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Assumptions about the world: a single agent, deterministic actions, 
fully observed state, discrete state space 
 

Planning: sequences of actions 
The path to the goal is the important thing 

Paths have various costs, depths 
Heuristics give problem-specific guidance 

 

Identification: assignments to variables 
The goal itself is important, not the path 

All paths at the same depth (for some formulations) 
CSPs are specialized for identification problems 

What is search for? 



What is a CSP? 

The space of all search 
problems 
– states and actions are 

  atomic 
– goals are arbitrary sets of 

  states 

CSPs All search problems 

The space of all CSPs 
– states are defined in  

 terms of variables 
– goals are defined in terms 

 of constraints 

A CSP is defined by: 
1. a set of variables and their associated domains. 
2. a set of constraints that must be satisfied. 



What is a CSP? 

Standard search problem: 
 – state is a “black box”—any old data structure that supports 
 goal test, eval, successor  

 
CSP:  

 – state is defined by variables Xi with values from domain Di 
  – goal test is a set of constraints specifying allowable  

 combinations of values for subsets of variables  
 
Allows useful general-purpose algorithms with more power than 
standard search algorithms  



CSP example: map coloring 

Problem: assign each territory a color such that no two adjacent 
territories have the same color 
 
Variables: 
 
Domain of variables: 
 
Constraints: 
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Binary 

Enumeration of each possible disallowed configuration 

– why is this a bad way to encode the problem? 
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CSP example: n-queens 

Problem: place n queens on an nxn chessboard such that no two 
queens threaten each other 
 
Variables: 
 
Domain of variables: 
 
Constraints: 

One variable for each row (i.e, each queen) 

A number between 1 and 8 

Enumeration of disallowed configurations 

– why is this representation better? 
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The constraint graph 

Binary CSP: each constraint relates at most two variables  
 
Constraint graph: nodes are variables, arcs show constraints  
 
General-purpose CSP algorithms use the graph structure 
to speed up search 

 E.g., Tasmania is an independent subproblem!  



A harder CSP to represent: Cryptarithmetic 

§  Variables:	
	

§  Domains:	
	

§  Constraints:	
	



Another example: sudoku 

§  Variables:	
§  Each	(open)	square	

§  Domains:	
§  {1,2,…,9}	

§  Constraints:	
	
	

9-way	alldiff	for	each	row	

9-way	alldiff	for	each	column	

9-way	alldiff	for	each	region	

(or	can	have	a	bunch	of	
pairwise	inequality	
constraints)	



Discrete Variables 
Finite domains 

Size d means O(dn) complete assignments 
E.g., Boolean CSPs, including Boolean satisfiability (NP-complete) 

Infinite domains (integers, strings, etc.) 
E.g., job scheduling, variables are start/end times for each job 

Linear constraints solvable, nonlinear undecidable 
Continuous variables 

E.g., start/end times for Hubble Telescope observations 
Linear constraints solvable in polynomial time by LP methods 

Varieties of CSPs 



Varieties of Constraints 
Unary constraints involve a single variable (equivalent to reducing 

domains), e.g.: 
  

 
Binary constraints involve pairs of variables, e.g.: 

 

 
Higher-order constraints involve 3 or more variables: 

    e.g., cryptarithmetic column constraints 
 

Preferences (soft constraints), e.g., red is better than green often 
representable by a cost for each variable assignment (e.g., 
constrained optimization problems) 
 
  

 

Varieties of constraints 



Assignment problems: e.g., who teaches what class 

Timetabling problems: e.g., which class is offered when and 
where? 

Hardware configuration 

Transportation scheduling 

Factory scheduling 

Circuit layout 

Fault diagnosis 

… lots more! 

 

Many real-world problems involve real-valued variables… 

Real-world CSPs 



States defined by the values assigned so far 
(partial assignments) 
Initial state: the empty assignment, {} 
Successor function: assign a value to an unassigned 

variable 
Goal test: the current assignment is complete and 

satisfies all constraints 
 
We’ll start with the straightforward, naïve approach, 

then improve it 
 

Standard search formulation of CSPs 



What would BFS do? 
 
 
What would DFS do? 
 
 
What problems does naïve search have? 

Search methods 



Naive solution: apply BFS, DFS, A*, ... 

... 
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R G _ _ _ _ _ 
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R G R R R R R 

... 

How many leaf nodes are expanded in the worst case? 
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Naive solution: apply BFS, DFS, A*, ... 

... 

_ _ _ _ _ _ _ 

R _ _ _ _ _ _ 

R G _ _ _ _ _ 

R G R _ _ _ _ 

R G R R R R R 

... 

How many leaf nodes are expanded in the worst case? 

This is bad. 
How can we improve it? 



Backtracking search 

When a node is expanded, check that each successor state 
is consistent before adding it to the queue. 



Backtracking search 

When a node is expanded, check that each successor state 
is consistent before adding it to the queue. 

Does this state have any 
valid successors? 



Backtracking search 

– Backtracking = DFS + variable-ordering + fail-on-violation 
– What are the choice points? 
– Backtracking enables us the ability to solve a problem as big as 25-queens 

Backtracking search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking({ }, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment

var←Select-Unassigned-Variable(Variables[csp],assignment, csp)
for each value in Order-Domain-Values(var,assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment

result←Recursive-Backtracking(assignment, csp)
if result ̸= failure then return result

remove {var = value} from assignment

return failure

Chapter 5 13



Forward checking 

Sometimes, failure is inevitable: 

Can we detect this situation in advance? 
 
 



Forward checking 

Sometimes, failure is inevitable: 

Can we detect this situation in advance? 
 
Yes: keep track of viable variable assignments as you go 

WA	
SA	

NT	 Q	

NSW	
V	



Forward checking 

Track domain for each unassigned variable 
 – initialize w/ domains from problem statement 
 – each time you expand a node, update domains of all unassigned variables 
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Forward checking 

Track domain for each unassigned variable 
 – initialize w/ domains from problem statement 
 – each time you expand a node, update domains of all unassigned variables 



Forward checking 

But, failure was inevitable here! 
– what did we miss? 



Forward checking propagates information from assigned to 
unassigned variables, but doesn’t provide early detection for all 
failures:  

 

 

 

 

 

 

 

NT and SA cannot both be blue! 

Constraint propagation repeatedly enforces constraints locally  

	
	
	
	
	
	
	
	
	

Constraint propagation 



Arc consistency 

Simplest form of propagation makes each arc consistent 

–Forward checking: Enforcing consistency of arcs pointing to each 
new assignment  

Arc consistency: X → Y is consistent iff  

 for every value x of X there is some allowed y 	

	
	
	
	
	

	
	
Delete values from tail in order to make each arc consistent 
	

	
	
	
	
	
	
	
	

WA	 SA	

NT	 Q	

NSW	

V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency 

Simplest form of propagation makes each arc consistent  
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Arc consistency 

Simplest form of propagation makes each arc consistent  

X → Y is consistent iff:  

for every value x of X there is some allowed y 	

	
	
	
	
	
	

Delete values from tail in order to make each arc consistent	

If X loses a value, neighbors of X need to be rechecked! 

Arc consistency detects failure earlier than forward checking 

Can be run as a preprocessor or after each assignment  
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V	

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T
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Arc consistency 

Why does this algorithm converge? 
 
What’s the downside of enforcing arc consistency? 
  



Arc consistency does not detect all inconsistencies... 

§  ANer	enforcing	arc	consistency:	
§ Can	have	one	soluOon	leN	
§ Can	have	mulOple	soluOons	leN	
§ Can	have	no	soluOons	leN	(and	not	
know	it)	

	
§  Arc	consistency	sOll	runs	inside	a	

backtracking	search!	
What	went	
wrong	here?	



Increasing degrees of consistency 
 

1-Consistency (Node Consistency): Each single node’s 
domain has a value which meets that node’s unary 
constraints 

 
2-Consistency (Arc Consistency): For each pair of 

nodes, any consistent assignment to one can be 
extended to the other 

 

K-Consistency: For each k nodes, any consistent 
assignment to k-1 can be extended to the kth node. 

 
 

Higher k more expensive to compute 
 
(You need to know the k=2 case: arc consistency) 

 
 

K-consistency 



Strong k-consistency: also k-1, k-2, … 1 consistent 
 

Claim: strong n-consistency means we can solve without 
backtracking! 

 

Why? 
Choose any assignment to any variable 
Choose a new variable 
By 2-consistency, there is a choice consistent with the first 
Choose a new variable 
By 3-consistency, there is a choice consistent with the first 2 
… 

 

Lots of middle ground between arc consistency and n-consistency!  
(e.g. k=3, called path consistency) 

Strong k-consistency 



Improving backtracking efficiency 

General-purpose methods can give huge gains in speed: 

  

1.  Can we detect inevitable failure early? 
 

2.  Which variable should be assigned next? 
 

3.  In what order should its values be tried? 
 

4.  Can we take advantage of problem structure?  



Heuristics for improving CSP performance 

Minimum remaining values (MRV) heuristic: 
 
– expand variables w/ minimum size domain first 
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Heuristics for improving CSP performance 

Minimum remaining values (MRV) heuristic: 
 
– expand variables w/ minimum size domain first 



Heuristics for improving CSP performance 

Degree heuristic: 
 
– tie breaker for MRV heuristic 
– choose the variable with the most constraints  

  on remaining variables  
 
 

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Chapter 5 20



Heuristics for improving CSP performance 

Least constraining value (LCV) heuristic: 
 
– consider how domains of neighbors would change  
 
– choose value that contrains neighboring domains 

  the least 



Heuristics for improving CSP performance 

Least constraining value (LCV) heuristic: 
 
– consider how domains of neighbors would change  
 
– choose value that contrains neighboring domains 

  the least 

The combination of MRV and  
LCV w/ backtracking can solve  

the 1000-queens problem 



Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Chapter 5 32

Problem structure 

 
Tasmania and mainland are independent subproblems  
 
Identifiable as connected components of constraint graph  



Using structure to reduce problem complexity 

In general, what is the complexity of solving a CSP using backtracking? 
 
(in terms of # variables, n, and max domain size, d)   

But, sometimes CSPs have special structure that makes them simpler! 



Using structure to reduce problem complexity 

In general, what is the complexity of solving a CSP using backtracking? 
 
(in terms of # variables, n, and max domain size, d)     dn 

But, sometimes CSPs have special structure that makes them simpler! 



When the constraint graph is a tree 

This CSP is easier to solve than the general case... 



Algorithm for tree-structured CSPs: 
Order: Choose a root variable, order variables so that parents 

precede children 
 
 
 
 

 
 

Remove backward: For i = n : 2, apply RemInconsistent(Par(Xi), Xi)  
Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi) 

Tree-structured CSPs 



When the constraint graph is a tree 

1. Do a topological sort 
 – a partial ordering over variables 

 
 i. choose any node as the root 
 ii. list children after their parents 



When the constraint graph is a tree 

2. make the graph directed arc consistent 
 – start w/ the tail and make each variable arc  
  consistent wrt its parents 
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When the constraint graph is a tree 

3. Now, start at the root and do backtracking 
 – will backtracking ever actually backtrack? 

ok ok ok 

So, what's the time complexity of this algorithm? 
Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time  



Claim 1: After backward pass, all root-to-leaf arcs are consistent 
Proof: Each X→Y was made consistent at one point and Y’s domain 

could not have been reduced thereafter (because Y’s children 
were processed before Y) 

 

 
 
 
Claim 2: If root-to-leaf arcs are consistent, forward assignment will 

not backtrack 
Proof: Induction on position 
 
Why doesn’t this algorithm work with cycles in the constraint graph? 

 

Note: we’ll see this basic idea again with Bayes’ nets 

Tree-structured CSPs 



Using structure to reduce problem complexity 

But, what if the constraint graph is not a tree? 
 – is there anything we can do? 

But, sometimes CSPs have special structure that makes them simpler! 



Using structure to reduce problem complexity 

But, what if the constraint graph is not a tree? 
 – is there anything we can do? 

This is not a tree... 



Conditioning: instantiate a variable, prune its neighbors' domains 
 

Cutset conditioning: instantiate (in all ways) a set of variables such 
that the remaining constraint graph is a tree 

 
Cutset size c gives runtime O((dc)(n-c)d2 ), very fast for small c 

 

Nearly tree-structured CSPs 



SA	

SA	 SA	 SA	

InstanOate	the	
cutset	(all	possible	

ways)	

Compute	residual	
CSP	for	each	
assignment	

Solve	the	residual	
CSPs	(tree	
structured)	

Choose	a	cutset	

Cutset conditioning 



Cutset conditioning 

How many variables need to be assigned to turn  
 this graph into a tree? 



Local search methods typically work with “complete” states, i.e., all 
variables assigned 

 
To apply to CSPs: 

Take an assignment with unsatisfied constraints 
Operators reassign variable values 
No fringe!  Live on the edge. 

 
Algorithm: While not solved, 

Variable selection: randomly select any conflicted variable 
Value selection: min-conflicts heuristic: 

Choose a value that violates the fewest constraints 
I.e., hill climb with h(n) = total number of violated constraints 

Iterative algorithms for CSPs 



 
States: 4 queens in 4 columns (44 = 

256 states) 
Operators: move queen in column 
Goal test: no attacks 
Evaluation: c(n) = number of attacks 

Example: 4-Queens 



Given random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (e.g., n = 10,000,000)! 

 

The same appears to be true for any randomly-generated CSP 
except in a narrow range of the ratio 

 

 

 

 

 

 

 

Performance of Min-Conflicts 



Tree search keeps unexplored alternatives on the fringe (ensures 
completeness) 

 
Local search: improve a single option until you can’t make it better 

(no fringe!) 
 
New successor function: local changes 
 
Generally much faster and more memory efficient (but incomplete 

and suboptimal) 
 
Many local search algorithms (that we won’t cover): hill climbing, 

simulated annealing, genetic algorithms, etc.  

Aside: Local search more generally 



CSPs are a special kind of search problem: 
States are partial assignments 
Goal test defined by constraints 

 

Basic solution: backtracking search 
 

Speed-ups: 
Ordering 
Filtering 
Structure 
 

 
Iterative min-conflicts is often effective in 

practice 

Summary: CSPs 


