Heuristic Search

Chris Amato Northeastern University

Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Recap: What is graph search?

Start state

Goal state

Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?

Recap: What is graph search?

Recap: BFS/UCS

Notice that we search equally far in all directions...

UCS in Pacman Small Maze

Is it possible to use additional information to decide which direction to search in?

Idea

Is it possible to use additional information to decide which direction to search in?

Yes!

Instead of searching in all directions, let's bias search in the direction of the goal.

Search heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for path finding

Example

Stright-line distances to Bucharest

Example

Expand states in order of their distance to the goal

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal

Example

Greedy search

- expand the state on the fringe closest to the goal

Greedy Search

Greedy Search

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

– heuristic: h(s) i.e. distance to Bucharest

 on each step, choose to expand the state with the lowest heuristic value.

Greedy Search

 on each step, choose to expand the state with the lowest heuristic value.

Path: A-S-F-B

Path: A-S-F-B

Notice that this is not the optimal path!

Notice that this is not the optimal path!

Greedy search

Strategy: expand a node that you think is closest to a goal state

- Heuristic: estimate of distance to nearest goal for each state

A common case:

- Takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

Greedy in Pacman Small Maze

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

UCS

UCS

Greedy

UCS

Greedy

A*

A*

s : a state

g(s) : minimum cost from start to s

- h(s) : heuristic at s (*i.e.* an estimate of remaining cost-to-go)
- <u>UCS</u>: expand states in order of g(s)
- <u>Greedy</u>: expand states in order of h(s)

<u>A*</u>: expand states in order of f(s) = g(s) + h(s)

<u>UCS</u>: expand states in order of g(s)

<u>Greedy</u>: expand states in order of h(s)

<u>A</u>*: expand states in order of f(s) = g(s) + h(s)

<u>UCS</u>: expand states in order of g(s)

<u>Greedy</u>: expand states in order of h(s)

<u>A</u>^{*}: expand states in order of f(s) = g(s) + h(s)

Uniform-cost orders by path cost, or *backward cost* g(s)Greedy orders by goal proximity, or *forward cost* h(s)

A* Search orders by the sum: f(s) = g(s) + h(s)

Example: Teg Grenager

A*

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* optimal?

What went wrong? Actual cost-to-go < heuristic The heuristic must be less than the actual cost-to-go!

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm.

Recall:

- in tree search, we do not track the explored set
- in graph search, we do

Recall: Breadth first search (BFS)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the *explored* set?

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. *f*

Optimal if *h* is <u>consistent</u>

-h(s) is an underestimate of the cost of each arc.

Optimal if h is admissible

-h(s) is an underestimate of the true cost-to-go.

It depends on whether we are using the <u>tree search</u> or the <u>graph search</u> version of the algorithm. *f*

Optimal if *h* is <u>consistent</u>

-h(s) is an underestimate of the cost of each arc.

Optimal if h is admissible

-h(s) is an underestimate of the true cost-to-go.

<u>What is "cost-to-go"?</u> – minimum cost required to reach a goal state

Admissible heuristics

A heuristic *h* is *admissible* (optimistic) if:

 $0 \le h(n) \le h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of what's involved in using A* in practice.

Admissibility: Example

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible???

Admissibility

h(s) = straight-line distance to goal state (Bucharest)

Is this heuristic admissible??? YES! Why?

Admissibility: Example

Goal state

h(*s*) = ?

Can you think of an admissible heuristic for this problem?

Admissibility

Why isn't this heuristic admissible?

What went wrong?

Main idea: estimated heuristic costs ≤ actual costs

- Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
- Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)

Consequences of consistency:

• The *f* value along a path never decreases

 $h(A) \leq cost(A \text{ to } C) + h(C)$

• A* graph search is optimal

 $h(s) \le c(s, s') + h(s')$

Cost of going from s to s'

 $h(s) \le c(s, s') + h(s')$

 $h(s) - h(s') \le c(s, s')$ Rearrange terms

 $h(s) \le c(s, s') + h(s')$ $\underbrace{h(s) - h(s')}_{\bigwedge} \leq c(s, s')$ Cost of going from s to s' implied by heuristic

Actual cost of going from *s* to *s*'

f(s) = g(s) + h(s)

Consistency implies that the "f-cost" never decreases along any path to a goal state.

- the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal state optimally before expanding states the reach the goal state suboptimally.

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T) + h(s_T)$

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T)$

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \leq c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \leq c(s_{T-1}, s_T)$ admissible

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T)$
 $h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(s_{T-1})$

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T)$
 $h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(S_{T-1})$

admissible

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \leq c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \leq c(s_{T-1}, s_T)$
 $h(s_{T-2}) \leq c(s_{T-2}, s_{T-1}) + h(S_{T-1})$
admissible admissible

Suppose:
$$\forall s_t, s_{t+1} : h(s_t) \le c(s_t, s_{t+1}) + h(s_{t+1})$$

Then: $h(s_{T-1}) \le c(s_{T-1}, s_T)$
 $h(s_{T-2}) \le c(s_{T-2}, s_{T-1}) + h(S_{T-1})$

 \circ \circ \circ

A* vs UCS

Uniform-cost expands equally in all "directions"

A* in Pacman Small Maze

A* vs UCS

Greedy

UCS

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!

Consider the 8-puzzle:

- h_1 : number of misplaced tiles
- h_2 : sum of manhattan distances between each tile and its goal.

How much better is h_2 ?

Consider the 8-puzzle:

- h_1 : number of misplaced tiles
- h_2 : sum of manhattan distances between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:

$$A^*(h_1) = 39k$$

 $A^*(h_2) = 1.6k$
 $IDS = 3.6M$ (by depth 12)

Consider the 8-puzzle:

- h_1 : number of misplaced tiles
- h_2 : sum of manhattan distances between each tile and its goal.

Consider the 8-puzzle:

- h_1 : number of misplaced tiles
- h_2 : sum of manhattan distances between each tile and its goal.

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:

- solve a relaxed version of the problem
- solve a subproblem