
Constraint Satisfaction Problems
(CSPs)

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

Assumptions about the world: a single agent, deterministic actions,
fully observed state, discrete state space

Planning: sequences of actions
The path to the goal is the important thing

Paths have various costs, depths
Heuristics give problem-specific guidance

Identification: assignments to variables
The goal itself is important, not the path

All paths at the same depth (for some formulations)
CSPs are specialized for identification problems

What is search for?

What is a CSP?

The space of all search
problems
– states and actions are

 atomic
– goals are arbitrary sets of

 states

CSPs All search problems

The space of all CSPs
– states are defined in

 terms of variables
– goals are defined in terms

 of constraints

A CSP is defined by:
1. a set of variables and their associated domains.
2. a set of constraints that must be satisfied.

What is a CSP?

Standard search problem:
 – state is a “black box”—any old data structure that supports
 goal test, eval, successor

CSP:

 – state is defined by variables Xi with values from domain Di
 – goal test is a set of constraints specifying allowable

 combinations of values for subsets of variables

Allows useful general-purpose algorithms with more power than
standard search algorithms

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent
territories have the same color

Variables:

Domain of variables:

Constraints:

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two
queens threaten each other

Variables:

Domain of variables:

Constraints:

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for every square

Binary

Enumeration of each possible disallowed configuration

– why is this a bad way to encode the problem?

Is there a better way?

CSP example: n-queens

Problem: place n queens on an nxn chessboard such that no two
queens threaten each other

Variables:

Domain of variables:

Constraints:

One variable for each row (i.e, each queen)

A number between 1 and 8

Enumeration of disallowed configurations

– why is this representation better?

1
2

3
4
5

6
7

8

The constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure
to speed up search

 E.g., Tasmania is an independent subproblem!

A harder CSP to represent: Cryptarithmetic

§  Variables:	
	

§  Domains:	
	

§  Constraints:	
	

Another example: sudoku

§  Variables:	
§  Each	(open)	square	

§  Domains:	
§  {1,2,…,9}	

§  Constraints:	
	
	

9-way	alldiff	for	each	row	

9-way	alldiff	for	each	column	

9-way	alldiff	for	each	region	

(or	can	have	a	bunch	of	
pairwise	inequality	
constraints)	

Discrete Variables
Finite domains

Size d means O(dn) complete assignments
E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., job scheduling, variables are start/end times for each job

Linear constraints solvable, nonlinear undecidable
Continuous variables

E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods

Varieties of CSPs

Varieties of Constraints
Unary constraints involve a single variable (equivalent to reducing

domains), e.g.:

Binary constraints involve pairs of variables, e.g.:

Higher-order constraints involve 3 or more variables:

 e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green often
representable by a cost for each variable assignment (e.g.,
constrained optimization problems)

Varieties of constraints

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and
where?

Hardware configuration

Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

… lots more!

Many real-world problems involve real-valued variables…

Real-world CSPs

States defined by the values assigned so far
(partial assignments)
Initial state: the empty assignment, {}
Successor function: assign a value to an unassigned

variable
Goal test: the current assignment is complete and

satisfies all constraints

We’ll start with the straightforward, naïve approach,

then improve it

Standard search formulation of CSPs

What would BFS do?

What would DFS do?

What problems does naïve search have?

Search methods

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

Naive solution: apply BFS, DFS, A*, ...

...

_ _ _ _ _ _ _

R _ _ _ _ _ _

R G _ _ _ _ _

R G R _ _ _ _

R G R R R R R

...

How many leaf nodes are expanded in the worst case?

This is bad.
How can we improve it?

Backtracking search

When a node is expanded, check that each successor state
is consistent before adding it to the queue.

Backtracking search

When a node is expanded, check that each successor state
is consistent before adding it to the queue.

Does this state have any
valid successors?

Backtracking search

– Backtracking = DFS + variable-ordering + fail-on-violation
– What are the choice points?
– Backtracking enables us the ability to solve a problem as big as 25-queens

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment

var←Select-Unassigned-Variable(Variables[csp],assignment, csp)
for each value in Order-Domain-Values(var,assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment

result←Recursive-Backtracking(assignment, csp)
if result ̸= failure then return result

remove {var = value} from assignment

return failure

Chapter 5 13

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Forward checking

Sometimes, failure is inevitable:

Can we detect this situation in advance?

Yes: keep track of viable variable assignments as you go

WA	
SA	

NT	 Q	

NSW	
V	

Forward checking

Track domain for each unassigned variable
 – initialize w/ domains from problem statement
 – each time you expand a node, update domains of all unassigned variables

Forward checking

Track domain for each unassigned variable
 – initialize w/ domains from problem statement
 – each time you expand a node, update domains of all unassigned variables

Forward checking

Track domain for each unassigned variable
 – initialize w/ domains from problem statement
 – each time you expand a node, update domains of all unassigned variables

Forward checking

Track domain for each unassigned variable
 – initialize w/ domains from problem statement
 – each time you expand a node, update domains of all unassigned variables

Forward checking

But, failure was inevitable here!
– what did we miss?

Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

	
	
	
	
	
	
	
	
	

Constraint propagation

Arc consistency

Simplest form of propagation makes each arc consistent

–Forward checking: Enforcing consistency of arcs pointing to each
new assignment

Arc consistency: X → Y is consistent iff

 for every value x of X there is some allowed y 	

	
	
	
	
	

	
	
Delete values from tail in order to make each arc consistent
	

	
	
	
	
	
	
	
	

WA	 SA	

NT	 Q	

NSW	

V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff:

for every value x of X there is some allowed y 	

	
	
	
	
	
	
	

Delete values from tail in order to make each arc consistent
	
	
	
	
	
	
	
	
	

WA	 SA	

NT	 Q	

NSW	

V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff:

for every value x of X there is some allowed y 	

	
	
	
	
	
	
	

Delete values from tail in order to make each arc consistent	
	
If X loses a value, neighbors of X need to be rechecked!

	
	

WA	 SA	

NT	 Q	

NSW	

V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff:

for every value x of X there is some allowed y 	

	
	
	
	
	
	

Delete values from tail in order to make each arc consistent	

If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

	
	

WA	 SA	

NT	 Q	

NSW	

V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27

Arc consistency

Why does this algorithm converge?

What’s the downside of enforcing arc consistency?

Arc consistency does not detect all inconsistencies...

§  ANer	enforcing	arc	consistency:	
§ Can	have	one	soluOon	leN	
§ Can	have	mulOple	soluOons	leN	
§ Can	have	no	soluOons	leN	(and	not	
know	it)	

	
§  Arc	consistency	sOll	runs	inside	a	

backtracking	search!	
What	went	
wrong	here?	

Increasing degrees of consistency

1-Consistency (Node Consistency): Each single node’s
domain has a value which meets that node’s unary
constraints

2-Consistency (Arc Consistency): For each pair of

nodes, any consistent assignment to one can be
extended to the other

K-Consistency: For each k nodes, any consistent
assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)

K-consistency

Strong k-consistency: also k-1, k-2, … 1 consistent

Claim: strong n-consistency means we can solve without
backtracking!

Why?
Choose any assignment to any variable
Choose a new variable
By 2-consistency, there is a choice consistent with the first
Choose a new variable
By 3-consistency, there is a choice consistent with the first 2
…

Lots of middle ground between arc consistency and n-consistency!
(e.g. k=3, called path consistency)

Strong k-consistency

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1.  Can we detect inevitable failure early?

2.  Which variable should be assigned next?

3.  In what order should its values be tried?

4.  Can we take advantage of problem structure?

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first

Heuristics for improving CSP performance

Degree heuristic:

– tie breaker for MRV heuristic
– choose the variable with the most constraints

 on remaining variables

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Chapter 5 20

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change

– choose value that contrains neighboring domains

 the least

Heuristics for improving CSP performance

Least constraining value (LCV) heuristic:

– consider how domains of neighbors would change

– choose value that contrains neighboring domains

 the least

The combination of MRV and
LCV w/ backtracking can solve

the 1000-queens problem

Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Chapter 5 32

Problem structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Using structure to reduce problem complexity

In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d)

But, sometimes CSPs have special structure that makes them simpler!

Using structure to reduce problem complexity

In general, what is the complexity of solving a CSP using backtracking?

(in terms of # variables, n, and max domain size, d) dn

But, sometimes CSPs have special structure that makes them simpler!

When the constraint graph is a tree

This CSP is easier to solve than the general case...

Algorithm for tree-structured CSPs:
Order: Choose a root variable, order variables so that parents

precede children

Remove backward: For i = n : 2, apply RemInconsistent(Par(Xi), Xi)
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Tree-structured CSPs

When the constraint graph is a tree

1. Do a topological sort
 – a partial ordering over variables

 i. choose any node as the root
 ii. list children after their parents

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok ok

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok ok

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok ok ok

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok ok ok

When the constraint graph is a tree

2. make the graph directed arc consistent
 – start w/ the tail and make each variable arc
 consistent wrt its parents

ok ok ok

When the constraint graph is a tree

3. Now, start at the root and do backtracking
 – will backtracking ever actually backtrack?

ok ok ok

So, what's the time complexity of this algorithm?

When the constraint graph is a tree

3. Now, start at the root and do backtracking
 – will backtracking ever actually backtrack?

ok ok ok

So, what's the time complexity of this algorithm?
Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time

Claim 1: After backward pass, all root-to-leaf arcs are consistent
Proof: Each X→Y was made consistent at one point and Y’s domain

could not have been reduced thereafter (because Y’s children
were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will

not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Tree-structured CSPs

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
 – is there anything we can do?

But, sometimes CSPs have special structure that makes them simpler!

Using structure to reduce problem complexity

But, what if the constraint graph is not a tree?
 – is there anything we can do?

This is not a tree...

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c gives runtime O((dc)(n-c)d2), very fast for small c

Nearly tree-structured CSPs

SA	

SA	 SA	 SA	

InstanOate	the	
cutset	(all	possible	

ways)	

Compute	residual	
CSP	for	each	
assignment	

Solve	the	residual	
CSPs	(tree	
structured)	

Choose	a	cutset	

Cutset conditioning

Cutset conditioning

How many variables need to be assigned to turn
 this graph into a tree?

Local search methods typically work with “complete” states, i.e., all
variables assigned

To apply to CSPs:

Take an assignment with unsatisfied constraints
Operators reassign variable values
No fringe! Live on the edge.

Algorithm: While not solved,

Variable selection: randomly select any conflicted variable
Value selection: min-conflicts heuristic:

Choose a value that violates the fewest constraints
I.e., hill climb with h(n) = total number of violated constraints

Iterative algorithms for CSPs

States: 4 queens in 4 columns (44 =

256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: c(n) = number of attacks

Example: 4-Queens

Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

Performance of Min-Conflicts

Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

Local search: improve a single option until you can’t make it better

(no fringe!)

New successor function: local changes

Generally much faster and more memory efficient (but incomplete

and suboptimal)

Many local search algorithms (that we won’t cover): hill climbing,

simulated annealing, genetic algorithms, etc.

Aside: Local search more generally

CSPs are a special kind of search problem:
States are partial assignments
Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
Ordering
Filtering
Structure

Iterative min-conflicts is often effective in

practice

Summary: CSPs

