all its money

If *B* > *C*, then an agent who has *C* would pay (say) 1 cent to get *B*

- If *A* > *B*, then an agent who has *B* would pay (say) 1 cent to get *A*
- If *C* > *A*, then an agent who has *A* would pay (say) 1 cent to get *C*

Reminder: Expectations

The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

Example: How long to get to the airport?

Mean and variance

Mean, μ , or expected value:

Discrete:
$$\mathbb{E}[X] = \sum_{x \in X} xP(x)$$

Continuous:
$$\mathbb{E}[X] = \int_{x} x P(x) dx$$

Variance: $\operatorname{var}[X] = \mathbb{E}[(X - \mu)^2]$

Maximizing expected utility (MEU)

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944): Given preferences satisfying the constraints there exists a realvalued function *U* such that

 $U(A) \ge U(B) \Leftrightarrow A \gtrsim B$

 $U(A) > U(B) \Leftrightarrow A > B$

 $U(A) = U(B) \Leftrightarrow A \sim B$

$$U([p_1, s_1; ...; p_n, s_n]) = \sum_i p_i U(s_i)$$

MEU principle: Choose the action that maximizes expected utility

Preferences lead to utilities

Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe

Although a utility function must exist, it is not unique

If U'(S)=aU(S)+b and a and b are constants with a>0, then preferences of U' are the same as U

E.g., temperatures in Celcius, Fahrenheit, Kelvin

MEU continued

Agent has made some (imperfect) observation *o* of the state of the world

If the agent executes action a, the probability the state of the world becomes s' is given by $P(s' \mid o, a)$

Preferences on outcomes is encoded using utility function U(s)

Expected utility:
$$EU(a \mid o) = \sum_{s} P(s' \mid a, o) U(s')$$

Principal of maximum expected utility says that a rational agent should choose the action that maximizes expected utility a^* = $argmax_a EU(alo)$

Utilities: preference elicitation

When building a decision-making or decision-support system, it is often helpful to infer the utility function from a human

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities: compare a given state A to a standard lottery L_p that has

"best possible prize" u_{\top} with probability p

"worst possible catastrophe" u_{\perp} with probability (1 - p)

Adjust lottery probability p until $A \sim L_p$

Alternatively, set best possible utility to 1 and worst possible to 0

Utility scales

Normalized utilities: $u_{\top} = 1.0$, $u_{\perp} = 0.0$

Micromorts: one-millionth chance of death

Useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years

Useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. positive linear transformation

 $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Money

Money does not behave as a utility function

Given a lottery *L* with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery [p,M; (1-p),0] for large M?

Typical empirical data, extrapolated with risk-prone behavior (utility of money is proportional to the logarithm of the amount):

Student group utility

Who prefers the lottery at different values of p? (M=10,000)

Summary

Probability is a rigorous formalism for uncertain knowledge Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools

Next time: sequential decision making!