Adversarial Search

Chris Amato
Northeastern University
Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA

Adversarial search

How should Pac-Man move when there are ghosts?

What is adversarial search?

Adversarial search: planning used to play a game such as chess or checkers

- algorithms are similar to graph search except that we plan under the assumption that our opponent will maximize his own advantage...

Some types of games

		deterministic
chance		
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble nuclear war

Some types of games

Chess Solved/unsolved?

Checkers Solved/unsolved?

Tic-tac-toe Solved/unsolved?

Go Solved/unsolved?

Outcome of game can be predicted from any initial state assuming both players play perfectly

Examples of adversarial search

Chess
Unsolved

Checkers Solved

Tic-tac-toe Solved

Go Unsolved

Outcome of game can be predicted from any initial state assuming both players play perfectly

Examples of adversarial search

Chess

Unsolved

~10^40 states

Checkers
Solved

Solved
Less than 9 !=362k states

Go
Unsolved
~10^20 states

Tic-tac-toe
?

Outcome of game can be predicted from any initial state assuming both players play perfectly

Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Perfect information / imperfect information

What is a zero-sum game?

Zero-Sum Games
Agents have opposite utilities (values on outcomes)
Lets us think of a single value that one maximizes and the other minimizes (for two player game

$$
\left.U_{A}=-U_{B}\right)
$$

Adversarial, pure competition

General Games

Agents have independent utilities (values on outcomes)
Cooperation, indifference, competition, and more are all possible
More later on non-zero-sum games

Deterministic games

Many possible formalizations, one is:
States: S (start at s_{0})
Players: $P=\{1 \ldots N\}$ (usually take turns)
Actions: A (may depend on player / state)
Transition Function: $S \times A \rightarrow S$
Terminal Test: $S \rightarrow\{t, f\}$
Terminal Utilities: $S \times P \rightarrow R$

Solution for a player is a policy: $S \rightarrow A$

Deterministic games

Many possible formalizations, one is:
States: S (start at s_{0})
Players: $P=\{1 \ldots N\}$ (usually take turns)
Actions: A (may depend on player / state)
Transition Function: $S \times A \rightarrow S$
Terminal Test: $S \rightarrow\{t, f\}$
Terminal Utilities: $S \times P \rightarrow R$

Solution for a pla
How is this similar/different to the definition of a standard search problem?

Deterministic games

Many possible formalizations, one is:
States: S (start at s_{0})
Players: $P=\{1 \ldots N\}$ (usually take turns)
Actions: A (may depend on player / state)
Transition Function: $S \times A \rightarrow S$
Terminal Test: $S \rightarrow\{t, f\}$
Terminal Utilities: $S \times P \rightarrow R$

Solution for a plas How do we solve this problem?

Adversarial search

This is a game tree for tic-tac-toe

What is Minimax?

Consider a simple game:

1. you make a move
2. your opponent makes a move
3. game ends

What is Minimax?

Consider a simple game:

1. you make a move
2. your opponent makes a move

What does the minimax tree look like in this case?
3. game ends

What is Minimax?

Consider a simple game:

1. you make a move
2. your opponent makes a move

What does the minimax tree look like in this case?
3. game ends

What is Minimax?

These are terminal utilities

- assume we know what these values are

What is Minimax?

What is Minimax?

$$
V(s)=\max _{s^{\prime} \in \text { successors }(s)} V\left(s^{\prime}\right)
$$

What is Minimax?

Minimax

Deterministic, zero-sum games:
Tic-tac-toe, chess, checkers
One player maximizes result
The other minimizes result

Minimax search:
A state-space search tree
Players alternate turns
Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax

Okay - so we know how to back up values ...
... but, how do we construct the tree?

This tree is already built...

Minimax

Notice that we only get utilities at the bottom of the tree ...

- therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ...

- therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ...

- therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ... - therefore, DFS makes sense.

Minimax

Notice that we only get utilities at the bottom of the tree ...

- therefore, DFS makes sense.
- since most games have forward progress, the distinction between tree search and graph search is less important

Minimax

```
function MINIMAX-DECISION(state) returns an action
    return arg max }a\in\operatorname{ACTIONS(s)}\operatorname{MiN-VALUE(RESUlT(state,a))
function MAX-VALUE(state) returns a utility value
    if Terminal-Test(state) then return Utility(state)
    v\leftarrow-\infty
    for each a in Actions(state) do
        v\leftarrow\operatorname{Max}(v,\operatorname{Min-ValuE(Result}(s,a)))
    return v
```

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow \infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(\operatorname{Result}(s, a)))$
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move, that is, the move that leads to the outcome with the best utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state. The notation $\operatorname{argmax}_{a \in S} f(a)$ computes the element a of set S that has the maximum value of $f(a)$.

Minimax properties

Is it always correct to assume your opponent plays optimally?

Minimax properties

Is minimax optimal? Is it complete?

Minimax properties

Is minimax optimal? Is it complete?
Time complexity $=$?
Space complexity = ?

Minimax properties

Is minimax optimal? Is it complete?
Time complexity $=O\left(b^{d}\right)$
Space complexity $=O(b d)$

Minimax properties

Is minimax optimal? Is it complete?
Time complexity $=O\left(b^{d}\right)$
Space complexity $=O(b d)$
Is it practical? In chess, $b=35, \mathrm{~d}=100$

Minimax properties

Is minimax optimal? Is it complete?
Time complexity $=O\left(b^{d}\right)$
Space complexity $=O(b d)$
Is it practical? In chess, $b=35, d=100$
$O\left(35^{100}\right)$ is a big number...

Minimax properties

Is minimax optimal? Is it complete?
Time complexity $=O\left(b^{d}\right)$
Space complexity $=O(b d)$
Is it practical? In chess, $\mathrm{b}=35, \mathrm{~d}=100$
So what can we do?

Evaluation functions

Key idea: cut off search at a certain depth and give the corresponding nodes an estimated value.

Evaluation functions

Key idea: cut off search at. a certain depth and give the corresponding nodes an estimated value.

Evaluation functions

Problem: In realistic games, cannot search to leaves!
Solution: Depth-limited search
Instead, search only to a limited depth in the tree
Replace terminal utilities with an evaluation function for non-terminal positions

Example:
Suppose we have 100 seconds
Can explore 10K nodes / sec
So can check 1M nodes per move
Guarantee of optimal play is gone
More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

Evaluation functions

How does the evaluation function make the estimate?

- depends upon domain

For example, in chess, the value of a state might equal the sum of piece values.

- a pawn counts for 1
- a rook counts for 5
- a knight counts for 3

A weighted linear evaluation function

At what depth do you run the evaluation function?

Option 1: cut off search at a fixed depth

Option 2: cut off search at particular states deeper than a certain threshold

The deeper your threshold, the less the quality of the evaluation function matters...

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

So, we don't need to expand these nodes in order to back up correct values!

Alpha/Beta pruning

So, we don't need to expand these nodes in order to back up correct values!

That's alpha-beta pruning.

Max

Min

2

Alpha/Beta pruning: algorithm idea

General configuration (MIN version)

We're computing the MIN-VALUE at some node n
We're looping over n's children
n 's estimate of the childrens' min is dropping
Who cares about n 's value? MAX
Let a be the best value that MAX can get at any choice point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)

MAX version is symmetric
MAX
MIN
\vdots
\vdots
MAX
MIN

Alpha/Beta pruning: algorithm

α : MAX's best option on path to root
β : MIN's best option on path to root
def max-value(state, α, β):
initialize $v=-\infty$
for each successor of state:
$v=\max (v$, value(successor, $\alpha, \beta)$)
if $v \geq \beta$ return v
$\alpha=\max (\alpha, v)$
return v
def min-value(state , α, β):
initialize $v=+\infty$
for each successor of state:
$v=\min (v$, value(successor, $\alpha, \beta))$
if $v \leq \alpha$ return v
$\beta=\min (\beta, v)$
return v

Alpha/Beta pruning

(-inf,+inf)

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning

Alpha/Beta pruning: algorithm

function Alpha-Beta-Decision(state) returns an action return the a in $\operatorname{Actions(state)~maximizing~Min-Value(Result(~} a$, state))
function Max-VALUE(state, α, β) returns a utility value inputs: state, current state in game
α, the value of the best alternative for MAX along the path to state
β, the value of the best alternative for MIN along the path to state
if Terminal-Test(state) then return Utility (state)
$v \leftarrow-\infty$
for a, s in $\operatorname{Successors}($ state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(s, \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function Min-Value(state, α, β) returns a utility value
same as Max-Value but with roles of α, β reversed

Alpha/Beta properties

Is it complete?

Alpha/Beta properties

Is it complete?
How much does alpha/beta help relative to minimax?
Minimax time complexity $=O\left(b^{m}\right)$
Alpha/beta time complexity $>=O\left(b^{\frac{m}{2}}\right)$

- the improvement w/ alpha/beta depends upon move ordering...

Alpha/Beta properties

Is it complete?
How much does alpha/beta help relative to minimax?

$$
\begin{aligned}
& \text { Minimax time complexity }=O\left(b^{m}\right) \\
& \text { Alpha/beta time complexity }>=O\left(b^{\frac{m}{2}}\right)
\end{aligned}
$$

- the improvement $\mathrm{w} /$ alpha/beta depends uponimove ordering..

The order in which we expand a node.

Alpha/Beta properties

Is it complete?
How much does alpha/beta help relative to minimax?

$$
\begin{aligned}
& \text { Minimax time complexity }=O\left(b^{m}\right) \\
& \text { Alpha/beta time complexity }>=O\left(b^{\frac{m}{2}}\right)
\end{aligned}
$$

- the improvement w/ alpha/beta depends uponimove ordering...

The order in which we expand a node.

How to choose move ordering? Use IDS.

- on each iteration of IDS, use prior run to inform ordering of next node expansions.

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax search

Why wouldn't we know the result of an action?
Explicit randomness: rolling dice
Unpredictable opponents: the ghosts respond randomly Actions can fail: when moving a robot, wheels may slip

Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under optimal play

Max nodes as in minimax search
Chance nodes are like min nodes but the outcome is uncertain
Calculate their expected utilities
I.e. take weighted average (expectation) of children

Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Expectimax demo (min)

Expectimax demo (exp)

Expectimax pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)
def max-value(state): initialize v = $-\infty$ for each successor of state:
$v=\max (v$, value(successor)) return v

def exp-value(state):

initialize $v=0$
for each successor of state:
$p=$ probability(successor) v+=p* value(successor)
return v

Expectimax pseudocode

Expectimax example

Expectimax pruning?

Depth-limited expectimax

Mixing these ideas: Nondeterministic games

Backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

Algorithm for nondeterministic games

Expectiminimax gives perfect play
Just like Minimax, except we must also handle chance nodes:
if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then return average of ExpectiMinimax-Value of Successors(state)

Nondeterministic games in practice

Dice rolls increase b : 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves depth $4=20 \times(21 \times 20)^{3} \approx 1.2 \times 10^{9}$
As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished
$\alpha-\beta$ pruning is much less effective
TDGammon uses depth-2 search + very good Eval \approx worldchampion level

Adversarial search: summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

- perfection is unattainable \Rightarrow must approximate
- good idea to think about what to think about
- uncertainty constrains the assignment of values to states
- optimal decisions depend on information state, not real state

Games are to Al as grand prix racing is to automobile design

