## Heuristic Search

Chris Amato
Northeastern University
Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

## Recap: What is graph search?



Start state


Goal state

Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?


## Recap: What is graph search?

Start state


Graph search: find a path from start to goal

- what are the states?
- what are the actions (transitions)?
- how is this a graph?


## Recap: BFS/UCS

Notice that we search equally far in all directions...

It's like this


UCS in Pacman Small Maze

## Idea

Is it possible to use additional information to decide which direction to search in?

## Idea

## Is it possible to use additional information to decide which direction to search in?

## Yes!

Instead of searching in all directions, let's bias search in the direction of the goal.

## Search heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for path finding



## Example



| Arad | 366 |
| :--- | ---: |
| Bucharest | 0 |
| Craiova | 160 |
| Drobeta | 242 |
| Eforie | 161 |
| Fagaras | 176 |
| Giurgiu | 77 |
| Hirsova | 151 |
| Iasi | 226 |
| Lugoj | 244 |
| Mehadia | 241 |
| Neamt | 234 |
| Oradea | 380 |
| Pitesti | 100 |
| Rimnicu Vilcea | 193 |
| Sibiu | 253 |
| Timisoara | 329 |
| Urziceni | 80 |
| Vaslui | 199 |
| Zerind | 374 |



Stright-line distances to Bucharest

## Example



Expand states in order of their distance to the goal

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal


## Example



## Heuristic:

Expand states in order of their distance to the yoar

- for each state that you put on the fringe: calculate straight-line distance to the goal
- expand the state on the fringe closest to the goal


## Greedy Search



## Greedy Search

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

- heuristic: $h(s)$
i.e. distance to Bucharest
- on each step, choose to expand the state with the lowest heuristic value.


## Greedy Search

This is like a guess about how far the state is from the goal

Each time you expand a state, calculate the heuristic for each of the states that you add to the fringe.

- heuristic: $h(s)$
i.e. distance to Bucharest
- on each step, choose to expand the state with the lowest heuristic value.


## Example: Greedy Search



## Path: A-S-F-B

## Example: Greedy Search



Path: A-S-F-B

Notice that this is not the optimal path!

## Example: Greedy Search



Notice that this is not the optimal path!

## Greedy search

Strategy: expand a node that you think is closest to a goal state

- Heuristic: estimate of distance to nearest goal for each state


A common case:

- Takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS


Greedy in Pacman Small Maze

## Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow


## Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow


## Can we combine greedy and UCS???

## Greedy vs UCS

Greedy Search:

- Not optimal
- Not complete
- But, it can be very fast

UCS:

- Optimal
- Complete
- Usually very slow

Can we combine greedy and UCS???

## YES: A*

## Greedy vs UCS



UCS

## Greedy vs UCS



## Greedy vs UCS



A*


## A*

$s$ : a state
$g(s)$ : minimum cost from start to $s$
$h(s)$ : heuristic at $s$ (i.e. an estimate of remaining cost-to-go)

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

## A*

## What is "cost-to-go"?

$s$ : a state
$g(s)$ : minimum cost trom start to $s$
$h(s)$ : heuristic at $s$ (i.e. an estimate of remaining cost-to-go ${ }^{\frac{1}{2}}$

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

## A*

## What is "cost-to-go"? <br> $s$ : a state <br> - minimum cost required to reach a goal state

$g(s)$ : minimum cost trom start to $s$
$h(s)$ : heuristic at $s$ (i.e. an estimate of remaining cost-to-go

UCS: expand states in order of $g(s)$
Greedy: expand states in order of $h(s)$
A*: expand states in order of $f(s)=g(s)+h(s)$

## A*

Uniform-cost orders by path cost, or backward cost $g(s)$
Greedy orders by goal proximity, or forward cost $h(s)$



Example: Teg Grenager

A* Search orders by the sum: $f(s)=g(s)+h(s)$

## When should $\mathrm{A}^{*}$ terminate?

Should we stop when we enqueue a goal?


No: only stop when we dequeue a goal

## Is $A^{*}$ optimal?



What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!

## When is $A^{*}$ optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Recall:

- in tree search, we do not track the explored set
- in graph search, we do


## Recall: Breadth first search (BFS)

```
function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure
    node }\leftarrow\mathrm{ a node with STATE = problem.InITIAL-STATE, PATH-COST =0
    if problem.Goal-TEST(node.STATE) then return SOlution(node)
    frontier }\leftarrow\textrm{a}\mathrm{ FIFO queue with node as the only element
    "explored*"anempty set "
    "0op" do'
            if Empty?(frontier) then return failure
            node \leftarrowPOP(frontier) /* chooses the shallowest node in frontier */
            "add node.STATE to explored:
            for each action in problem.ACTIONS(node.STATE) do
                child \leftarrow CHILD-NODE (problem, node, action)
            "if child.STATE is not in explored or frontier then
            *"" if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
                    frontier }\leftarrow\mathrm{ INSERT(child, frontier)
```

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

## When is $\mathrm{A}^{*}$ optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Optimal if h is consistent

## Optimal if h is admissible

## When is $A^{*}$ optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Optimal if $h$ is consistent
Optimal if $h$ is admissible
$-h(s)$ is an underestimate of the cost of each arc.

## When is $A^{*}$ optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Optimal if $h$ is admissible
$-h(s)$ is an underestimate of the true cost-to-go.

## What is "cost-to-go"?

- minimum cost required to reach a goal state


## When is $\mathrm{A}^{*}$ optimal?

It depends on whether we are using the tree search or the graph search version of the algorithm.

Optimal if $h$ is consistent
$-h(s)$ is an underestimate of the cost of each arc.

Optimal if $h$ is admissible
$-h(s)$ is an underestimate
of the true cost-to-go.

More on this later...

## Admissible heuristics

A heuristic $h$ is admissible (optimistic) if:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $h^{*}(n) \quad$ is the true cost to a nearest goal

Example:


Coming up with admissible heuristics is most of what's involved in using $A^{*}$ in practice.

## Admissibility: Example



| Arad | 366 |
| :--- | ---: |
| Bucharest | 0 |
| Craiova | 160 |
| Drobeta | 242 |
| Eforie | 161 |
| Fagaras | 176 |
| Giurgiu | 77 |
| Hirsova | 151 |
| Iasi | 226 |
| Lugoj | 244 |
| Mehadia | 241 |
| Neamt | 234 |
| Oradea | 380 |
| Pitesti | 100 |
| Rimnicu Vilcea | 193 |
| Sibiu | 253 |
| Timisoara | 329 |
| Urziceni | 80 |
| Vaslui | 199 |
| Zerind | 374 |
|  |  |
|  |  |
|  |  |

Stright-line distances to Bucharest

$$
h(s)=\text { straight-line distance to goal state (Bucharest) }
$$

## Admissibility



| Arad | 366 |
| :--- | ---: |
| Bucharest | 0 |
| Craiova | 160 |
| Drobeta | 242 |
| Eforie | 161 |
| Fagaras | 176 |
| Giurgiu | 77 |
| Hirsova | 151 |
| Iasi | 226 |
| Lugoj | 244 |
| Mehadia | 241 |
| Neamt | 234 |
| Oradea | 380 |
| Pitesti | 100 |
| Rimnicu Vilcea | 193 |
| Sibiu | 253 |
| Timisoara | 329 |
| Urziceni | 80 |
| Vaslui | 199 |
| Zerind | 374 |
|  |  |
|  |  |

Stright-line distances to Bucharest

$$
h(s)=\text { straight-line distance to goal state (Bucharest) }
$$

## Admissibility



| Arad | 366 |
| :--- | ---: |
| Bucharest | 0 |
| Craiova | 160 |
| Drobeta | 242 |
| Eforie | 161 |
| Fagaras | 176 |
| Giurgiu | 77 |
| Hirsova | 151 |
| Iasi | 226 |
| Lugoj | 244 |
| Mehadia | 241 |
| Neamt | 234 |
| Oradea | 380 |
| Pitesti | 100 |
| Rimnicu Vilcea | 193 |
| Sibiu | 253 |
| Timisoara | 329 |
| Urziceni | 80 |
| Vaslui | 199 |
| Zerind | 374 |
|  |  |
|  |  |

Stright-line distances to Bucharest

## $h(s)=$ straight-line distance to goal state (Bucharest)

## Is this heuristic admissible??? <br> YES! Why?

Admissibility: Example


Start state


Goal state

$$
h(s)=?
$$

Can you think of an admissible heuristic for this problem?

## Admissibility



Why isn't this heuristic admissible?

## Consistency

State space graph Search tree


What went wrong?

## Consistency

Main idea: estimated heuristic costs $\leq$ actual costs


- Admissibility: heuristic cost $\leq$ actual cost to goal

$$
h(\mathrm{~A}) \leq \text { actual cost from } \mathrm{A} \text { to } \mathrm{G}
$$

- Consistency: heuristic "arc" cost $\leq$ actual cost for each arc

$$
h(\mathrm{~A})-h(\mathrm{C}) \leq \operatorname{cost}(\mathrm{A} \text { to } \mathrm{C})
$$

Consequences of consistency:

- The $f$ value along a path never decreases

$$
h(\mathrm{~A}) \leq \operatorname{cost}(\mathrm{A} \text { to } \mathrm{C})+h(\mathrm{C})
$$

- $A^{*}$ graph search is optimal


## Consistency

$$
h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)
$$

Cost of going from $s$ to $s^{\prime}$


## Consistency

$$
\begin{aligned}
& h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right) \\
& h(s)-h\left(s^{\prime}\right) \leq c\left(s, s^{\prime}\right) \longmapsto \quad \text { Rearrange terms }
\end{aligned}
$$

## Consistency

$$
\begin{aligned}
& \quad h(s) \leq c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right) \\
& \quad \underbrace{h(s)-h\left(s^{\prime}\right)}_{\substack{\text { Cost of going from s to s' } \\
\text { implied by heuristic }}} \leq c\left(s, s^{\prime}\right)
\end{aligned}
$$

Actual cost of going from $s$ to $s^{\prime}$

## Consistency

$$
f(s)=g(s)+h(s)
$$

Consistency implies that the "f-cost" never decreases along any path to a goal state.

- the optimal path gives a goal state its lowest f-cost.
$A^{*}$ expands states in order of their f-cost.
Given any goal state, $\mathrm{A}^{*}$ expands states that reach the goal state optimally before expanding states the reach the goal state suboptimally.


## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right)+h\left(s_{T}\right)
$$

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right)
$$

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right) \longleftarrow \text { admissible }
$$

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(s_{T-1}\right)
\end{aligned}
$$

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right)
\end{aligned}
$$

admissible

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
& h\left(s_{T-1}\right) \leq c\left(s_{T-1}, s_{T}\right) \\
& h\left(s_{T-2}\right) \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right) \\
& \text { admissible }
\end{aligned}
$$

## Consistency implies admissibility

Suppose: $\forall s_{t}, s_{t+1}: h\left(s_{t}\right) \leq c\left(s_{t}, s_{t+1}\right)+h\left(s_{t+1}\right)$
Then:

$$
\begin{aligned}
h\left(s_{T-1}\right) & \leq c\left(s_{T-1}, s_{T}\right) \\
h\left(s_{T-2}\right) & \leq c\left(s_{T-2}, s_{T-1}\right)+h\left(S_{T-1}\right)
\end{aligned}
$$

## A* vs UCS

Uniform-cost expands equally in all "directions"


A* expands mainly toward the goal, but does hedge its bets to ensure optimality


A* in Pacman Small Maze

## A* vs UCS



Greedy


UCS


A*

## Choosing a heuristic

The right heuristic is often problem-specific.
But it is very important to select a good heuristic!

## Choosing a heuristic

Consider the 8-puzzle:
$h_{1}$ : number of misplaced tiles
$h_{2}$ : sum of manhattan distances between each tile and its goal.


How much better is $h_{2}$ ?

## Choosing a heuristic

## Consider the 8-puzzle:

$h_{1}$ : number of misplaced tiles
$h_{2}$ : sum of manhattan distances between each tile and its goal.


Average \# states expanded on a random depth-24 puzzle:
$A^{*}\left(h_{1}\right)=39 k$
$A^{*}\left(h_{2}\right)=1.6 k$
$I D S=3.6 M \quad$ (by depth 12 )

## Choosing a heuristic

Consider the 8-puzzle:
$h_{1}$ : number of misplaced tiles
$h_{2}$ : sum of manhattan distances between each tile and its goal.


## Choosing a heuristic

Consider the 8-puzzle:
$h_{1}$ : number of misplaced tiles
$h_{2}$ : sum of manhattan distances between each tile and its goal.


Why not use the actual cost to goal as a heuristic?

## How to choose a heuristic?

Nobody has an answer that always works.
A couple of best-practices:

- solve a relaxed version of the problem
- solve a subproblem

