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Recap: What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?
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Recap: BFS/UCS

Notice that we search equally far in all directions...

t's like this ) o




UCS in Pacman Small Maze
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Is it possible to use additional information to
decide which direction to search in”?
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Is it possible to use additional information to
decide which direction to search in”?




Search heuristics

A heuristic is:

A function that estimates how close a state is to a goal
* Designed for a particular search problem

 Examples: Manhattan distance, Euclidean distance for path finding
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Expand states in order of their distance to the goal

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal



Heuristic:

Expand states in order of their distance to thegoan

/

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

N

Greedy search




Greedy Search




Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

— heuristic: h(s) <= j.e. distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.



Greedy Search

This is like a guess about how far
the state is from the goal

----------------

Each time you expand a state, calculate the:heuristic: for
each of the states that you add to the fringe.

— heuristic: h(s) <= j.e. distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.



Example: Greedy Search
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Example: Greedy Search
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Example: Greedy Search
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Notice that this is not the optimal path!




Example: Greedy Search

] Oradea

Dobreta
Eforie

Notice that this is not the optimal path!




Greedy search

Strategy: expand a node that you
think is closest to a goal state

- Heuristic: estimate of distance to
nearest goal for each state

A common case:
- Takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS




Greedy in Pacman Small Maze




Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow
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Greedy vs UCS
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A*

S : a state

g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of ¢g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)



A*

UCS: expand states in order of g(s)

Greedy: expand states in order of A(s)

A*: expand states in order of f(s) = g(s) + h(s)



A*

What is “cost-to-go™?
s-astate — Minimum cost required

to reach a goal state
g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. ; estimate of remaining
cost-to-go)

UCS: expand states in order of ¢g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)



A*

Uniform-cost orders by path cost, or backward cost ¢(s)
Greedy orders by goal proximity, or forward cost h(s)

Example: Teg Grenager

A* Search orders by the sum: f{s) = g(s) + h(s)



When should A* terminate??

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal



Is A* optimal”?

What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!



When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:
— In tree search, we do not track the explored set
— in graph search, we do




Recall: Breadth first search (BFS)

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element

if EMPTY?( frontier) then return failure
node < POP( frontier) /[* chooses the shallowest node in frontier */

A"EEEEEEEEEEEEEEE R EEEEEEE RS R R R EENEY

- add node.STATE to ezplored :

--------------------------------- v

for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE( problem, node, action)

= if child STATE is not in ezplored or frontier then *

frontier «— INSERT(child, frontier)

Figure 3.11  Breadth-first search on a graph.

What is the purpose of the explored set?




When is A* optimal?

It depends on whether we are using the tree search

or the graph search version of the algorithm./
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When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm./
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Admissible heuristics

A heuristic h is admissible (optimistic) if:

0 <h(n) <h*(n)

where h*(n) is the true cost to a nearest goal

o -

Coming up with admissible heuristics is most of
what's involved in using A* in practice.




Admissibility: Example
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Admissibility: Example

7 2 -+ 1 2

5 6 > 3 - 5

8 3 1 6 7 8

Start state Goal state
h(s) ="

Can you think of an admissible heuristic for this problem?



Admissibility

Why isn't this heuristic admissible?



Consistency

State space graph Search tree

S (0+2)
A/////\\\\\s
A (1+4) B(1+1)
v v
C (2+1) C (3+1)
' '
G (5+0) G (6+0)

What went wrong?



Consistency

Main idea: estimated heuristic costs < actual costs
* Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

e Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

Consequences of consistency:

* The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)

 A* graph search is optimal



Consistency

h(s) < c(s,s") + h(s")

\

Cost of going from s to s’

c(s,s")
© ©




Consistency

h(s) < c(s,s") + h(s")

h(s) — h(s") < c(s,s’) ¢ Rearrange terms



Consistency

h(s) < c(s,s") + h(s")

h(s) — h(s") <c(s,s)

- ~ /
Cost of going from s to s'
implied by heuristic

Actual cost of
going from s to s’



Consistency

f(s) = g(s) + h(s)

e

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
— the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal
state optimally before expanding states the reach the goal state
suboptimally.



Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST) T h(ST)
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Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(st_1) < c(sp_1,s7) €=== admissible



Consistency implies admissibility

Suppose: Vs¢, St4+1 - h(St) < C(St, 3t+1) + h(3t+1)
Then: h(ST—l) < C(ST—17 ST)
h(st—2) < c(sT—2,87-1) + h(sT-1)



Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)
h(sr—2) < c(sr—2,57—1) + h(ST_1)

]

admissible
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Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)
h(sr—2) < c(sr—2,57—1) + h(ST_1)
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A* vs UCS

Uniform-cost expands equally in
all “directions”

A* expands mainly toward the
goal, but does hedge its bets to
ensure optimality

Goal

oal



A* in Pacman Small Maze




A* vs UCS

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*



Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!



Choosing a heuristic

Consider the 8-puzzle:

h1 : number of misplaced tiles

ha : sum of manhattan distances
between each tile and its goal.

How much better is ho ?




Choosing a heuristic

Consider the 8-puzzle: 1 2

h1 : number of misplaced tiles 3 A 5

hs : sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:
A*(hy) = 39k

A*(hg) = 1.6k

IDS = 3.6M (by depth 12)
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Consider the 8-puzzle:

h1 : number of misplaced tiles

hs : sum of manhattan distances
between each tile and its goal.

Zle:

IDS = 3.6M (by depth 12)



Choosing a heuristic

Consider the 8-puzzle: 1

h1 : number of misplaced tiles 3 4

hs : sum of manhattan distances
between each tile and its goal.

Why not use the actual cost to goal as a heuristic?



How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
— solve a relaxed version of the problem

— solve a subproblem



