
Graph Search

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

What is a graph?

Graph:

Edges:

Vertices:

Directed graph

What is a graph?

Graph:

Edges:

Vertices:

Undirected graph

What is a graph?

Graph:

Edges:

Vertices: Also called states

Also called transitions

Defining a graph: example

Defining a graph: example

How many states?

Defining a graph: example

Defining a graph: example

Pairs of states that are “connected”
by one turn of the cube.

Example: Romania

l  On holiday in Romania;
currently in Arad. Flight leaves
tomorrow from Bucharest

l  Formulate goal: Be in
Bucharest

l  Formulate problem:
l  states: various cities
l  actions: drive between cities

l  Find solution:
l  sequence of cities, e.g., Arad,

Sibiu, Fagaras, Bucharest

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

How?

Problem formulation

A problem is defined by four items:

l  initial state e.g., “at Arad”

l  successor function S(x) = set of action–state pairs

e.g., S(Arad) = {⟨Arad → Zerind, Zerind⟩, . . .}

l  goal test, can be explicit, e.g., x = “at Bucharest” implicit, e.g.,
NoDirt(x)

l  path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x, a, y) is
the step cost, assumed to be ≥ 0

l  A solution is a sequence of actions leading from the initial state to
a goal state

A search tree

Start at A

A search tree

Successors of A

A search tree

Successors of A

parent children

A search tree

Let's expand S
next

A search tree

Successors
of S

A search tree

A was already
visited!

A search tree

A was already
visited! So, prune it!

A search tree

In what order should we expand states?

– here, we expanded S, but we could also have expanded Z or T

– different search algorithms expand in different orders

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

Start node

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

Breadth first search (BFS)

We're going to maintain a queue called the fringe

– initialize the fringe as an empty queue

Fringe

Breadth first search (BFS)

– add A to the fringe

fringe
Fringe
A

Breadth first search (BFS)

-- remove A from the fringe

-- add successors of A to the fringe

fringe

Fringe
B
C

Breadth first search (BFS)

-- remove B from the fringe

-- add successors of B to the fringe

fringe

Fringe
C
D
E

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

-- remove C from the fringe

-- add successors of C to the fringe

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)

Breadth first search (BFS)

Breadth first search (BFS)

What is the purpose of the explored set?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a sol'n?

 – b: branching factor
 – d: depth of shallowest solution
 – complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a solution?

 – b: branching factor
 – d: depth of shallowest solution
 – complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a solution?

 – b: branching factor
 – d: depth of shallowest solution
 – complexity =

What is the space complexity of BFS?
– how much memory is required?

 – complexity = ???

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a solution?

 – b: branching factor
 – d: depth of shallowest solution
 – complexity =

What is the space complexity of BFS?
– how much memory is required?

 – complexity =

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a solution?

 – b: branching factor
 – d: depth of shallowest solution
 – complexity =

What is the space complexity of BFS?
– how much memory is required?

 – complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

Uniform Cost Search (UCS)

Uniform Cost Search (UCS)

Notice the distances between cities

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?

Uniform Cost Search (UCS)

Notice the distances between cities
– does BFS take these distances into account?
– does BFS find the path w/ shortest milage?
– compare S-F-B with S-R-P-B. Which costs less?

How do we fix this?
UCS!

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of

Uniform Cost Search (UCS)

Same as BFS except: expand node w/ smallest path cost

Length of path

Cost of going from state A to B:

Minimum cost of path going from start state to B:

BFS: expands states in order of hops from start

UCS: expands states in order of How?

Uniform Cost Search (UCS)

Simple answer: change the FIFO to a priority queue
– the priority of each element in the queue is its path cost.

Uniform Cost Search (UCS)

UCS

Fringe
A

Path Cost
0

Explored set:

UCS

140 118
75

Explored set: A

Fringe
A
S
T
Z

Path Cost
0
140
118
75

UCS

140 118
75

146

Explored set: A, Z

Fringe
A
S
T
Z
T

Path Cost
0
140
118
75
146

UCS

140 118
75

146 229

Explored set: A, Z, T

Fringe
A
S
T
Z
T
L

Path Cost
0
140
118
75
146
229

UCS

140 118
75

239 220 146 229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220 146 229

Explored set: A, Z, T, S

Fringe
A
S
T
Z
T
L
F
R

Path Cost
0
140
118
75
146
229
239
220

UCS

140 118
75

239 220

336 317

146 229

Explored set: A, Z, T, S, R

Fringe
A
S
T
Z
T
L
F
R
C
P

Path Cost
0
140
118
75
146
229
239
220
336
317

UCS

140 118
75

239 220

336 317

146 229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

UCS

140 118
75

239 220

336 317

146 229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?

UCS

140 118
75

239 220

336 317

146 229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue

UCS

140 118
75

239 220

336 317

146 229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

When does this end?
– when the goal state is removed from the queue

– NOT when the goal state is expanded

UCS

UCS Properties

Is UCS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
– how many states are expanded before finding a solution?

 – b: branching factor
 – C*: cost of optimal solution
 – e: min one-step cost
 – complexity =

What is the space complexity of BFS?
– how much memory is required?

 – complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

Strategy: expand
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

UCS vs BFS

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

3 9 1

16 4
11

5

7 13

8

10 11

17 11

0

6 Cost
contours

UCS vs BFS

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

q e

p

h

f

r

q

q c G

a

Search

Tiers

Strategy:	expand	a	
shallowest	node	first	

Implementa6on:	Fringe	
is	a	FIFO	queue	

UCS vs BFS

Remember: UCS explores increasing
cost contours

The good: UCS is complete and
optimal!

The bad:
Explores options in every “direction”
No information about goal location

We’ll fix that soon!

Start Goal

…

c3
c2

c1

Depth First Search (DFS)

DFS

fringe
Fringe
A

DFS

fringe

Fringe
A
B
C

DFS

fringe

Fringe
A
B
C
F
G

DFS

Fringe
A
B
C
F
G
H
I

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

What kind of a queue is this?

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

What kind of a queue is this?
 LIFO Queue!

(last in first out)

Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

DFS Properties: Graph search version

Is DFS complete?
– only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
– how many states are expanded before finding a solution?

 – complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
– how much memory is required?

 – complexity = number of states in the graph

Is DFS optimal?
– is it guaranteed to find the best solution (shortest path)?

This is the “graph search”
version of the algorithm

DFS Properties: Graph search version

Is DFS complete?
– only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
– how many states are expanded before finding a solution?

 – complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
– how much memory is required?

 – complexity = number of states in the graph

Is DFS optimal?
– is it guaranteed to find the best solution (shortest path)?

This is the “graph search”
version of the algorithm

So why would we ever use this algorithm?

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

This is why we might
want to use DFS

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete?

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete? NO!

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete? NO!

What do we do???

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
– any guesses?

IDS: Iterative deepening search

What is IDS?
– do depth-limited DFS in stages, increasing the maximum
depth at each stage

What is depth limited search?
– do DFS up to a certain pre-specified depth

IDS: Iterative deepening search

§  Idea:	get	DFS’s	space	advantage	with	BFS’s	
6me	/	shallow-solu6on	advantages	
§  Run	a	DFS	with	depth	limit	1.		If	no	
solu6on…	

§  Run	a	DFS	with	depth	limit	2.		If	no	
solu6on…	

§  Run	a	DFS	with	depth	limit	3.		…..	
	

§  Isn’t	that	wastefully	redundant?	
§  Generally	most	work	happens	in	the	
lowest	level	searched,	so	not	so	bad!	

IDS

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete?

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete? YES!!!

Is it optimal?

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

 – b: branching factor
 – m: maximum depth of any node
 – complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a solution?

 – complexity =

Is it complete? YES!!!

Is it optimal? YES!!!

The	One	Queue	

§  All	these	search	algorithms	are	the	
same	except	for	fringe	strategies	
§  Conceptually,	all	fringes	are	
priority	queues	(i.e.	collec6ons	of	
nodes	with	aTached	priori6es)	

§  Prac6cally,	for	DFS	and	BFS,	you	
can	avoid	the	log(n)	overhead	
from	an	actual	priority	queue,	by	
using	stacks	and	queues	

§  Can	even	code	one	
implementa6on	that	takes	a	
variable	queuing	object	

Search	and	Models	

§  Search	operates	over	models	
of	the	world	
§  The	agent	doesn’t	
actually	try	all	the	plans	
out	in	the	real	world!	

§  Planning	is	all	“in	
simula6on”	

§  Your	search	is	only	as	
good	as	your	models…	

Search	Gone	Wrong?	

