Heuristic Search

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
C3S188 UC Berkeley, AIMA

Recap: What is graph search?

Start state Goal state

Graph search: find a path from start to goal
— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Recap: What is graph search?

] Oradea

118

Start state

Dobreta [
Eforie

Goal state

Graph search: find a path from start to goal

— what are the states?
— what are the actions (transitions)?

— how is this a graph?

Recap: BFS/UCS

Notice that we search equally far in all directions...

t's like this) o

UCS in Pacman Small Maze

ldea

Is it possible to use additional information to
decide which direction to search in”?

ldea

Is it possible to use additional information to
decide which direction to search in”?

Search heuristics

A heuristic is:

A function that estimates how close a state is to a goal
* Designed for a particular search problem

 Examples: Manhattan distance, Euclidean distance for path finding

Example

]1Oradea
Neamt
- 87
75 _
] lasi
Arad[]
. 92
Sibiu o) Fagaras

118 .
Vaslui

80 -

Timisoara Rimnicu Vilcea
]
142
1l] Lugoj Pitesti \2!1
70 = 98 .
. 85 — Hirsova
[JMehadia 101 - Urziceni
9 86
& 138 Bucharest
Dobreta [] 120 %
Craiova o Eforie
[]1Giurgiu

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

L)

Stright-line distances

to Bucharest

Expand states in order of their distance to the goal

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

Heuristic:

Expand states in order of their distance to thegoan

/

— for each state that you put on the fringe: calculate
straight-line distance to the goal

— expand the state on the fringe closest to the goal

N

Greedy search

Greedy Search

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

— heuristic: h(s) <= j.e. distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.

Greedy Search

This is like a guess about how far
the state is from the goal

Each time you expand a state, calculate the:heuristic: for
each of the states that you add to the fringe.

— heuristic: h(s) <= j.e. distance to Bucharest

— on each step, choose to expand the state with the
lowest heuristic value.

Example: Greedy Search

366

Example: Greedy Search

>C_Sibiu_> Climisoara>

253

329

374

Example: Greedy Search

. Sbu_ Cimisoara> CZerind >

329 374

CArad D P>CFagarasy Oradea oy Viced

366 176 380 193

CArad > (Fagarasd

Example: Greedy Search

R D

380 193

374

CArad > (Fagarasd

Example: Greedy Search

R D

380 193

Path: A-S-F-B

374

Example: Greedy Search

] Oradea
Neamt
- 87
75 ,
] lasi
Arad[}
. 92
Sibiu oo Fagaras
118 % []Vaslui
Timisoara Rimnicu Vilcea
]
142
1l] Lugoj Pitesti \211
70 - o8 .
. 35 — Hirsova
[JMehadia 101 — Urziceni
) 86
- 138 Bucharest
Dobreta [120 %
—Craiova o Eforie
[]Giurgiu
Path: A-S-F-B

Notice that this is not the optimal path!

Example: Greedy Search

] Oradea

Dobreta
Eforie

Notice that this is not the optimal path!

Greedy search

Strategy: expand a node that you
think is closest to a goal state

- Heuristic: estimate of distance to
nearest goal for each state

A common case:
- Takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

Greedy in Pacman Small Maze

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Greedy Search: UCS:
— Not optimal — Optimal
— Not complete — Complete

— But, it can be very fast — Usually very slow

Greedy vs UCS

Greedy vs UCS

Greedy vs UCS

A*

A*

S : a state

g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of ¢g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

UCS: expand states in order of g(s)

Greedy: expand states in order of A(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

What is “cost-to-go™?
s-astate — Minimum cost required

to reach a goal state
g(s) : minimum cost from start to s

h(s) : heuristic at s (i.e. ; estimate of remaining
cost-to-go)

UCS: expand states in order of ¢g(s)

Greedy: expand states in order of h(s)

A*: expand states in order of f(s) = g(s) + h(s)

A*

Uniform-cost orders by path cost, or backward cost ¢(s)
Greedy orders by goal proximity, or forward cost h(s)

Example: Teg Grenager

A* Search orders by the sum: f{s) = g(s) + h(s)

When should A* terminate??

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* optimal”?

What went wrong?
Actual cost-to-go < heuristic
The heuristic must be less than the actual cost-to-go!

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Recall:
— In tree search, we do not track the explored set
— in graph search, we do

Recall: Breadth first search (BFS)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «+— a FIFO queue with node as the only element

if EMPTY?(frontier) then return failure
node < POP(frontier) /[* chooses the shallowest node in frontier */

A"EEEEEEEEEEEEEEE R EEEEEEE RS R R R EENEY

- add node.STATE to ezplored :

--------------------------------- v

for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)

= if child STATE is not in ezplored or frontier then *

frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

What is the purpose of the explored set?

When is A* optimal?

It depends on whether we are using the tree search

or the graph search version of the algorithm./

When is A* optimal?

It depends on whether we are using the tree search

or the graph search version of the algorithm./

When is A* optimal?

It depends on whether we are using the tree search

or the graph search version of the algorithm./

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm./

|

Admissible heuristics

A heuristic h is admissible (optimistic) if:

0 <h(n) <h*(n)

where h*(n) is the true cost to a nearest goal

o -

Coming up with admissible heuristics is most of
what's involved in using A* in practice.

Admissibility: Example

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

Fagaras 176

Giurgiu 77

Hirsova 151

. Iasi 226

]Vaslui Lugoj 244

. Mehadia 241
Timisoara Neamt 234
Oradea 380

Pitesti 100

Rimnicu Vilcea 193

JHirsova Sibiu 253

[JMehadia — Timisoara 329

LJ) 86 Urziceni 80

= KJ= ucharest Vaslui 199
Dobreta [] Zerind 374

Eforie 1 r

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

Fagaras 176

Giurgiu 77

Hirsova 151

. Iasi 226

]Vaslui Lugoj 544

Timisoara gl::l::(tha %-’-31‘11
Oradea 380

Pitesti 100

Rimnicu Vilcea 193

—1Hirsova Sibiu 253

JMehadia Timisoara 329

75 86 Urziceni 80
Vaslui 199

Dobreta [] Zerind 374

Eforie t

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility

Arad 366

Bucharest 0

Craiova 160

Drobeta 242

Eforie 161

Fagaras 176

Giurgiu 77

Hirsova 151

. Iasi 226

]Vaslui Lugoj 544

Timisoara gl::;(tha %-’-31‘11
Oradea 380

Pitesti 100

Rimnicu Vilcea 193

—1Hirsova Sibiu 253

JMehadia Timisoara 329

75 86 Urziceni 80
Vaslui 199

Dobreta [] Zerind 374

Eforie t

Stright-line distances
to Bucharest

h(s) = straight-line distance to goal state (Bucharest)

Admissibility: Example

7 2 -+ 1 2

5 6 > 3 - 5

8 3 1 6 7 8

Start state Goal state
h(s) ="

Can you think of an admissible heuristic for this problem?

Admissibility

Why isn't this heuristic admissible?

Consistency

State space graph Search tree

S (0+2)
A/////\\\\\s
A (1+4) B(1+1)
v v
C (2+1) C (3+1)
' '
G (5+0) G (6+0)

What went wrong?

Consistency

Main idea: estimated heuristic costs < actual costs
* Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

e Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

Consequences of consistency:

* The fvalue along a path never decreases
h(A) < cost(A to C) + h(C)

 A* graph search is optimal

Consistency

h(s) < c(s,s") + h(s")

\

Cost of going from s to s’

c(s,s")
© ©

Consistency

h(s) < c(s,s") + h(s")

h(s) — h(s") < c(s,s’) ¢ Rearrange terms

Consistency

h(s) < c(s,s") + h(s")

h(s) — h(s") <c(s,s)

- ~ /
Cost of going from s to s'
implied by heuristic

Actual cost of
going from s to s’

Consistency

f(s) = g(s) + h(s)

e

Consistency implies that the “f-cost” never decreases along any
path to a goal state.
— the optimal path gives a goal state its lowest f-cost.

A* expands states in order of their f-cost.

Given any goal state, A* expands states that reach the goal
state optimally before expanding states the reach the goal state
suboptimally.

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST) T h(ST)

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(st_1) < c(sp_1,s7) €=== admissible

Consistency implies admissibility

Suppose: Vs¢, St4+1 - h(St) < C(St, 3t+1) + h(3t+1)
Then: h(ST—l) < C(ST—17 ST)
h(st—2) < c(sT—2,87-1) + h(sT-1)

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)
h(sr—2) < c(sr—2,57—1) + h(ST_1)

]

admissible

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)
h(sr—2) < c(sr—2,57—1) + h(ST_1)

L] L]

admissible admissible

Consistency implies admissibility

Suppose: Vs¢, St+1 - h(St) < C(St, 3t+1) -+ h(3t+1)

Then: h(ST—l) < C(ST—17 ST)
h(sr—2) < c(sr—2,57—1) + h(ST_1)

@00

A* vs UCS

Uniform-cost expands equally in
all “directions”

A* expands mainly toward the
goal, but does hedge its bets to
ensure optimality

Goal

oal

A* in Pacman Small Maze

A* vs UCS

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*

Choosing a heuristic

The right heuristic is often problem-specific.

But it is very important to select a good heuristic!

Choosing a heuristic

Consider the 8-puzzle:

h1 : number of misplaced tiles

ha : sum of manhattan distances
between each tile and its goal.

How much better is ho ?

Choosing a heuristic

Consider the 8-puzzle: 1 2

h1 : number of misplaced tiles 3 A 5

hs : sum of manhattan distances
between each tile and its goal.

Average # states expanded on a random depth-24 puzzle:
A*(hy) = 39k

A*(hg) = 1.6k

IDS = 3.6M (by depth 12)

Choosing a heuristic

Consider the 8-puzzle:

h1 : number of misplaced tiles

hs : sum of manhattan distances
between each tile and its goal.

Zle:

IDS = 3.6M (by depth 12)

Choosing a heuristic

Consider the 8-puzzle: 1

h1 : number of misplaced tiles 3 4

hs : sum of manhattan distances
between each tile and its goal.

Why not use the actual cost to goal as a heuristic?

How to choose a heuristic?

Nobody has an answer that always works.

A couple of best-practices:
— solve a relaxed version of the problem

— solve a subproblem

