Markov Decision Processes

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
C3S188 UC Berkeley, AIMA

Stochastic domains

Sequential decision making

Previous session discussed problems with single
decisions

Most interesting problems require the decision maker to
make a series of decisions

Same idea of maximum expected utility still holds, but
requires reasoning about future sequences of actions
and observations

This session will discuss sequential decision problems
In stochastic environments

Sequential decision making

Search
eXanfy
and subgoals and utility
Plannin Markov decision
g i problems (MDPs) =~
. explicit actions : .
uncertain uncertain belief states
and utilityty B SHpoals sensing ,\ (‘
/
Decision-theoretic Partially observable /

planning MDPs (POMDPSs)

s

s|"-; '
A 5)

1 30

) 30

7 20

| 20

Closed and open-loop planning

Closed loop: accounts for future state
information (MDP)

Open loop: does not account for future
state information (path planning)

Open loop plans do not always result in
optimal behavior

U(r,r)=1
U(r,b)=1
U(b,r)=2
U(b,b)=20

MDP solution can increase utility to 30

Example: stochastic grid world

= A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent
North (if there is no wall there)

= 10% of the time, North takes the agent West; 10%
East

= |fthereis a wall in the direction the agent would
have been taken, the agent stays put

= The agent receives rewards each time step
= Reward function can be anything. For ex: 0.8
o Small “living” reward each step (can be negative) 0.1
o Big rewards come at the end (good or bad)

0.1

= Goal: maximize (discounted) sum of rewards

Stochastic actions

Deterministic Grid World Stochastic Grid World

The transition function

Transition probabilities:

s’ | P(s’]| s1,a)
S92 0.1
S3 0.8
S4 0.1

The transition function

/
Transition function: T(S, a, s)

— defines transition probabilities for
each state,action pair

Transition probabilities:

s’ | P(s’]| s1,a)
S92 0.1
S3 0.8
S4 0.1

What is an MDP?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process)
defines a stochastic control problem: M = (S, A, T, R)

Statesett S € .5
ActonSet a € A

Transition function: 7" : S x A x S — R>O
Reward function: /2 : S X A — RZO

Sometimes a start state and set of terminal states are given

What is an MDP?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process)
defines a stochastic control problem: M = (S, A, T, R)

Statesett S € S
Probability of going from s to s’

Action Set: @ € A / when executing action a
Transition function: 7" : S x A x S — R>O
Reward function: ;£ : S X A — RZO 2 : T(S, a, S/) —1

s’'eS

What is an MDP?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process)
defines a stochastic control problem: M = (S, A, T, R)

Statesett S € S
Probability of going from s to s’

Action Set: @ € A / when executing action a

Transition function: 7" : S x A x S — R>O

Reward function: ;£ : S X A — RZO 2 : T(S, a, S/) —1
s'eS

But, what is the objective?

What is an MDP?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process)
defines a stochastic control problem: M = (S, A, T, R)

Statesett S € .5

I

Probability of going from sto s

Action Set: @ € A / when executing action a

Transition function: 7" : S x A x S — R>O

Reward function: ;£ : S X A — RZO 2 : T(S, a, S/) —1
s'eS

Obijective: calculate a strategy for acting so as to maximize
the (discounted) sum of future rewards.
— we will calculate a policy that will tell us how to act

Example

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Overheafed

Another example

-4

intruder aircraft

i

own aircraft

Own aircraft must choose to stay level, climb, or descend

At each step, -1 for collision, -0.01 for climb or descend, 0 for staying
level

State determined by altitude, closure rate, and vertical rates
Intruder aircraft flies around randomly

Optimal behavior determined by reward and transition model

What is a policy?

=" |n deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions, from

start to a goal

= For MDPs, we want an optimal policy m*: S > A
=A policy 1t gives an action for each state
=An optimal policy is one that maximizes expected
utility if followed

=An explicit policy defines a reflex agent This policy is optimal when R(s, a, s’)
=-0.03 for all non-terminal states

= Expectimax didn’t compute entire policies
"|t computed the action for a single state only

Why is it Markov?

= “Markov” generally means that given the present state, the future and
the past are independent

= For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P<St-|—1 = 5/’515 = StaAt = (¢, Si—1 = St—laAt—la 50 = 80)

— P(St—|—1 = 3/’575 = s¢, Ay = at)

Andrey Markov
(1856-1922)

= This is just like search, where the successor function could only depend
on the current state (not the history)

Infinite utilities

* Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:

» Finite horizon: (similar to depth-limited search)

» Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting: use 0 <y <1

Ullros - mool) = 3 4tre < Bmax/(1 —)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

Discounting rewards

/

Is this better? Or is this better?

In general: how should we balance amount
of reward vs how soon it is obtained?

Discounting rewards

= |t’s reasonable to maximize the sum of rewards
= |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

&(o
v\

2
1 Y ol
Worth Now Worth Next Worth In Two
Step Steps

Where, for example: v = (0.9

Discounting rewards

= How to discount?

= Each time we descend a level, we
multiply in the discount once

\/

\ %

_/

\ /AN

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms
converge

= Example: discount of 0.5

2
= U([1,2,3]) = 1*1 + 0.5%2 + 0.25*3 A&-A Y

= U([1,2,3]) < U([3,2,1])

Discounting rewards

: 2
Ingeneral: U, = r; 1 +y7r¢qo + Y T3+ ...
oo
_ k
— E T Tt+1+k
k=0

Utility

Stationary preferences

Theorem: if we assume stationary preferences:

[al,az,...] >~ [bl,bg,...] &

! 3 \2
r,ai,az,...] = |r,b1,bs,...] Q

Then: there are only two ways to define utilities

Additive Utlllty U([TO7 T1,72,..]) =Ty 71 K9]

Discounted utility: U([rg,r1,79,...]) =19 +~r1 + %1y

Models of optimal behavior

In the finite-horizon model, agent should optimize expected
reward for the next H steps: irj

« Continuously executing H-step optimal actions is known as
receding horizon control

In the infinite-horizon discounted model agent should
optimize: E(iw]

* Discount factor 0 <y < 1 can be thought of as an interest
rate (reward now is worth more than reward in the future)

Choosing a reward function

A few possibilities:

— all reward on goal/firepit

— negative reward everywhere
except terminal states

— gradually increasing reward as you

approach the goal

In general:
— reward can be whatever you want

Examples of optimal policies

’ ﬁ)

What happens if we change the “living” reward?

Examples of optimal policies

R(s) = -0.01

| | | 1]

A A |

A=

A

R(s) =-0.4

Discounting example

10 1

a b C d e

Given:

=Actions: East, West, and Exit (only available in exit states a, €)
=Transitions: deterministic

Quiz 1: For y = 1, what is the optimal policy? 10

Quiz 2: For y =0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Solving MDPs

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting
optimally

The value (utility) of a g-state (s,a):

Q*(s,a) = expected utility starting out having
taken action a from state s and (thereafter)
acting optimally

The optimal policy:
7 (s) = optimal action from state s

S is a state

(s, a)isag-
state

(s,a,s’) is a
transition

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Snapshot of Demo — Gridworld V Values

Gridworld Display

[s
]

How would we solve this using expectimax?

Overheafed

How would we solve this using expectimax?

slow fast

Problems w/ this approach?

How would we solve this using expectimax?

We’'re doing way too much
work with expectimax!

Problem: States are repeated

|ldea: Only compute needed
guantities once

Problem: Tree goes on forever

ldea: Do a depth-limited
computation, but with
increasing depths until change
is small

Note: deep parts of the tree
eventually don’t matter if y < 1

How would we solve this using expectimax?

slow fast

Problems w/ this approach:

— how deep do we search?
— how do we deal w/ loops?

Is there a better way?

Value iteration

We're going to calculate V* and/or Q* by
repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined
recursively:

V*(s) = max Q*(s,a)

Called Bellman
Q*(s,a) =Y T(s,a,5) [R(s,a,8") +1V*(5)] ” equations
S/

V¥(s) = mG?XZT(S,a, s") {R(s,a, s') + ’)/V*(S/)})

S

— note that the above do not reference the optimal policy, 7'('*

Value iteration

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the
game ends in kK more time steps

mEquivalently, it’s what a depth-k expectimax
would give from s

S

A

CR TR LD

e b o b e &

Value iteration

Value of s at k timesteps to go: Vk (3)

Value iteration:
1. initialize Vp(s) = 0

2. Vi(s) + mC?XZT(S’ a,s')[R(s,a,s") +~yVo(s)]

3. Ve(s) < max) T(s,a,s)[R(s,a,s") +yVi(s')]
4.

9. Viii(s) « mgxz T(s,a,s")[R(s,a,s") +yVi(s")]

Value Iiteration

Value of s at k timesteps to go: Vk (3)

Value iteration:

1.initialize Vp(s) = 0
2. Vi(s)
3. Va(s)

4.

5. Vk_|_1(8)

Value iteration example

Overheated

Assume no discount

Vit1(s) + mC?XZT(S, a,s’) [R(s, a,s’) + nyk,(s’)}

S

Value iteration example

Overheated

Assume no discount

Vit1(s) + mC?XZT(S, a,s’) [R(s, a,s’) + nyk,(s’)}

S

Value iteration example

Overheated

Assume no discount

Vit1(s) + mC?XZT(S, a,s’) [R(s, a,s’) + nyk,(s’)}

S

Back to the gridworld

Noise = 0.2
Discount = 0.9
Living reward =0

Value iteration example

Noise = 0.2
Discount =0.9
Living reward =0

VALUES AFTER O ITERATIONS

Value iteration example

VALUES AFTER 1 ITERATIONS

Value iteration example

VALUES AFTER 2 ITERATIONS

Value iteration example

VALUES AFTER 3 ITERATIONS

Value iteration example

HI
~
~

VALUES AFTER 4 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 5 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 6 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 7 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 8 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 9 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 10 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 11 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 12 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 100 ITERATIONS

Proof sketch: convergence of value iteration

How do we know the V, vectors are going to converge?

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values Vi(s) Vit1(s)

Case 2: If the discount is less than 1

=Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

*The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

"That last layer is at best all Ry, / \ /

[t is at worst Ry,

=But everything is discounted by y* that far out
=So V, and V,,, are at most y* max|R| different
#So as k increases, the values converge

Bellman Equations and Value iteration

= Bellman equations characterize the optimal values:

V*i(s) = mO?XZT(s,a, s {R(s,a, s ny*(s’)]

S

= Value iteration computes them:

Vig1(s) < max > T(s,a,8") |R(s,a,s") + v Vi(s)]

= Value iteration is just a fixed point solution method
... though the V, vectors are also interpretable as time-limited values

Gauss-Siedel value iteration

Regular value iteration must maintain two arrays (the old U and
the new U)

Gauss-Siedel value iteration only uses one array and can lead
to faster convergence

Iterate through the state space and apply the Bellman update:

U(s) < R(s) +v max 2yU(s")T(s,a,s)

Choice of ordering of updates can effect convergence rate

But, how do you compute a policy?

Suppose that we have run value iteration
and now have a pretty good
approximation of V* ...

How do we compute the optimal policy?

But, how do you compute a policy?

"
Given values calculated using value n -

iteration, do one step of expectimax:

ﬂ
=
| —

7 (s) = arg cEnaXZT(S’ a,s)[R(s,a,s") +~V*(s)]

S

The optimal policy is implied by the optimal value function...

Computing actions from Q-values

Let’'s imagine we have the optimal g-values:

How should we act?

Completely trivial to decide!

m*(s) = arggnax@*(s,a)

Important lesson: actions are easier to select from g-
values than values!

Fixed policies

Do the optimal action Do what m says to do

o ’
’/ S’a’s

,A
A s

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy m(s), then the tree would be simpler — only one
action per state

... though the tree’s value would depend on which policy we fixed

Utilities for a fixed policy

Another basic operation: compute the utility of a state
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy «:

V™(s) = expected total discounted rewards starting in s and
following

Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)[R(s,m(s),5) + V(5]

Evaluating a fixed policy

How do we calculate the V's for a fixed policy n?

ldea 1: Incrementally compute expected utility after k steps of executing n
(like value iteration)

Vo (5)=0
V" (s)=R(s,7(s))

VE(s)=R(s,m()+y D T(s,m(s),s W (5)
Dynamic programming as iterative evasluation
Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system

Solve with Matlab (or your favorite linear system solver)

Example: policy evaluation

Always Go Right

Problems with value iteration

Value iteration repeats the Bellman updates:

Vk_|_1(3) — mC?XZT(s,a, s [R(s,a, s + 7\@(3’)}

Problem 1: It’s slow — O(S%A) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

Value iteration example

Noise = 0.2
Discount =0.9
Living reward =0

VALUES AFTER O ITERATIONS

Value iteration example

VALUES AFTER 1 ITERATIONS

Value iteration example

VALUES AFTER 2 ITERATIONS

Value iteration example

VALUES AFTER 3 ITERATIONS

Value iteration example

HI
~
~

VALUES AFTER 4 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 5 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 6 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 7 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 8 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 9 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 10 ITERATIONS

Value iteration example

Gridworld Display

VALUES AFTER 11 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 12 ITERATIONS

Value iteration example

Cridworld Display

VALUES AFTER 100 ITERATIONS

Policy iteration

Alternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed policy
(not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using one-step look-
ahead with resulting converged (but not optimal!) utilities as
future values

Repeat steps until policy converges

This is policy iteration
It's still optimal!
Can converge (much) faster under some conditions

Policy iteration

Algorithm:
7T <— an arbitrary initial policy
repeat until no change in 7

compute utilities given

update s as if utilities were correct (i.e., local MEU)

To compute utilities given a fixed st (policy evaluation)

V™ (s)=R(s,m(s)+y Y, T(s,7(s),s") forall s

l.e., n simultaneous linear equations in n unknowns, solve in O(n3)

Modified policy iteration

Policy iteration often converges in few iterations, but each is expensive

|dea: use a few steps of value iteration (but with xt fixed) starting from the
value function produced the last time to produce an approximate value
determination step.

Often converges much faster than pure VI or PI

Leads to much more general algorithms where Bellman value updates and
Howard policy updates can be performed locally in any order

Reinforcement learning algorithms operate by performing such updates
based on the observed transitions made in an initially unknown
environment

Linear function approximation

What if the state space is large or continuous?

Instead of discretizing the state space (exponential in state
variables) define a set of basis functions ¢1, . . ., ¢nover X

Each basis function maps states in X to real numbers
Think of basis functions as a state-dependent features

Represent V as a linear combination of basis functions: V(x) =

B1¢1(x)+. . . +Onn(x)

Given fixed basis functions, determine 6+, . . ., 8, that best
represents the optimal value function

Approximation results

0 | |

0 5 10

)

(a) Linear interpolation.

2| /2=(0.87,1.90,-0.17)
B =(Ls,s?) °

0 5 10

S

(c) Linear regression (quadratic basis).

8 | °
([J (]
6| °
B Y-
41 @ [J [J
([J
21" 1=(4.53,0.07)
B =(1,5s) *
0 | |
0 5 10

K

(b) Linear regression (linear basis).

B =(1,s,5%5°) b
|

21 1=(3.57,-0.50,0.35,—0.03)

0 5

s

(d) Linear regression (cubic basis).

10

Online methods

Solving for a full policy offline is expensive!

What can we do?

Online methods

Online methods compute optimal action from current state

Expand tree up to some horizon

States reachable from the current state is typically small compared
to full state space

Heuristics and branch-and-bound techniques allow search space
to be pruned

Monte Carlo methods provide approximate solutions

Forward search

Provides optimal action from current state s up to depth d

Recall V(s)=max,,,, {R(s,a) + }/ZT(s,a,s’)V(s’)}

Algorithm 4.6 Forward search

1: function SELECTACTION(s, d)

2 if 4 =0

3 return (NIL, 0)

4: (a*,v*) < (NIL, —00)

5: for a € A(s)

6 v« R(s,a)

7 for s’ € S(s,a)

8 (a’,v") « SeLecTAcTION(s', d — 1)
9: ve—v+yT(s"|s,a)
10: if v> 0"
11: (a*,v*) « (a,v)
12 return (2%, v*)

Time complexity is O((ISI x 1A1)%)

Branch and bound search

Requires a lower bound U(s) and upper bound U(s)

Algorithm 4.7 Branch-and-bound search

1: function SELECTACTION(s, d)
2 itd=0

3 return (NIL, U (5))

4 (a*,v*) « (NIL,—00)

5: for a € A(s)

6 if U(s,a) < v*

7

8

9

return (2%, v*)

v < R(s,a)
for s’ € S(s,a)
10: (4, v") « SELECTACTION(s',d — 1)
11: ve—v+yT(s'|s,a)
12: if v > v”
13: (a*,v*) < (a,v)
14: return (2%, v*)

Worse case complexity?

Monte Carlo evaluation

Algorithm 4.11 Monte Carlo policy evaluation

1: function MoNTECARLOPOLICYEvALUATION(A, 4)
for i «<— 1 to n

s~b

2
3
4; u; < RoLLoUT(s,d, 1))
5

1 n
return - > 7 | u;

Algorithm 4.10 Rollout evaluation

function Rorrout(s, 4, 7))
ifd=0

return O

(s',7r)~ G(s,a)

1:
2
3:
4: an~ 77:0(5)
5
6 return 7 + yRorrout(s’,d — 1, 7))

Estimate value of a policy by sampling from a simulator

Sparse sampling

Requires a generative model (s’) ~ G(s.,a)

Algorithm 4.8 Sparse sampling

1: function SELECTACTION(s, d)
2 ifd=0

3 return (NIL, 0)

4 (a*,v*) < (NIL,—00)

5: for a € A(s)

6: v<—20

7 fori < 1ton

8

(s',7r)~ G(s,a)

9: (a’,v") < SeLECcTACTION(s',d — 1)
10: ve—v+(r+yv)/n

11: if v > 0"

12: (a*,v*) « (a,v)

13: return (a*, v™)

Complexity? Guarantees?

Sparse sampling

Requires a generative model (s’) ~ G(s.,a)

Algorithm 4.8 Sparse sampling

1: function SELECTACTION(s, d)
2 ifd=0

3 return (NIL, 0)

4 (a*,v*) < (NIL,—00)

5: for a € A(s)

6: v<—20

7 fori < 1ton

8

(s',7r)~ G(s,a)

9: (a’,v") < SeLECcTACTION(s',d — 1)
10: ve—v+(r+yv)/n

11: if v > 0"

12: (a*,v*) « (a,v)

13: return (a*, v™)

Complexity = O((n xIAl)?Y), Guarantees = probabilistic

Monte Carlo tree search

Algorithm 4.9 Monte Carlo tree search

1: function SELECTACTION(s, d)
loop
SIMULATE(s, 4, 7))

return argmax , Q(s,)

2
3
4
5: function SIMULATE(s, 4, 7))
6: ifd=0
7,
8
9

return 0
if s¢ T UCT (Upper Confident bounds for Trees)

: for a € A(s)
10: (N(s,2), Q(s,a)) — (Ny(s,2), Qys,a))
11: T'=TU{s}
12: ~_return OLLU
13: a;argmade s,a
14 L~ Glsa)

15: g < 7+ ySIMULATE(s", d — 1, 7t))
16: N(s,a) < N(s,a)+1

17: Q(s,a) « Q(S’ﬂ)_i_%(;)d)
18: return g

UCT continued

Search (within the tree, T)

log V(s
Execute action that maximizes Q(s,a2)+ ¢ g—()
N(s,a)
Update the value Q(s,a) and counts N(s) and N(s,a)
c is a exploration constant

Expansion (outside of the tree, T)

Create a new node for the state
Initialize Q(s,a) and N(s,a) (usually to 0) for each action

Rollout (outside of the tree, T)

Only expand once and then use a rollout policy to select actions (e.g., random policy)

Add the rewards gained during the rollout with those in the tree:
r + yRorrour(s’,d — 1,)

UCT continued

Continue UCT until some termination
condition (usually a fixed number of
samples)

Complexity?

Guarantees?

AlphaGo

Uses UCT with neural net to approximate opponent
choices and state values

Selection b Expansion c Evaluation d Backup

¥

max Q + u(P)

g

Q + u(P) \/nax

