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What is a graph? 

Graph: 

Edges: 

Vertices: Also called states 

Also called transitions 
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How many states? 
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Defining a graph: example 

Pairs of states that are “connected” 
by one turn of the cube. 



Example: Romania 

l  On holiday in Romania; 
currently in Arad. Flight leaves 
tomorrow from Bucharest 

l  Formulate goal: Be in 
Bucharest 

l  Formulate problem: 
l  states: various cities 
l  actions: drive between cities 

l  Find solution: 
l  sequence of cities, e.g., Arad, 

Sibiu, Fagaras, Bucharest 



Graph search 

Given: a graph, G 

Problem: find a path from A to B 

– A: start state 

– B: goal state 



Graph search 

Given: a graph, G 

Problem: find a path from A to B 

– A: start state 

– B: goal state 

How? 



Problem formulation 

A problem is defined by four items: 

l  initial state e.g., “at Arad” 

l  successor function S(x) = set of action–state pairs 

e.g., S(Arad) = {⟨Arad → Zerind, Zerind⟩, . . .} 

l  goal test, can be explicit, e.g., x = “at Bucharest” implicit, e.g., 
NoDirt(x) 

l  path cost (additive) 

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is 
the step cost, assumed to be ≥ 0 

l  A solution is a sequence of actions leading from the initial state to 
a goal state 



A search tree 

Start at  A 



A search tree 

Successors of A 



A search tree 

Successors of A 

parent children 



A search tree 

Let's expand S 
next 



A search tree 

Successors 
of S 



A search tree 

A was already 
visited! 



A search tree 

A was already 
visited! So, prune it! 



A search tree 

In what order should we expand states? 

– here, we expanded S, but we could also have expanded Z or T 

– different search algorithms expand in different orders 
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Breadth first search (BFS) 

Start node 



Breadth first search (BFS) 



Breadth first search (BFS) 



Breadth first search (BFS) 



Breadth first search (BFS) 

We're going to maintain a queue called the fringe 
 
– initialize the fringe as an empty queue 

Fringe 



Breadth first search (BFS) 

– add A to the fringe 

fringe 
Fringe 
A 



Breadth first search (BFS) 

-- remove A from the fringe 
 
-- add successors of A to the fringe 
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Breadth first search (BFS) 
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Breadth first search (BFS) 

fringe 
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-- remove C from the fringe 
 
-- add successors of C to the fringe 



Breadth first search (BFS) 
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Breadth first search (BFS) 

fringe 

Fringe 
D 
E 
F 
G 

Which state gets removed next from the fringe? 
 
What kind of a queue is this? 
 

FIFO Queue! 
(first in first out) 



Breadth first search (BFS) 



Breadth first search (BFS) 

What is the purpose of the explored set? 
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BFS Properties 

Is BFS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of BFS? 
– how many states are expanded before finding a sol'n? 

 – b: branching factor 
 – d: depth of shallowest solution 
 – complexity = ???  

  
 



BFS Properties 

Is BFS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of BFS? 
– how many states are expanded before finding a solution? 

 – b: branching factor 
 – d: depth of shallowest solution 
 – complexity =  

  
 



BFS Properties 

Is BFS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of BFS? 
– how many states are expanded before finding a solution? 

 – b: branching factor 
 – d: depth of shallowest solution 
 – complexity =  

 
What is the space complexity of BFS? 
– how much memory is required? 

 – complexity = ???  
 



BFS Properties 

Is BFS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of BFS? 
– how many states are expanded before finding a solution? 

 – b: branching factor 
 – d: depth of shallowest solution 
 – complexity =  

 
What is the space complexity of BFS? 
– how much memory is required? 

 – complexity =  
 



BFS Properties 

Is BFS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of BFS? 
– how many states are expanded before finding a solution? 

 – b: branching factor 
 – d: depth of shallowest solution 
 – complexity =  

 
What is the space complexity of BFS? 
– how much memory is required? 

 – complexity =  
 
Is BFS optimal? 
– is it guaranteed to find the best solution (shortest path)? 
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Uniform Cost Search (UCS) 

Notice the distances between cities 
– does BFS take these distances into account? 
– does BFS find the path w/ shortest milage? 
– compare S-F-B with S-R-P-B. Which costs less? 

How do we fix this? 
UCS! 
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Uniform Cost Search (UCS) 

Same as BFS except: expand node w/ smallest path cost 

Length of path 

Cost of going from state A to B: 

Minimum cost of path going from start state to B: 

BFS: expands states in order of hops from start 
 
UCS: expands states in order of  How? 



Uniform Cost Search (UCS) 

Simple answer: change the FIFO to a priority queue 
– the priority of each element in the queue is its path cost. 



Uniform Cost Search (UCS) 



UCS 

Fringe 
A 

Path Cost 
0 

Explored set: 
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Explored set: A, Z, T, S, R, L 

Fringe 
A 
S 
T 
Z 
T 
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Path Cost 
0 
140 
118 
75 
146 
229 
239 
220 
336 
317 
299 

When does this end? 
– when the goal state is removed from the queue 

– NOT when the goal state is expanded 



UCS 



UCS Properties 

Is UCS complete? 
– is it guaranteed to find a solution if one exists? 
 
What is the time complexity of UCS? 
– how many states are expanded before finding a solution? 

 – b: branching factor 
 – C*: cost of optimal solution 
 – e: min one-step cost 
 – complexity =  

 
What is the space complexity of BFS? 
– how much memory is required? 

 – complexity =  
 
Is BFS optimal? 
– is it guaranteed to find the best solution (shortest path)? 



Strategy: expand  
cheapest node first: 

Fringe is a priority queue 
(priority: cumulative cost) 

UCS vs BFS 
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UCS vs BFS 
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Search 
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Strategy:	expand	a	
shallowest	node	first	

Implementa6on:	Fringe	
is	a	FIFO	queue	



UCS vs BFS 

Remember: UCS explores increasing 
cost contours 
 

The good: UCS is complete and 
optimal! 
 

The bad: 
Explores options in every “direction” 
No information about goal location 
 

We’ll fix that soon! 
 

Start Goal 

…

c3 
c2 

c1 



Depth First Search (DFS) 
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DFS 

Fringe 
A 
B 
C 
F 
G 
H 
I 

Which state gets removed next from the fringe? 
 
What kind of a queue is this? 
 LIFO Queue! 

(last in first out) 



Deep/Shallow Water --- DFS, BFS, or UCS? (part 1) 



Deep/Shallow Water --- DFS, BFS, or UCS? (part 2) 



Deep/Shallow Water --- DFS, BFS, or UCS? (part 3) 
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DFS Properties: Graph search version 

Is DFS complete? 
– only if you track the explored set in memory 
 
What is the time complexity of DFS (graph version)? 
– how many states are expanded before finding a solution? 

 – complexity = number of states in the graph 
 
What is the space complexity of DFS (graph version)? 
– how much memory is required? 

 – complexity = number of states in the graph 
 
Is DFS optimal? 
– is it guaranteed to find the best solution (shortest path)? 

This is the “graph search” 
version of the algorithm 

So why would we ever use this algorithm? 
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This is the “tree search” 
version of the algorithm 
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This is why we might 
want to use DFS 
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DFS: Tree search version 

Suppose you don't track the explored set. 
– why wouldn't you want to do that? 

This is the “tree search” 
version of the algorithm 

What is the space complexity of DFS (tree version)? 
– how much memory is required? 

 – b: branching factor 
 – m: maximum depth of any node 
 – complexity =  

 
What is the time complexity of DFS (tree version)? 
– how many states are expanded before finding a solution? 

 – complexity =  
 
Is it complete? NO! 

What do we do??? 
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IDS: Iterative deepening search 

What is IDS? 
– do depth-limited DFS in stages, increasing the maximum 
depth at each stage 
 
What is depth limited search? 
– do DFS up to a certain pre-specified depth 



IDS: Iterative deepening search 

§  Idea:	get	DFS’s	space	advantage	with	BFS’s	
6me	/	shallow-solu6on	advantages	
§  Run	a	DFS	with	depth	limit	1.		If	no	
solu6on…	

§  Run	a	DFS	with	depth	limit	2.		If	no	
solu6on…	

§  Run	a	DFS	with	depth	limit	3.		…..	
	

§  Isn’t	that	wastefully	redundant?	
§  Generally	most	work	happens	in	the	
lowest	level	searched,	so	not	so	bad!	



IDS 
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IDS 

What is the space complexity of IDS (tree version)? 
– how much memory is required? 

 – b: branching factor 
 – m: maximum depth of any node 
 – complexity =  

 
What is the time complexity of DFS (tree version)? 
– how many states are expanded before finding a solution? 

 – complexity =  
 
Is it complete?  YES!!! 
 
Is it optimal?    YES!!! 



The	One	Queue	

§  All	these	search	algorithms	are	the	
same	except	for	fringe	strategies	
§  Conceptually,	all	fringes	are	
priority	queues	(i.e.	collec6ons	of	
nodes	with	aTached	priori6es)	

§  Prac6cally,	for	DFS	and	BFS,	you	
can	avoid	the	log(n)	overhead	
from	an	actual	priority	queue,	by	
using	stacks	and	queues	

§  Can	even	code	one	
implementa6on	that	takes	a	
variable	queuing	object	



Search	and	Models	

§  Search	operates	over	models	
of	the	world	
§  The	agent	doesn’t	
actually	try	all	the	plans	
out	in	the	real	world!	

§  Planning	is	all	“in	
simula6on”	

§  Your	search	is	only	as	
good	as	your	models…	



Search	Gone	Wrong?	


