
Heuristic Search

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

Recap: What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

Recap: What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

Recap: BFS/UCS

It's like this

Notice that we search equally far in all directions...

Start Goal

UCS in Pacman Small Maze

Idea

Is it possible to use additional information to
decide which direction to search in?

Idea

Is it possible to use additional information to
decide which direction to search in?

Yes!

Instead of searching in all directions, let's bias
search in the direction of the goal.

A	heuris)c	is:	
•  A	func)on	that	es)mates	how	close	a	state	is	to	a	goal	
•  Designed	for	a	par)cular	search	problem	
•  Examples:	Manha<an	distance,	Euclidean	distance	for	path	finding	

10

5

11.2

Search heuristics

Example

Stright-line distances
to Bucharest

Example

Expand states in order of their distance to the goal

– for each state that you put on the fringe: calculate

 straight-line distance to the goal

– expand the state on the fringe closest to the goal

Example

Expand states in order of their distance to the goal

– for each state that you put on the fringe: calculate

 straight-line distance to the goal

– expand the state on the fringe closest to the goal

Greedy search

Heuristic:

Greedy Search

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

– heuristic:

– on each step, choose to expand the state with the
lowest heuristic value.

i.e. distance to Bucharest

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

– heuristic:

– on each step, choose to expand the state with the
lowest heuristic value.

i.e. distance to Bucharest

This is like a guess about how far
the state is from the goal

Example: Greedy Search
Greedy search example

Arad

366

Chapter 4, Sections 1–2 7

Example: Greedy Search
Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Chapter 4, Sections 1–2 8

Example: Greedy Search
Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Chapter 4, Sections 1–2 9

Example: Greedy Search
Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 4, Sections 1–2 10

Example: Greedy Search
Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 4, Sections 1–2 10

Path: A-S-F-B

Example: Greedy Search

Notice that this is not the optimal path!

Path: A-S-F-B

Example: Greedy Search

Notice that this is not the optimal path!

Path: A-S-F-B

Greedy Search:
 – Not optimal
 – Not complete
 – But, it can be very fast

Strategy: expand a node that you
think is closest to a goal state
- Heuristic: estimate of distance to

nearest goal for each state

A common case:

- Takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

…
b

…
b

Greedy search

Greedy in Pacman Small Maze

Greedy vs UCS

Greedy Search:
 – Not optimal
 – Not complete
 – But, it can be very fast

UCS:
 – Optimal
 – Complete
 – Usually very slow

Greedy vs UCS

Greedy Search:
 – Not optimal
 – Not complete
 – But, it can be very fast

UCS:
 – Optimal
 – Complete
 – Usually very slow

Can we combine greedy and UCS???

Greedy vs UCS

Greedy Search:
 – Not optimal
 – Not complete
 – But, it can be very fast

UCS:
 – Optimal
 – Complete
 – Usually very slow

Can we combine greedy and UCS???

YES: A*

Greedy vs UCS

UCS	

Greedy vs UCS

UCS	 Greedy	

Greedy vs UCS

UCS	 Greedy	

A*	

A*

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
 cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
 cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

What is “cost-to-go”?

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
 cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

What is “cost-to-go”?
 – minimum cost required
 to reach a goal state

Uniform-cost	orders	by	path	cost,	or	backward	cost		g(s)
Greedy	orders	by	goal	proximity,	or	forward	cost		h(s)

	

	

	

	

	

	

	

	

A*	Search	orders	by	the	sum:	f(s) = g(s) + h(s)

A*

S	 a	 d	

b	

G	
h=5	

h=6	

h=2	

1	

8	

1	
1	

2	

h=6	 h=0	
c	

h=7	

3	

e	 h=1	
1	

Example:	Teg	Grenager	

S	

a	

b	

c	

e	d	

d	G	

G	

g	=	0	
h=6	

g	=	1	
h=5	

g	=	2	
h=6	

g	=	3	
h=7	

g	=	4	
h=2	

g	=	6	
h=0	

g	=	9	
h=1	

g	=	10	
h=2	

g	=	12	
h=0	

When should A* terminate?

Should	we	stop	when	we	enqueue	a	goal?	

No:	only	stop	when	we	dequeue	a	goal	

S	

B	

A	

G	

2	

3	

2	

2	
h	=	1	

h	=	2	

h	=	0	h	=	3	

Is A* optimal?

What	went	wrong?	
Actual	cost-to-go	<	heuris)c	
The	heuris)c	must	be	less	than	the	actual	cost-to-go!	

A	

G	S	

1	 3	
h	=	6	

h	=	0	h	=	7	

5	

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:

 – in tree search, we do not track the explored set
 – in graph search, we do

Recall: Breadth first search (BFS)

What is the purpose of the explored set?

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

Optimal if h is consistent

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

What is “cost-to-go”?
 – minimum cost required
 to reach a goal state

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

More on this later...

A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of

what’s involved in using A* in practice.

15	

Admissible heuristics

Admissibility: Example

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???

Admissibility

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???
YES! Why?

Admissibility: Example

h(s) = ?

Start state Goal state

Can you think of an admissible heuristic for this problem?

Admissibility

Why isn't this heuristic admissible?

A	

G	S	

1	 3	
h	=	6	

h	=	0	h	=	7	

5	

Consistency

What went wrong?

S	

A	

B	

C	

G	

1	

1	

1	

2	
3	

h=2	

h=1	

h=4	

h=1	

h=0	

S	(0+2)	

A	(1+4)	 B	(1+1)	

C	(2+1)	

G	(5+0)	

C	(3+1)	

G	(6+0)	

State	space	graph	 Search	tree	

Main	idea:	es)mated	heuris)c	costs	≤	actual	costs	

•  Admissibility:	heuris)c	cost	≤	actual	cost	to	goal	

	 	h(A)	≤	actual	cost	from	A	to	G	

•  Consistency:	heuris)c	“arc”	cost	≤	actual	cost	for	each	arc	

	 	h(A)	–	h(C)	≤	cost(A	to	C)	

Consequences	of	consistency:	

•  The	f	value	along	a	path	never	decreases	

	 		h(A)	≤	cost(A	to	C)	+	h(C)	

•  A*	graph	search	is	op)mal	

	

3	

A	
C	

G	

h=4	 h=1	1	
h=2	

Consistency

Consistency

Cost of going from s to s'

s	 s'	

Consistency

Rearrange terms

Consistency

Cost of going from s to s'
implied by heuristic

Actual cost of
going from s to s'

Consistency

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
– the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal
state optimally before expanding states the reach the goal state
suboptimally.

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then: admissible

Consistency implies admissibility

Suppose:

Then:

Consistency implies admissibility

Suppose:

Then:

admissible

Consistency implies admissibility

Suppose:

Then:

admissible admissible

Consistency implies admissibility

Suppose:

Then:

Uniform-cost	expands	equally	in	
all	“direc)ons”	
	
	
	

A*	expands	mainly	toward	the	
goal,	but	does	hedge	its	bets	to	
ensure	op)mality	

Start	 Goal	

Start	 Goal	

A* vs UCS

A* in Pacman Small Maze

A* vs UCS

Greedy UCS A*

Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!

Choosing a heuristic

How much better is ?

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:

(by depth 12)

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:

(by depth 12)

So, getting the heuristic right can speed things
up by multiple orders of magnitude!

Choosing a heuristic

Consider the 8-puzzle:

: number of misplaced tiles

: sum of manhattan distances
between each tile and its goal.

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
– solve a relaxed version of the problem
– solve a subproblem

