
Markov Decision Processes

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

Stochastic domains

Previous session discussed problems with single
decisions

Most interesting problems require the decision maker to
make a series of decisions

Same idea of maximum expected utility still holds, but
requires reasoning about future sequences of actions
and observations

This session will discuss sequential decision problems
in stochastic environments

Sequential decision making

Sequential decision making

Closed loop: accounts for future state
information (MDP)

Open loop: does not account for future
state information (path planning)

Open loop plans do not always result in
optimal behavior

U(r,r)=15

U(r,b)=15

U(b,r)=20

U(b,b)=20

MDP solution can increase utility to 30

Closed and open-loop planning

Example: stochastic grid world

§  A	maze-like	problem	
§  The	agent	lives	in	a	grid	
§  Walls	block	the	agent’s	path	

	
§  Noisy	movement:	ac=ons	do	not	always	go	as	planned	

§  80%	of	the	=me,	the	ac=on	North	takes	the	agent	
North	(if	there	is	no	wall	there)	

§  10%	of	the	=me,	North	takes	the	agent	West;	10%	
East	

§  If	there	is	a	wall	in	the	direc=on	the	agent	would	
have	been	taken,	the	agent	stays	put	

	
§  The	agent	receives	rewards	each	=me	step	

§  Reward	func=on	can	be	anything.	For	ex:	
l  Small	“living”	reward	each	step	(can	be	nega=ve)	
l  Big	rewards	come	at	the	end	(good	or	bad)	

	
§  Goal:	maximize	(discounted)	sum	of	rewards	

Stochastic actions

Determinis=c	Grid	World	 Stochas=c	Grid	World	

The transition function

0.8
0.1 0.1

a=”up”

action

Transition probabilities:

The transition function

0.8
0.1 0.1

a=”up”

action

Transition function:

– defines transition probabilities for

 each state,action pair

Transition probabilities:

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Technically, an MDP is a 4-tuple

Sometimes a start state and set of terminal states are given

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Technically, an MDP is a 4-tuple

But, what is the objective?

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Objective: calculate a strategy for acting so as to maximize
the (discounted) sum of future rewards.

 – we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple

Example

§  A	robot	car	wants	to	travel	far,	quickly	
§  Three	states:	Cool,	Warm,	Overheated	
§  Two	ac=ons:	Slow,	Fast	
§  Going	faster	gets	double	reward	

	

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actions: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Own aircraft must choose to stay level, climb, or descend

At each step, -1 for collision, -0.01 for climb or descend, 0 for staying
level

State determined by altitude, closure rate, and vertical rates

Intruder aircraft flies around randomly

Optimal behavior determined by reward and transition model

Another example

What is a policy?

This	policy	is	op=mal	when	R(s,	a,	s’)	
=	-0.03	for	all	non-terminal	states	

§  In	determinis=c	single-agent	search	problems,	we	
wanted	an	op=mal	plan,	or	sequence	of	ac=ons,	from	
start	to	a	goal	

	
§  For	MDPs,	we	want	an	op=mal	policy	𝛑*:	S	→	A	

§ A	policy	𝛑	gives	an	ac=on	for	each	state	
§ An	op=mal	policy	is	one	that	maximizes	expected	
u=lity	if	followed	
§ An	explicit	policy	defines	a	reflex	agent	

	
§  Expec=max	didn’t	compute	en=re	policies	

§ It	computed	the	ac=on	for	a	single	state	only	
	

Why is it Markov?

§  “Markov”	generally	means	that	given	the	present	state,	the	future	and	
the	past	are	independent	

	
§  For	Markov	decision	processes,	“Markov”	means	ac=on	outcomes	

depend	only	on	the	current	state	
	
	
	
	
	
§  This	is	just	like	search,	where	the	successor	func=on	could	only	depend	

on	the	current	state	(not	the	history)	
	

Andrey	Markov	
(1856-1922)	

	

§  Problem: What if the game lasts forever? Do we get infinite
rewards?

§  Solutions:
§  Finite horizon: (similar to depth-limited search)

§  Terminate episodes after a fixed T steps (e.g. life)
§  Gives nonstationary policies (𝜋 depends on time left)

§  Discounting: use 0 < 𝛾 < 1

§  Smaller 𝛾 means smaller “horizon” – shorter term focus

§  Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

Infinite utilities

Discounting rewards

Is this better? Or is this better?

In general: how should we balance amount
of reward vs how soon it is obtained?

Discounting rewards

§  It’s	reasonable	to	maximize	the	sum	of	rewards	
§  It’s	also	reasonable	to	prefer	rewards	now	to	rewards	later	
§  One	solu=on:	values	of	rewards	decay	exponen=ally	

Worth	Now	 Worth	Next	
Step	

Worth	In	Two	
Steps	

Where, for example:

Discounting rewards

§  How	to	discount?	
§  Each	=me	we	descend	a	level,	we	

mul=ply	in	the	discount	once	
	

§  Why	discount?	
§  Sooner	rewards	probably	do	have	

higher	u=lity	than	later	rewards	
§  Also	helps	our	algorithms	

converge	

§  Example:	discount	of	0.5	
§  U([1,2,3])	=	1*1	+	0.5*2	+	0.25*3	
§  U([1,2,3])	<	U([3,2,1])	

Discounting rewards

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 How to discount?

 Each time we descend a
level, we multiply in the
discount once

 Why discount?

 Sooner rewards probably
do have higher utility
than later rewards

 Also helps our algorithms
converge

 Example: discount of 0.5

 U([1,2,3]) = 1*1 + 0.5*2
+ 0.25*3

 U([1,2,3]) < U([3,2,1])

Discounting rewards

In general:

Utility

Theorem: if we assume stationary preferences:

Then: there are only two ways to define utilities

Additive utility:

Discounted utility:

Stationary preferences

In the finite-horizon model, agent should optimize expected
reward for the next H steps:

•  Continuously executing H-step optimal actions is known as
receding horizon control

In the infinite-horizon discounted model agent should
optimize:

•  Discount factor 0 ≤ γ < 1 can be thought of as an interest
rate (reward now is worth more than reward in the future)

Models of optimal behavior

E rt

t=0

H

∑⎛⎝⎜
⎞
⎠⎟

E γ trt

t=0

∞

∑⎛⎝⎜
⎞
⎠⎟

Choosing a reward function

A few possibilities:
– all reward on goal/firepit
– negative reward everywhere

 except terminal states
– gradually increasing reward as you
approach the goal

In general:
– reward can be whatever you want

Examples of optimal policies

What happens if we change the “living” reward?

Examples of optimal policies

R(s)	=	-2.0	R(s)	=	-0.4	

R(s)	=	-0.03	R(s)	=	-0.01	

Discounting example

§  Given:	
	

§ Ac=ons:	East,	West,	and	Exit	(only	available	in	exit	states	a,	e)	
§ Transi=ons:	determinis=c	

	
§  Quiz	1:	For	𝛾	=	1,	what	is	the	op=mal	policy?	
	
§  Quiz	2:	For		𝛾	=	0.1,	what	is	the	op=mal	policy?	
	
§  Quiz	3:	For	which		𝛾	are	West	and	East	equally	good	when	in	state	d?	

Solving MDPs

	
§  The	value	(u=lity)	of	a	state	s:	

V*(s)	=	expected	u=lity	star=ng	in	s	and	ac=ng	
op=mally	

	
§  The	value	(u=lity)	of	a	q-state	(s,a):	

Q*(s,a)	=	expected	u=lity	star=ng	out	having	
taken	ac=on	a	from	state	s	and	(thereaoer)	
ac=ng	op=mally	

	
§  The	op=mal	policy:	

𝜋*(s)	=	op=mal	ac=on	from	state	s	

(s,a,s’)	is	a		
transi-on	

s	is	a	state	

(s,	a)	is	a	q-
state	

Solving MDPs

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 The value (utility) of a state s:
V*(s) = expected utility starting in s

and acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s
and (thereafter) acting optimally

 The optimal policy:
p*(s) = optimal action from state s

a

s

s, a

(s,a,s’) is a
transition

s,a,s’

s is a state

(s, a) is a
q-state

S'

Snapshot of Demo – Gridworld V Values

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Snapshot of Demo – Gridworld V Values

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

How would we solve this using expectimax?

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actions: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

How would we solve this using expectimax?

Problems w/ this approach?

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

We’re doing way too much
work with expectimax!

Problem: States are repeated
Idea: Only compute needed

quantities once

Problem: Tree goes on forever
Idea: Do a depth-limited

computation, but with
increasing depths until change
is small

Note: deep parts of the tree
eventually don’t matter if γ < 1

How would we solve this using expectimax?

How would we solve this using expectimax?

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

Is there a better way?

How would we solve this using expectimax?

Image: Berkeley CS188 course notes (downloaded Summer 2015)

slow fast

Problems w/ this approach:
– how deep do we search?
– how do we deal w/ loops?

Value iteration

We're going to calculate V* and/or Q* by
repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined
recursively:

Called Bellman
equations

– note that the above do not reference the optimal policy,

Value iteration

Slide: Derived from Berkeley CS188 course notes (downloaded Summer 2015)

a

s

s, a

s,a,s’

We're going to calculate V* and/or Q* by
repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined
recursively:

Called Bellman
equations

S'

– note that the above do not reference the optimal policy,

Value iteration

§  Key	idea:	=me-limited	values	
	
§  Define	Vk(s)	to	be	the	op=mal	value	of	s	if	the	

game	ends	in	k	more	=me	steps	
§ Equivalently,	it’s	what	a	depth-k	expec=max	
would	give	from	s	

	

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

 Key idea: time-limited values

 De@ne Vk(s) to be the optimal value

of s if the game ends in k more time
steps

 Equivalently, it’s what a depth-k
expectimax would give from s

Value iteration

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Value iteration

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

– This iteration converges! The value
of each state converges to a unique
optimal value.

– time complexity = O(S2A)

Value iteration example

Assume	no	discount	

Value iteration example

Assume	no	discount	

Value iteration example

Assume	no	discount	

Back to the gridworld

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Value iteration example

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Proof sketch: convergence of value iteration

§  How	do	we	know	the	Vk	vectors	are	going	to	converge?	
	
§  Case	1:	If	the	tree	has	maximum	depth	M,	then	VM	holds	

the	actual	untruncated	values	
	
§  Case	2:	If	the	discount	is	less	than	1	

§ Sketch:	For	any	state	Vk	and	Vk+1	can	be	viewed	as	depth	k+1	
expec=max	results	in	nearly	iden=cal	search	trees	
§ The	difference	is	that	on	the	bosom	layer,	Vk+1	has	actual	
rewards	while	Vk	has	zeros	
§ That	last	layer	is	at	best	all	RMAX		
§ It	is	at	worst	RMIN		
§ But	everything	is	discounted	by	γk	that	far	out	
§ So	Vk	and	Vk+1	are	at	most	γk	max|R|	different	
§ So	as	k	increases,	the	values	converge	

Bellman Equations and Value iteration

§  Bellman	equa=ons	characterize	the	op=mal	values:	
	
	
	
	
§  Value	itera=on	computes	them:	
	
	
	
§  Value	itera=on	is	just	a	fixed	point	solu=on	method	

…	though	the	Vk	vectors	are	also	interpretable	as	=me-limited	values	

Regular value iteration must maintain two arrays (the old U and
the new U)

Gauss-Siedel value iteration only uses one array and can lead
to faster convergence

Iterate through the state space and apply the Bellman update:

Choice of ordering of updates can effect convergence rate

Gauss-Siedel value iteration

Value iteration algorithm

Idea: Start with arbitrary utility values
Update to make them locally consistent with Bellman eqn.
Everywhere locally consistent ⇒ global optimality

Repeat for every s simultaneously until “no change”

U (s)← R(s) + γ max
a

Σs′U (s′)T (s, a, s′) for all s

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)
(1,1)
(3,1)

(4,1)

(4,2)

Chapter 17, Sections 1–3 11

But, how do you compute a policy?

Suppose that we have run value iteration
and now have a pretty good
approximation of V* …

How do we compute the optimal policy?

But, how do you compute a policy?

Given values calculated using value
iteration, do one step of expectimax:

The optimal policy is implied by the optimal value function...

Let’s imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

Important lesson: actions are easier to select from q-
values than values!

Computing actions from Q-values

Expec=max	trees	max	over	all	ac=ons	to	compute	the	op=mal	values	
	

If	we	fixed	some	policy		𝜋(s),	then	the	tree	would	be	simpler	–	only	one	
ac=on	per	state	
…	though	the	tree’s	value	would	depend	on	which	policy	we	fixed	

	

a

s

s,	a	

s,a,s’	
s’	

	𝜋(s)	

s

s,	𝜋(s)	

s,	𝜋(s),s’	
s’	

Do	the	op=mal	ac=on	 Do	what	𝜋	says	to	do	

Fixed policies

Another	basic	opera=on:	compute	the	u=lity	of	a	state	
s	under	a	fixed	(generally	non-op=mal)	policy	

	

Define	the	u=lity	of	a	state	s,	under	a	fixed	policy	𝜋:	
V𝜋(s)	=	expected	total	discounted	rewards	star=ng	in	s	and	

following	𝜋	

	

Recursive	rela=on	(one-step	look-ahead	/	Bellman	
equa=on):	

Utilities for a fixed policy

	𝜋(s)	

s

s,	𝜋(s)	

s,	𝜋(s),s’	
s’	

How do we calculate the V’s for a fixed policy 𝜋?

Idea 1: Incrementally compute expected utility after k steps of executing 𝜋
(like value iteration)

Dynamic programming as iterative evaluation

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with Matlab (or your favorite linear system solver)	

Evaluating a fixed policy

V0
π (s) = 0

V1
π (s) = R(s,π (s))

…

Vk
π (s) = R(s,π (s))+ γ T

′s
∑ (s,π (s), s ')Vk−1

π (s)

Always	Go	Right	 Always	Go	Forward	

Example: policy evaluation

Value	itera=on	repeats	the	Bellman	updates:	
	
	
	
Problem	1:	It’s	slow	–	O(S2A)	per	itera=on	
	
Problem	2:	The	“max”	at	each	state	rarely	changes	
	
Problem	3:	The	policy	ooen	converges	long	before	the	values	

	
	

a

s

s,	a	

s,a,s’	
s’	

Problems with value iteration

Value iteration example

Noise	=	0.2	
Discount	=	0.9	
Living	reward	=	0	

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Value iteration example

Alternative approach for optimal values:
Step 1: Policy evaluation: calculate utilities for some fixed policy

(not optimal utilities!) until convergence
Step 2: Policy improvement: update policy using one-step look-

ahead with resulting converged (but not optimal!) utilities as
future values

Repeat steps until policy converges

This is policy iteration
It’s still optimal!
Can converge (much) faster under some conditions

Policy iteration

Algorithm:

π ← an arbitrary initial policy

repeat until no change in π

compute utilities given π

update π as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed π (policy evaluation)

i.e., n simultaneous linear equations in n unknowns, solve in O(n3)

V π (s) = R(s,π (s))+ γ T
′s
∑ (s,π (s), ′s)

Policy iteration

Policy iteration often converges in few iterations, but each is expensive

Idea: use a few steps of value iteration (but with π fixed) starting from the
value function produced the last time to produce an approximate value
determination step.

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown
environment

Modified policy iteration

What if the state space is large or continuous?

Instead of discretizing the state space (exponential in state
variables) define a set of basis functions 𝜙1, . . . , 𝜙n over X

Each basis function maps states in X to real numbers

Think of basis functions as a state-dependent features

Represent V as a linear combination of basis functions: V(x) =
𝜃1𝜙1(x)+. . . +𝜃n𝜙n(x)

Given fixed basis functions, determine 𝜃1, . . . , 𝜃n that best
represents the optimal value function

Linear function approximation

Approximation results

0 5 10
0

2

4

6

8

s

U
(s
)

0 5 10
0

2

4

6

8

s

U
(s
)

� = (4.53, 0.07)
� = (1, s)

0 5 10
0

2

4

6

8

s

U
(s
)

� = (0.87, 1.90,�0.17)
� = (1, s , s 2)

0 5 10
0

2

4

6

8

s

U
(s
)

� = (3.57,�0.50, 0.35,�0.03)
� = (1, s , s 2, s 3)

Solving for a full policy offline is expensive!

What can we do?

Online methods

Online methods compute optimal action from current state

Expand tree up to some horizon

States reachable from the current state is typically small compared
to full state space

Heuristics and branch-and-bound techniques allow search space
to be pruned

Monte Carlo methods provide approximate solutions

Online methods

Provides optimal action from current state s up to depth d

Recall

Time complexity is O((|S| x |A|)d)

Forward search

All the methods presented in this chapter so far involve computing the policy for the
entire state space offline—that is, prior to execution in the environment. Although
factored representations and value function approximation can help scale dynamic
programming to higher dimensional state spaces, computing and representing a policy
over the full state space can still be intractable. This section discusses online methods
that restrict computation to states that are reachable from the current state. Because the
reachable state space can be orders of magnitude smaller than the full state space, online
methods can significantly reduce the amount of storage and computation required to
choose optimal (or approximately optimal) actions.

Forward search (Algorithm 4.6) is a simple online action-selection method that looks
ahead from some initial state s0 to some horizon (or depth) d . The forward search
function SelectAction(s , d) returns the optimal action a⇤ and its value v⇤. The pseu-
docode uses A(s) to represent the set of actions available from state s , which may be a
subset of the full action space A. The set of possible states that can follow immediately
from s after executing action a is denoted S (s , a), which may be a small subset of the
full state spaces S .

Algorithm 4.6 Forward search
1: function SelectAction(s , d)
2: if d = 0
3: return (nil, 0)
4: (a⇤, v⇤) (nil,�1)
5: for a 2 A(s)
6: v R(s , a)
7: for s 0 2 S (s , a)
8: (a0, v 0) SelectAction(s 0, d � 1)
9: v v + �T (s 0 | s , a)v 0

10: if v > v⇤
11: (a⇤, v⇤) (a, v)
12: return (a⇤, v⇤)

Algorithm 4.6 iterates over all possible action and next state pairings and calls itself
recursively until the desired depth is reached. The call tree has depth d with a worst-case

V (s) = maxa∈A(s) R(s,a)+ γ T
′s
∑ (s,a, ′s)V (′s)⎡

⎣⎢
⎤
⎦⎥

Requires a lower bound Ṳ(s) and upper bound Ū(s)

Worse case complexity?

Branch and bound search

branching factor of |S |⇥ |A| and proceeds depth-first. The computational complexity is
O((|S |⇥ |A|)d).

Branch and bound search (Algorithm 4.7) is an extension to forward search that uses
knowledge of the upper and lower bounds of the value function to prune portions of
the search tree. This algorithm assumes that prior knowledge is available that allows us
to easily compute a lower bound on the value function U (s) and an upper bound on
the state-action value function U (s , a). The pseudocode is identical to Algorithm 4.6,
except for the use of the lower bound in Line 3 and the pruning check in Line 6. The
call to SelectAction(s , d) returns the action to execute and a lower bound on the
value function.

The order in which we iterate over the actions in Line 5 is important. In order to
prune, the actions must be in descending order of upper bound. In other words, if
action ai is evaluated before aj , then U (s , ai) � U (s , aj). The tighter we are able to
make the upper and lower bounds, the more we can prune the search space and decrease
computation time. The worst-case computational complexity, however, remains the
same as for forward search.

Algorithm 4.7 Branch-and-bound search
1: function SelectAction(s , d)
2: if d = 0
3: return (nil, U (s))
4: (a⇤, v⇤) (nil,�1)
5: for a 2 A(s)
6: if U (s , a) < v⇤
7: return (a⇤, v⇤)
8: v R(s , a)
9: for s 0 2 S (s , a)

10: (a0, v 0) SelectAction(s 0, d � 1)
11: v v + �T (s 0 | s , a)v 0

12: if v > v⇤
13: (a⇤, v⇤) (a, v)
14: return (a⇤, v⇤)

Estimate value of a policy by sampling from a simulator

Monte Carlo evaluation

Suppose we have a policy that is parametrized by �. The probability that the policy
selects action a given state s is written ⇡�(a | s). Given an initial state s , we can estimate

U ⇡� (s) ⇡ 1
n

nX
i=1

ui , (4.37)

where ui is the i th rollout of the policy ⇡� to some depth.
The objective in direct policy search is to find the parameter � that maximizes the

function
V (�) =
X

s
b (s)U ⇡� (s), (4.38)

where b (s) is a distribution over the initial state. We can estimate V (�) using Monte
Carlo simulation and a generative model G up to depth d as outlined in Algorithm 4.11.

Algorithm 4.11 Monte Carlo policy evaluation
1: function MonteCarloPolicyEvaluation(�, d)
2: for i 1 to n
3: s ⇠ b
4: ui Rollout(s , d ,⇡�)
5: return 1

n
Pn

i=1 ui

The function V (�), as estimated by Algorithm 4.11, is a stochastic function; given the
same input �, it may give different outputs. As the number of samples (determined by n
and m) increases, the variability of the outputs of the function decreases. Many different
methods exist for searching the space of policy parameters that maximizes V (�), and
we will discuss a few of them.

A common stochastic optimization approach is local search, also known as hill climbing
or gradient ascent. Local search begins at a single point in the search space and then
incrementally moves from neighbor to neighbor in the search space until convergence.
The search operates with the assumption that the value of the stochastic function at
a point in the search space is an indication of how close that point is to the global
optimum. Therefore, local search generally selects the neighbor with the largest value.

One of the most successful sampling-based online approaches in recent years is Monte
Carlo tree search. Algorithm 4.9 is the Upper Confidence Bound for Trees (UCT)
implementation of Monte Carlo tree search. In contrast with sparse sampling, the
complexity of Monte Carlo tree search does not grow exponentially with the horizon.
As in sparse sampling, we use a generative model.

Algorithm 4.9 Monte Carlo tree search
1: function SelectAction(s , d)
2: loop
3: Simulate(s , d ,⇡0)
4: return arg maxa Q (s , a)
5: function Simulate(s , d ,⇡0)
6: if d = 0
7: return 0
8: if s 62 T
9: for a 2 A(s)

10: (N (s , a), Q (s , a)) (N0(s , a), Q0(s , a))
11: T = T [{s}
12: return Rollout(s , d ,⇡0)

13: a arg maxa Q (s , a) + c
«

log N (s)
N (s ,a)

14: (s 0, r) ⇠ G (s , a)
15: q r + �Simulate(s 0, d � 1,⇡0)
16: N (s , a) N (s , a) + 1
17: Q (s , a) Q (s , a) + q�Q (s ,a)

N (s ,a)
18: return q

Algorithm 4.10 Rollout evaluation
1: function Rollout(s , d ,⇡0)
2: if d = 0
3: return 0
4: a ⇠ ⇡0(s)
5: (s 0, r) ⇠ G (s , a)
6: return r + �Rollout(s 0, d � 1,⇡0)

Requires a generative model (s’,r) ∼ G(s,a)

Complexity? Guarantees?

Sampling methods can be used to avoid the worst-case exponential complexity of
forward and branch-and-bound search. Although these methods are not guaranteed
to produce the optimal action, they can be shown to produce approximately optimal
actions most of the time and can work well in practice. One of the simplest approaches
is referred to as sparse sampling (Algorithm 4.8).

Sparse sampling uses a generative model G to produce samples of the next state
s 0 and reward r . An advantage of using a generative model is that it is often easier
to implement code for drawing random samples from a complex, multidimensional
distribution rather than explicitly representing probabilities. Line 8 of the algorithm
draws (s 0, r) ⇠ G (s , a). All of the information about the state transitions and rewards
is represented by G ; the state transition probabilities T (s 0 | s , a) and expected reward
function R(s , a) are not used directly.

Algorithm 4.8 Sparse sampling
1: function SelectAction(s , d)
2: if d = 0
3: return (nil, 0)
4: (a⇤, v⇤) (nil,�1)
5: for a 2 A(s)
6: v 0
7: for i 1 to n
8: (s 0, r) ⇠ G (s , a)
9: (a0, v 0) SelectAction(s 0, d � 1)

10: v v + (r + � v 0)/n
11: if v > v⇤
12: (a⇤, v⇤) (a, v)
13: return (a⇤, v⇤)

Sparse sampling is similar to forward search, except that it iterates over n sam-
ples instead of all the states in S (s , a). Each iteration results in a sample of r + � v 0,
where r comes from the generative model and v 0 comes from a recursive call to
SelectAction(s 0, d � 1). These samples of r + � v 0 are averaged together to estimate
Q (s , a). The run time complexity O((n ⇥ |A|)d) is still exponential in the horizon but
does not depend on the size of the state space.

Sparse sampling

Requires a generative model (s’,r) ∼ G(s,a)

Complexity = O((n ×|A|)d), Guarantees = probabilistic

Sampling methods can be used to avoid the worst-case exponential complexity of
forward and branch-and-bound search. Although these methods are not guaranteed
to produce the optimal action, they can be shown to produce approximately optimal
actions most of the time and can work well in practice. One of the simplest approaches
is referred to as sparse sampling (Algorithm 4.8).

Sparse sampling uses a generative model G to produce samples of the next state
s 0 and reward r . An advantage of using a generative model is that it is often easier
to implement code for drawing random samples from a complex, multidimensional
distribution rather than explicitly representing probabilities. Line 8 of the algorithm
draws (s 0, r) ⇠ G (s , a). All of the information about the state transitions and rewards
is represented by G ; the state transition probabilities T (s 0 | s , a) and expected reward
function R(s , a) are not used directly.

Algorithm 4.8 Sparse sampling
1: function SelectAction(s , d)
2: if d = 0
3: return (nil, 0)
4: (a⇤, v⇤) (nil,�1)
5: for a 2 A(s)
6: v 0
7: for i 1 to n
8: (s 0, r) ⇠ G (s , a)
9: (a0, v 0) SelectAction(s 0, d � 1)

10: v v + (r + � v 0)/n
11: if v > v⇤
12: (a⇤, v⇤) (a, v)
13: return (a⇤, v⇤)

Sparse sampling is similar to forward search, except that it iterates over n sam-
ples instead of all the states in S (s , a). Each iteration results in a sample of r + � v 0,
where r comes from the generative model and v 0 comes from a recursive call to
SelectAction(s 0, d � 1). These samples of r + � v 0 are averaged together to estimate
Q (s , a). The run time complexity O((n ⇥ |A|)d) is still exponential in the horizon but
does not depend on the size of the state space.

Sparse sampling

One of the most successful sampling-based online approaches in recent years is Monte
Carlo tree search. Algorithm 4.9 is the Upper Confidence Bound for Trees (UCT)
implementation of Monte Carlo tree search. In contrast with sparse sampling, the
complexity of Monte Carlo tree search does not grow exponentially with the horizon.
As in sparse sampling, we use a generative model.

Algorithm 4.9 Monte Carlo tree search
1: function SelectAction(s , d)
2: loop
3: Simulate(s , d ,⇡0)
4: return arg maxa Q (s , a)
5: function Simulate(s , d ,⇡0)
6: if d = 0
7: return 0
8: if s 62 T
9: for a 2 A(s)

10: (N (s , a), Q (s , a)) (N0(s , a), Q0(s , a))
11: T = T [{s}
12: return Rollout(s , d ,⇡0)

13: a arg maxa Q (s , a) + c
«

log N (s)
N (s ,a)

14: (s 0, r) ⇠ G (s , a)
15: q r + �Simulate(s 0, d � 1,⇡0)
16: N (s , a) N (s , a) + 1
17: Q (s , a) Q (s , a) + q�Q (s ,a)

N (s ,a)
18: return q

Algorithm 4.10 Rollout evaluation
1: function Rollout(s , d ,⇡0)
2: if d = 0
3: return 0
4: a ⇠ ⇡0(s)
5: (s 0, r) ⇠ G (s , a)
6: return r + �Rollout(s 0, d � 1,⇡0)

UCT (Upper Confident bounds for Trees)

Monte Carlo tree search

Search (within the tree, T)

Execute action that maximizes

Update the value Q(s,a) and counts N(s) and N(s,a)

c is a exploration constant

Expansion (outside of the tree, T)

Create a new node for the state

Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:

UCT continued

The algorithm involves running many simulations from the current state while
updating an estimate of the state-action value function Q (s , a). There are three stages
in each simulation:
• Search. If the current state in the simulation is in the set T (initially empty), then

we enter the search stage. Otherwise we proceed to the expansion stage. During
the search stage, we update Q (s , a) for the states and actions visited and tried in
our search. We also keep track of the number of times we have taken an action
from a state N (s , a). During the search, we execute the action that maximizes

Q (s , a) + c
vut log N (s)

N (s , a)
, (4.36)

where N (s) =
P

a N (s , a) and c is a parameter that controls the amount of
exploration in the search (exploration will be covered in depth in the next chapter).
The second term is an exploration bonus that encourages selecting actions that have
not been tried as frequently.
• Expansion. Once we have reached a state that is not in the set T , we iterate over

all of the actions available from that state and initialize N (s , a) and Q (s , a) with
N0(s , a) and Q0(s , a), respectively. The functions N0 and Q0 can be based on
prior expert knowledge of the problem; if none is available, then they can both be
initialized to 0. We then add the current state to the set T .
• Rollout. After the expansion stage, we simply select actions according to some

rollout (or default) policy ⇡0 until the desired depth is reached (Algorithm 4.10).
Typically, rollout policies are stochastic, and so the action to execute is sampled
a ⇠ ⇡0(s). The rollout policy does not have to be close to optimal, but it is a way
for an expert to bias the search into areas that are promising. The expected value
is returned and used in the search to update the value for Q (s , a).

Simulations are run until some stopping criterion is met, often simply a fixed number
of iterations. We then execute the action that maximizes Q (s , a). Once that action has
been executed, we can rerun the Monte Carlo tree search to select the next action. It is
common to carry over the values of N (s , a) and Q (s , a) computed in the previous step.

The previous sections have presented methods that involve computing or approximating
the value function. An alternative is to search the space of policies directly. Although
the state space may be high dimensional, making approximation of the value function
difficult, the space of possible policies may be relatively low dimensional and can be
easier to search directly.

One of the most successful sampling-based online approaches in recent years is Monte
Carlo tree search. Algorithm 4.9 is the Upper Confidence Bound for Trees (UCT)
implementation of Monte Carlo tree search. In contrast with sparse sampling, the
complexity of Monte Carlo tree search does not grow exponentially with the horizon.
As in sparse sampling, we use a generative model.

Algorithm 4.9 Monte Carlo tree search
1: function SelectAction(s , d)
2: loop
3: Simulate(s , d ,⇡0)
4: return arg maxa Q (s , a)
5: function Simulate(s , d ,⇡0)
6: if d = 0
7: return 0
8: if s 62 T
9: for a 2 A(s)

10: (N (s , a), Q (s , a)) (N0(s , a), Q0(s , a))
11: T = T [{s}
12: return Rollout(s , d ,⇡0)

13: a arg maxa Q (s , a) + c
«

log N (s)
N (s ,a)

14: (s 0, r) ⇠ G (s , a)
15: q r + �Simulate(s 0, d � 1,⇡0)
16: N (s , a) N (s , a) + 1
17: Q (s , a) Q (s , a) + q�Q (s ,a)

N (s ,a)
18: return q

Algorithm 4.10 Rollout evaluation
1: function Rollout(s , d ,⇡0)
2: if d = 0
3: return 0
4: a ⇠ ⇡0(s)
5: (s 0, r) ⇠ G (s , a)
6: return r + �Rollout(s 0, d � 1,⇡0)

Continue UCT until some termination
condition (usually a fixed number of
samples)

Complexity?

Guarantees?

UCT continued

Uses UCT with neural net to approximate opponent
choices and state values

AlphaGo

