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Models	describe	how	(a	por1on	of)	the	world	works	
	
Models	are	always	simplifica1ons	

May	not	account	for	every	variable	
May	not	account	for	all	interac1ons	between	variables	
“All	models	are	wrong;	but	some	are	useful.”	

					–	George	E.	P.	Box	
	

	
What	do	we	do	with	probabilis1c	models?	

We	(or	our	agents)	need	to	reason	about	unknown	variables,	given	
evidence	

Example:	explana1on	(diagnos1c	reasoning)	
Example:	predic1on	(causal	reasoning)	
Example:	value	of	informa1on	

Probabilistic models 



Two	problems	with	using	full	joint	distribu1on	tables	as	our	probabilis1c	
models:	
Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	big	to	represent	explicitly	
Hard	to	learn	(es1mate)	anything	empirically	about	more	than	a	few	variables	at	a	1me	

	
Bayes’nets:	a	technique	for	describing	complex	joint	distribu1ons	(models)	
using	simple,	local	distribu1ons	(condi1onal	probabili1es)	
More	properly	called	graphical	models	
We	describe	how	variables	locally	interact	
Local	interac1ons	chain	together	to	give	global,	indirect	interac1ons	

Bayes’ nets: Big picture 



	
Nodes:	variables	(with	domains)	

Can	be	assigned	(observed)	or	unassigned	
(unobserved)	

	
Arcs:	interac1ons	

Similar	to	CSP	constraints	
Indicate	“direct	influence”	between	variables	
Formally:	encode	condi1onal	independence	
(more	later)	

Graphical model notation 



§  A	directed,	acyclic	graph,	one	node	per	random	variable	
§  A	condi1onal	probability	table	(CPT)	for	each	node	

§  A	collec1on	of	distribu1ons	over	X,	one	for	each	combina1on	of	parents’	values	

§  Bayes’	nets	implicitly	encode	joint	distribu1ons	

§  As	a	product	of	local	condi1onal	distribu1ons	
§  To	see	what	probability	a	BN	gives	to	a	full	assignment,	mul1ply	all	the	relevant	condi1onals	together:	

	

	
	

Bayes’ net semantics 

Bayesian networks
A compact representation of a joint probability distribution

I Each node corresponds to a random variable
I Arrows connect pairs of nodes, and there are no directed

cycles
I Associated with each node Xi is a distribution P(Xi | PaXi )

B S

E

D C

battery failure solar panel failure

electrical system failure

trajectory deviation communication loss

DMU 2.1.4

Representation of joint distribution

B S

E

D C

P(B) 1 1 P(S)

4 P(E | B, S)

P(D | E ) 2 2 P(C | E )

I Chain rule:
P(B, S, E , D, C) = P(B)P(S)P(E | B, S)P(D | E )P(C | E )

I How many independent parameters in general? 25 ≠ 1 = 31
I How many independent parameters in Bayes net?

1 + 1 + 4 + 2 + 2 = 10

Bayesian networks can reduce the number of parameters
DMU 2.1.4



N	independent	coin	flips	
	
	
	
	
	
No	interac1ons	between	variables:	absolute	independence	
	
	
	
	
	

X1	 X2	 Xn	

Example: Coin flips 



Variables:	
R:	It	rains	

T:	There	is	traffic	

	

Model	1:	independence	

	

	
	

	

	

	
	

Why	is	an	agent	using	model	2	be^er?	

	

R	

T	

R	

T	

	
	
	

§  Model	2:	rain	causes	traffic	

Example: Traffic 



Bayes’	nets	implicitly	encode	joint	distribu1ons	
	

As	a	product	of	local	condi1onal	distribu1ons	
	

To	see	what	probability	a	BN	gives	to	a	full	assignment,	
mul1ply	all	the	relevant	condi1onals	together:	

	
	
	
Example:	
	
	

	

Probabilities in Bayes’ nets 



Why	are	we	guaranteed	that	se_ng	
	

	

	
	

				results	in	a	proper	joint	distribu1on?			
	

	

Chain	rule	(valid	for	all	distribu1ons):		
	
Assume	condi1onal	independences:		
	
						à	Consequence:	

	

Not	every	BN	can	represent	every	joint	distribu1on	
	

The	topology	enforces	certain	condi1onal	independencies	

Probabilities in Bayes’ nets 



Only	distribu0ons	whose	variables	are	absolutely	independent	can	be	
represented	by	a	Bayes’	net	with	no	arcs.	

h	 0.5	

t	 0.5	

h	 0.5	

t	 0.5	

h	 0.5	

t	 0.5	

X1	 X2	 Xn	

Example: Coin flips 



R	

T	

+r	 1/4	

-r	 3/4	

	+r	 +t	 3/4	

-t	 1/4	

-r	 +t	 1/2	

-t	 1/2	

Example: Traffic 



Burglary	 Earthquake	

Alarm	

John	
calls	

Mary
calls	

B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

Example: Alarm network 



Causal	direc1on	

R	

T	

+r	 1/4	

-r	 3/4	

+r	 +t	 3/4	

-t	 1/4	

-r	 +t	 1/2	

-t	 1/2	

+r	 +t	 3/16	

+r	 -t	 1/16	

-r	 +t	 6/16	

-r	 -t	 6/16	

Example: Traffic 



Reverse	causality?	

T	

R	

+t	 9/16	

-t	 7/16	

+t	 +r	 1/3	

-r	 2/3	

-t	 +r	 1/7	

-r	 6/7	

+r	 +t	 3/16	

+r	 -t	 1/16	

-r	 +t	 6/16	

-r	 -t	 6/16	

Example: Reverse traffic 



When	Bayes’	nets	reflect	the	true	causal	pa^erns:	
	

Onen	simpler	(nodes	have	fewer	parents)	
Onen	easier	to	think	about	
Onen	easier	to	elicit	from	experts	
	

BNs	need	not	actually	be	causal	
	

Some1mes	no	causal	net	exists	over	the	domain	(especially	if	
variables	are	missing)	

E.g.	consider	the	variable	Traffic	
End	up	with	arrows	that	reflect	correla1on,	not	causa1on	
	

What	do	the	arrows	really	mean?	
	

Topology	may	happen	to	encode	causal	structure	
Topology	really	encodes	condi1onal	independence	

Causality? 



§  How	big	is	a	joint	distribu1on	over	N	
Boolean	variables?	

2N	
	

§  How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?	

O(N	*	2k+1)	
	

§  Both	give	you	the	power	to	calculate	
	

	
§  BNs:	Huge	space	savings!	
	

§  Also	easier	to	elicit	local	CPTs	
	

§  Also	faster	to	answer	queries	(coming) 		
	

Size of a Bayes’ net 



§  Assump1ons	we	are	required	to	make	to	define	the	
Bayes	net	when	given	the	graph:	

	
	

§  Beyond	above	“chain	rule	→	Bayes	net”	condi1onal	
independence	assump1ons		

	

§  Onen	addi1onal	condi1onal	independences	
	

§  They	can	be	read	off	the	graph	
	

§  Important	for	modeling:	understand	assump1ons	made	
when	choosing	a	Bayes	net	graph	

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))

Bayes’ nets: Assumptions 



§  Condi1onal	independence	assump1ons	directly	from	simplifica1ons	in	chain	rule:	
	
	
	
§  Addi1onal	implied	condi1onal	independence	assump1ons?	

Example 



§  Important	ques1on	about	a	BN:	
§  Are	two	nodes	independent	given	certain	evidence?	
§  If	yes,	can	prove	using	algebra	(tedious	in	general)	
§  If	no,	can	prove	with	a	counter	example	
§  Example:	

	

	

	

§  Ques1on:	are	X	and	Z	necessarily	independent?	
§  Answer:	no.		Example:	low	pressure	causes	rain,	which	causes	traffic.	
§  X	can	influence	Z,	Z	can	influence	X	(via	Y)	
§  Addendum:	they	could	be	independent:	how?	

Independence in a Bayes’ net 



§  Study	independence	proper1es	for	triples	
	
§  Analyze	complex	cases	in	terms	of	member	triples	
	
§  D-separa1on:	a	condi1on	/	algorithm	for	answering	such	
queries	

	

D-separation: Outline 



§  This	configura1on	is	a	“causal	chain”	
	

	

	

	
	

	
	
	
	
	

X:	Low	pressure										Y:	Rain																										Z:	Traffic	

§  Guaranteed	X	independent	of	Z	?		
§  No!	

§  One	example	set	of	CPTs	for	which	X	is	not	
independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

	
§  Example:	

	

§  Low	pressure	causes	rain	causes	traffic,	
				high	pressure	causes	no	rain	causes	no		
				traffic	

	
§  In	numbers:	

		
				P(	+y	|	+x	)	=	1,	P(	-y	|	-	x	)	=	1,	
				P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	

	
	

	

Causal chains 



§  This	configura1on	is	a	“causal	chain”	
	

	

	

	
	

	
	
	
	
	

§  Guaranteed	X	independent	of	Z	given	Y?	
	
	
	
	
	
	
	
	
	
	
	

§  Evidence	along	the	chain	“blocks”	the	
influence	

Yes!	

X:	Low	pressure										Y:	Rain																								Z:	Traffic	

Causal chains 



§  This	configura1on	is	a	“common	cause”	
	

	

	

	
	

	
	
	
	
	

§  Guaranteed	X	independent	of	Z	?				
§  No!	
	

§  One	example	set	of	CPTs	for	which	X	is	not	
independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

	
§  Example:	

	

§  Project	due	causes	both	forums	busy		
	and	lab	full		

	
§  In	numbers:	

		
								P(	+x	|	+y	)	=	1,	P(	-x	|	-y	)	=	1,	
						P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	

	
	

	

Y:	Project	
due	

X:	Forums	
busy	 Z:	Lab	full	

Common cause 



§  This	configura1on	is	a	“common	cause”	
	

	

	

	
	

	
	
	
	
	

§  Guaranteed	X	and	Z	independent	given	Y?	
	
	
	
	
	
	
	
	
	
	
	

§  Observing	the	cause	blocks	influence	
between	effects.	

	

Yes!	

Y:	Project	
due	

X:	Forums	
busy	 Z:	Lab	full	

Common cause 



§  Last	configura1on:	two	causes	of	one	
effect	(v-structures)	

	

Z:	Traffic	

§  Are	X	and	Y	independent?	
	

§  Yes:	the	ballgame	and	the	rain	cause	traffic,	but	
they	are	not	correlated	

	

§  S1ll	need	to	prove	they	must	be	(try	it!)	
	

§  Are	X	and	Y	independent	given	Z?	
	

§  No:	seeing	traffic	puts	the	rain	and	the	ballgame	in	
compe11on	as	explana1on.	

	

§  This	is	backwards	from	the	other	cases	
	

§  Observing	an	effect	ac1vates	influence	between	
possible	causes.	

	

X:	Raining	 Y:	Ballgame	

Common effect 



Conditional independence: Battery example 

Bayesian networks
A compact representation of a joint probability distribution

I Each node corresponds to a random variable
I Arrows connect pairs of nodes, and there are no directed

cycles
I Associated with each node Xi is a distribution P(Xi | PaXi )

B S

E

D C

battery failure solar panel failure

electrical system failure

trajectory deviation communication loss

DMU 2.1.4

Representation of joint distribution

B S

E

D C

P(B) 1 1 P(S)

4 P(E | B, S)

P(D | E ) 2 2 P(C | E )

I Chain rule:
P(B, S, E , D, C) = P(B)P(S)P(E | B, S)P(D | E )P(C | E )

I How many independent parameters in general? 25 ≠ 1 = 31
I How many independent parameters in Bayes net?

1 + 1 + 4 + 2 + 2 = 10

Bayesian networks can reduce the number of parameters
DMU 2.1.4



C is independent of B given E  

Knowing that you have a battery failure does not affect your belief that there is a 
communication loss if you know that there has been an electrical system failure 

D is independent of S given E  

If you know there is an electrical failure, observing a trajectory deviation does not affect 
your belief that there has been a solar panel failure 

Bayes nets: conditional independence example 

Conditional independence

I The structure of a Bayes net encodes conditional
independence assumptions

I X and Y are independent if and only if
P(X , Y ) = P(X )P(Y )

I Equivalently, P(X ) = P(X | Y )
I X and Y are conditionally independent given Z if and only if

P(X , Y | Z ) = P(X | Z )P(Y | Z )
I Equivalently, P(X | Z ) = P(X | Y , Z )

Independence assumptions reduce the number of parameters

DMU 2.1.5

Conditional independence example

B S

E

D C

I C is independent of B given E
I Knowing that you have a battery failure does not a�ect your

belief that there is a communication loss if you know that
there has been an electrical system failure

I D is independent of S given E
I If you know there is an electrical failure, observing a trajectory

deviation does not a�ect your belief that there has been a solar
panel failure

DMU 2.1.5



B is independent of S  

Knowing there is a battery failure does not affect your belief about whether there has been a 
solar panel failure 

B is not independent of S given E  

If you know there has been an electrical failure and there has not been a solar panel failure, 
then it is more likely there was a battery failure 

Influence only flows through B → E ← S (a v-structure) when E (or one of its descendants) is 
known 

Conditional independence in v-structures 



Two sets of nodes, A and B, are conditionally independent given node set C are called d-
separated in the Bayes net if for any path between A and B:

•  The path contains a chain of nodes, A → X → B, such that X is in C  

•  The path contains a fork, A ← X → B, such that X is in C

•  The path contains a v-structure, A → X ← B, such that X is not in C 
and no descendant of X is in C

Markov blanket: the parents, the children and the parents of the children 

•  A node is independent of all other nodes in the graph given its 
Markov blanket 

Independence concepts: General case 



Yes	

Example 



Yes	

Yes	

Yes	

Example 



§  Variables:	
§  R:	Raining	
§  T:	Traffic	
§  D:	Roof	drips	
§  S:	I’m	sad	

§  Ques1ons:	
	

Yes	

Example 



§  Given	a	Bayes	net	structure,	can	run	d-
separa1on	algorithm	to	build	a	complete	list	of	
condi1onal	independences	that	are	necessarily	
true	of	the	form	

	
	
	
	
§  This	list	determines	the	set	of	probability	

distribu1ons	that	can	be	represented		
	

	
	

	

Xi �� Xj |{Xk1 , ..., Xkn}

Structure implications 



§  Given	some	graph	topology	
G,	only	certain	joint	
distribu1ons	can	be	encoded	

§  The	graph	structure	
guarantees	certain	
(condi1onal)	independences	

§  (There	might	be	more	
independence)	

§  Adding	arcs	increases	the	set	
of	distribu1ons,	but	has	
several	costs	

§  Full	condi1oning	can	encode	
any	distribu1on	

Topology limits distributions 



§  We	want	to	track	mul1ple	variables	over	1me,	using	mul1ple	sources	
of	evidence	

§  Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	1me	
§  Variables	from	1me	t	can	condi1on	on	those	from	t-1	
	
	
	
	
	
	

	
	
§  Dynamic	Bayes	nets	are	a	generaliza1on	of	HMMs	

Dynamic	Bayes	Nets	(DBNs) 



§  A	par1cle	is	a	complete	sample	for	a	1me	step	
	

§  Ini*alize:	Generate	prior	samples	for	the	t=1	Bayes	net	
§  Example	par1cle:	G1

a	=	(3,3)	G1
b	=	(5,3)		

	

§  Elapse	*me:	Sample	a	successor	for	each	par1cle		
§  Example	successor:	G2

a	=	(2,3)	G2
b	=	(6,3)	

	

§  Observe:	Weight	each	en0re	sample	by	the	likelihood	of	the	evidence	condi1oned	on	
the	sample	
§  Likelihood:	P(E1a	|G1

a	)	*	P(E1b	|G1
b	)		

	

§  Resample:	Select	prior	samples	(tuples	of	values)	in	propor1on	to	their	likelihood	
	

DBN	par1cle	filters 



Video:	Pacman	sonar	--	Ghost	DBN 



§  Examples:	
	

§  Posterior	probability	
	
	

§  Most	likely	explana1on:	
	
	
	

Inference	

§  Inference:	calcula1ng	some	
useful	quan1ty	from	a	joint	
probability	distribu1on	

	

	

	



Initial evidence: car won’t start 

Testable variables (green), “broken, so fix it” variables (orange)  

Hidden variables (gray) ensure sparse structure, reduce parameters  

Bayes net for car diagnosis 

Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

lights

no oil no gas starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

gas gauge

fuel line
blocked

oil light

battery
 meter

car won’t
    start dipstick

Chapter 14.1–3 19



Suppose we want to infer the distribution P(B=true | D=true, C=true)

Query variables: B

Evidence variables: D, C

Hidden variables: S, E

Inference 

Example: Inference in temporal models

X0 X1 X2

O0 O1 O2

I Filtering: P(Xk | O0:k) (Kalman filter/particle filter)
I Prediction: P(Xk | O0:t) where k > t
I Smoothing: P(Xk | O0:t) where k < t (forward-backward)
I Most likely explanation: arg maxX0:t P(X0:t | O0:t) (Viterbi)

DMU 2.2.2

Inference

Suppose we want to infer the distribution P(b1 | d1, c1)

B S

E

D C

I Query variables: B
I Evidence variables: D, C
I Hidden variables: S, E

DMU 2.2.3



Burglar alarm example Example contd.

.001
P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B
T
T
F
F

E
T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A
T
F

.90

.05

P(J|A) A
T
F

.70

.01

P(M|A)

Chapter 14.1–3 6



B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

Burglar alarm example 



What if I want to calculate P(B|j,m)? 

Burglar alarm example Example contd.

.001
P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B
T
T
F
F

E
T
F
T
F

.95

.29

.001

.94

P(A|B,E)

A
T
F

.90

.05

P(J|A) A
T
F

.70

.01

P(M|A)

Chapter 14.1–3 6



General case: 
Evidence variables:  
Query* variable: 
Hidden variables: 
 

 

All	variables	

*	Works	fine	with	
mul0ple	query	
variables,	too	

§  We	want:	

§  Step	1:	Select	the	entries	
consistent	with	the	
evidence	

§  Step	2:	Sum	out	H	to	get	joint	of	
query	and	evidence	

§  Step	3:	Normalize	

⇥ 1

Z

Inference by enumeration 



P(W)? 

 

 

P(W | winter)? 

 

 

 

P(W | winter, hot)? 

S	 T	 W	 P	
summer	 hot	 sun	 0.30	
summer	 hot	 rain	 0.05	
summer	 cold	 sun	 0.10	
summer	 cold	 rain	 0.05	
winter	 hot	 sun	 0.10	
winter	 hot	 rain	 0.05	
winter	 cold	 sun	 0.15	
winter	 cold	 rain	 0.20	

Inference by enumeration 



Slightly intelligent way to sum out variables from the joint 
without actually constructing its explicit representation 

P(B|j,m)

= P(B,j,m)/P(j,m)

= α P(B,j,m)

=α P
a
∑

e
∑ (B,e,a, j,m)

Inference by enumeration 



Slightly intelligent way to sum out variables from the joint 
without actually constructing its explicit representation 

Rewrite full joint entries using product of CPT entries: 

P(B|j,m)

      

 

Recursive depth-first enumeration: O(n) space, O(dn) time 

Inference by enumeration 

=α P
a
∑

e
∑ (B)P(e)P(a | B,e)P( j | a)P(m | a)

=αP(B) P
e
∑ (e) P

a
∑ (a | B,e)P( j | a)P(m | a)



Enumeration is inefficient: repeated computation 

  e.g., computes P(j|a)P(m|a) for each value of e

Evaluation tree Evaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e

Chapter 14.4–5 6



P (Antilock|observed variables) = ?

Inference by enumeration? 



§  Why	is	inference	by	enumera1on	so	slow?	
§  You	join	up	the	whole	joint	distribu1on	before	

you	sum	out	the	hidden	variables	
	

	

§  Idea:	interleave	joining	and	marginalizing!	
§  Called	“Variable	Elimina1on”	
§  Sum	right-to-len,	storing	intermediate	results	

(factors)	to	avoid	recomputa1on	
§  S1ll	NP-hard,	but	usually	much	faster	than	

inference		
	
	
	
	
	
	
	
	

§  First	we’ll	need	some	new	nota1on:	factors	
	
	

Inference by enumeration vs. variable elimination 



§  In	general,	when	we	write	P(Y1	…	YN	|	X1	…	XM)	
 

§  It	is	a	“factor,”	a	mul1-dimensional	array	
 

§  Its	values	are	P(y1	…	yN	|	x1	…	xM)	
 

§  Any	assigned	(=lower-case)	X	or	Y	is	a	dimension	missing	(selected)	from	the	
array	

Factors 



§  Random	Variables	
§  R:	Raining	
§  T:	Traffic	
§  L:	Late	for	class!	

	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)

Example: Traffic domain 



§  Track	objects	called	factors	
§  Ini1al	factors	are	local	CPTs	(one	per	node)	
	
	
	
	
§  Any	known	values	are	selected	

§  E.g.	if	we	know																		,	the	ini1al	factors	are	
	

	

	

§  Procedure:	Join	all	factors,	then	eliminate	all	hidden	variables	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+t	 +l	 0.3	
-t	 +l	 0.1	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

Inference by enumeration: Procedural outline 



§  First	basic	opera1on:	joining	factors	
§  Combining	factors:	

§  Just	like	a	database	join	
§  Get	all	factors	over	the	joining	variable	
§  Build	a	new	factor	over	the	union	of	the	variables	

involved	
	

§  Example:	Join	on	R	

	

	

	

§  Computa1on	for	each	entry:	pointwise	products	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

Operation 1: Join factors 



Join	R	
+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 +t	 +l	 0.024	
+r	 +t	 -l	 0.056	
+r	 -t	 +l	 0.002	
+r	 -t	 -l	 0.018	
-r	 +t	 +l	 0.027	
-r	 +t	 -l	 0.063	
-r	 -t	 +l	 0.081	
-r	 -t	 -l	 0.729	

Join	T	

Example: Multiple joins 



§  Second	basic	opera1on:	marginaliza1on	
§  Take	a	factor	and	sum	out	a	variable	

§  Shrinks	a	factor	to	a	smaller	one	
§  A	projec1on	opera1on	

§  Example:	
	
	
	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 0.17	
-t	 0.83	

Operation 2: Eliminate 



Sum	
out	R	

Sum	
out	T	

+r	 +t	 +l	 0.024	
+r	 +t	 -l	 0.056	
+r	 -t	 +l	 0.002	
+r	 -t	 -l	 0.018	
-r	 +t	 +l	 0.027	
-r	 +t	 -l	 0.063	
-r	 -t	 +l	 0.081	
-r	 -t	 -l	 0.729	

+t	 +l	 0.051	
+t	 -l	 0.119	
-t	 +l	 0.083	
-t	 -l	 0.747	

+l	 0.134	
-l	 0.886	

Multiple elimination 



Thus far: Multiple join, multiple eliminate (= inference by enumeration) 



Marginalizing early (= variable elimination) 



§  Inference	by	Enumera1on	
	

P (L) = ?

§  Variable	Elimina1on	
	

=
X

t

P (L|t)
X

r

P (r)P (t|r)=
X

t

X

r

P (L|t)P (r)P (t|r)

Traffic domain 



Sum	out	R	

+r	 +t	 0.08	
+r	 -t	 0.02	
-r	 +t	 0.09	
-r	 -t	 0.81	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+t	 0.17	
-t	 0.83	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

Join	R	

+t	 +l	 0.051	
+t	 -l	 0.119	
-t	 +l	 0.083	
-t	 -l	 0.747	

+l	 0.134	
-l	 0.866	

Join	T	 Sum	out	T	

Variable elimination 



§  If	evidence,	start	with	factors	that	select	that	evidence	
§  No	evidence	uses	these	ini1al	factors:	

	
	
	
	

§  Compu1ng																								,	the	ini1al	factors	become:	
	
	

	

§  We	eliminate	all	variables	other	than	query	+	evidence	

+r	 0.1	
-r	 0.9	

+r	 +t	 0.8	
+r	 -t	 0.2	
-r	 +t	 0.1	
-r	 -t	 0.9	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

+r	 0.1	 +r	 +t	 0.8	
+r	 -t	 0.2	

+t	 +l	 0.3	
+t	 -l	 0.7	
-t	 +l	 0.1	
-t	 -l	 0.9	

Evidence 



§  Result	will	be	a	selected	joint	of	query	and	evidence	
§  E.g.	for	P(L	|	+r),	we	would	end	up	with:	

	
	
	
	

	

§  To	get	our	answer,	just	normalize	this!	
	

§  That	’s	it!	

+l	 0.26	
-l	 0.74	

+r	 +l	 0.026	
+r	 -l	 0.074	

Normalize	

Evidence 



§  Query:	
	
§  Start	with	ini1al	factors:	

§  Local	CPTs	(but	instan1ated	by	evidence)	
	
§  While	there	are	s1ll	hidden	variables	

(not	Q	or	evidence):	
§  Pick	a	hidden	variable	H	
§  Join	all	factors	men1oning	H	
§  Eliminate	(sum	out)	H	

	

§  Join	all	remaining	factors	and	normalize	

General variable elimination 



Choose A 

Example 



Choose	E	

Finish	with	B	

Example 



	

marginal	can	be	obtained	from	joint	by	summing	out	
	
use	Bayes’	net	joint	distribu1on	expression	
	
use	x*(y+z)	=	xy	+	xz	
	
joining	on	a,	and	then	summing	out	gives	f1	
	
use	x*(y+z)		=	xy	+	xz	
	
joining	on	e,	and	then	summing	out	gives	f2	

All	we	are	doing	is	exploi*ng	uwy	+	uwz	+	uxy	+	uxz	+	vwy	+	vwz	+	vxy	+vxz	=	(u+v)(w+x)(y+z)	to	improve	computa*onal	efficiency!	

Same example in equations 



P(B|j,m)

P(B|j,m)

 

Complexity depends on factor size 

Variable ordering 

=αP(B) P
e
∑ (e) P

a
∑ (a | B,e)P( j | a)P(m | a)

=αP(B) P
a
∑ ( j | a)P(m | a) P

e
∑ (e)P(a | B,e)



Consider the query P(JohnCalls|Burglary = true)

Sum over m is identically 1; M is irrelevant to the query 

Thm 1: Y is irrelevant unless Y ∈ Ancestors(Q ∪ E)

Here, Q = {JohnCalls}, E = {Burglary}, and Ancestors(Q ∪ E) = 
{Alarm,Earthquake}

so MaryCalls is irrelevant 

Irrelevant variables 

P(J | b) =αP(b) P
e
∑ (e) P

a
∑ (a | b,e)P(J | a) P

m
∑ (m | a)



§  The	computa1onal	and	space	complexity	of	variable	elimina1on	is	
determined	by	the	largest	factor	

	
§  The	elimina1on	ordering	can	greatly	affect	the	size	of	the	largest	
factor	
§  E.g.,	2n	vs.	2	

	
§  Does	there	always	exist	an	ordering	that	only	results	in	small	factors?	

§  No!	

	

VE: Computation and space complexity 



Complexity in polytrees is linear in number of variables  

A polytree has no undirected cycles 

In general, inference in Bayesian networks is NP hard  

In worst case, it is probably exponential 

Variable elimination algorithm relies on a heuristic ordering of variables to 
eliminate in sequence  

Often linear, sometimes exponential 

Belief propagation propagates ``messages'' through the network: Linear for 
polytrees, not exact for other graphs 

Complexity of exact inference 



Suppose we want to infer the distribution P(B=true | D=true, C=true)

Query variables: B

Evidence variables: D, C

Hidden variables: S, E

Approximate inference 

Example: Inference in temporal models

X0 X1 X2

O0 O1 O2

I Filtering: P(Xk | O0:k) (Kalman filter/particle filter)
I Prediction: P(Xk | O0:t) where k > t
I Smoothing: P(Xk | O0:t) where k < t (forward-backward)
I Most likely explanation: arg maxX0:t P(X0:t | O0:t) (Viterbi)

DMU 2.2.2

Inference

Suppose we want to infer the distribution P(b1 | d1, c1)

B S

E

D C

I Query variables: B
I Evidence variables: D, C
I Hidden variables: S, E

DMU 2.2.3



List the nodes in order 

If there is an edge A → B, then A comes before B in the list 

Topological sort 

Example: Inference in temporal models

X0 X1 X2

O0 O1 O2

I Filtering: P(Xk | O0:k) (Kalman filter/particle filter)
I Prediction: P(Xk | O0:t) where k > t
I Smoothing: P(Xk | O0:t) where k < t (forward-backward)
I Most likely explanation: arg maxX0:t P(X0:t | O0:t) (Viterbi)

DMU 2.2.2

Inference

Suppose we want to infer the distribution P(b1 | d1, c1)

B S

E

D C

I Query variables: B
I Evidence variables: D, C
I Hidden variables: S, E

DMU 2.2.3



 

Direct sampling in a Bayes Net 

Approximate inference through sampling 



In topological order 

Sample from the condition probability distribution of X, given the sampled 
parent values 

Approximate inference through sampling (Direct sampling) 

Complexity of exact inference

I Complexity in polytrees is linear in number of variables
I A polytree has no undirected cycles

I In general, inference in Bayesian networks is NP hard
I In worst case, it is probably exponential

I Variable elimination algorithm relies on a heuristic ordering of
variables to eliminate in sequence

I Often linear, sometimes exponential
I Belief propagation propagates “messages” through the

network
I Linear for polytrees, not exact for other graphs

DMU 2.2.4

Approximate inference through sampling

B S

E

D C

B S E D C
1

DMU 2.2.5



In topological order 

Sample from the condition probability distribution of X, given the sampled 
parent values 

Approximate inference through sampling (Direct sampling) 

Approximate inference through sampling

B S

E

D C

B S E D C
1 1

DMU 2.2.5

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1

DMU 2.2.5



In topological order 

Sample from the condition probability distribution of X, given the sampled 
parent values 

Approximate inference through sampling (Direct sampling) 

Approximate inference through sampling

B S

E

D C

B S E D C
1 1

DMU 2.2.5

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1

DMU 2.2.5



In topological order 

Sample from the condition probability distribution of X, given the sampled 
parent values 

Approximate inference through sampling (Direct sampling) 

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0

DMU 2.2.5

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0 0
0 1 0 1 0
0 0 0 1 1
1 0 1 1 1
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 0 0

Only 2 rows are useful for estimating P(b1 | d1, c1)!

If likelihood of evidence is small, then many samples are required

DMU 2.2.5



What is the current approximation for P(B=true | D=true, C=true)? 

Approximate inference through sampling (Direct sampling) 

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0

DMU 2.2.5

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0 0
0 1 0 1 0
0 0 0 1 1
1 0 1 1 1
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 0 0

Only 2 rows are useful for estimating P(b1 | d1, c1)!

If likelihood of evidence is small, then many samples are required

DMU 2.2.5



If likelihood of evidence is small, then many samples are required 

Approximate inference through sampling (Direct sampling) 

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0

DMU 2.2.5

Approximate inference through sampling

B S

E

D C

B S E D C
1 1 1 0 0
0 1 0 1 0
0 0 0 1 1
1 0 1 1 1
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 0 0

Only 2 rows are useful for estimating P(b1 | d1, c1)!

If likelihood of evidence is small, then many samples are required

DMU 2.2.5



Likelihood weighting involves generating samples that are 
consistent with evidence and weighting them 

Gibbs sampling involves making random local changes to 
samples (form of Markov Chain Monte Carlo) 

Many other approaches 

Approximate sampling approaches 


