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Adversarial search 

How should Pac-Man move when there are ghosts? 



What is adversarial search? 

Adversarial search: planning used to play a game such as chess or checkers 

– algorithms are similar to graph search except that we plan under the 
assumption that our opponent will maximize his own advantage... 



Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe
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Examples of adversarial search 

Chess 

 

Checkers 

 

Tic-tac-toe 
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Outcome of game can be predicted 
from any initial state assuming 

both players play perfectly 

Unsolved 

 

Solved 

 

Solved 

 

Unsolved 

~10^40 states 

 

~10^20 states 

 

Less than 9!=362k states 

 

? 



Different types of games 

Deterministic / stochastic 

 

Two player / multi player? 

 

Zero-sum / non zero-sum 

 

Perfect information / imperfect information 



Zero-Sum Games 
Agents have opposite utilities (values 

on outcomes) 

Lets us think of a single value that 
one maximizes and the other 
minimizes (for two player game 

                                     ) 

Adversarial, pure competition 

General Games 
Agents have independent utilities 

(values on outcomes) 

Cooperation, indifference, 
competition, and more are all 
possible 

More later on non-zero-sum games 

What is a zero-sum game? 



Many possible formalizations, one is: 
States: S (start at s0) 
Players: P={1...N} (usually take turns) 
Actions: A (may depend on player / state) 
Transition Function: S x A → S 
Terminal Test: S → {t,f} 
Terminal Utilities: S x P → R 

 
Solution for a player is a policy: S → A 

Deterministic games 



Many possible formalizations, one is: 
States: S (start at s0) 
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Solution for a player is a policy: S → A How is this similar/different 

to the definition of a standard  
search problem? 
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Many possible formalizations, one is: 
States: S (start at s0) 
Players: P={1...N} (usually take turns) 
Actions: A (may depend on player / state) 
Transition Function: S x A → S 
Terminal Test: S → {t,f} 
Terminal Utilities: S x P → R 

 
Solution for a player is a policy: S → A How do we solve  

this problem? 

Deterministic games 



Adversarial search 



This is a game tree for tic-tac-toe 
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This is a game tree for tic-tac-toe 
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Them 

Them 
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Utility 



What is Minimax? 
Consider a simple game: 

 1. you make a move 
 2. your opponent makes a move 
 3. game ends 
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What is Minimax? 

3 8 12 2 6 4 14 2 5 
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(you) 
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Max 
(you) 

Consider a simple game: 
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look like in this case? 



What is Minimax? 

3 8 12 2 6 4 14 2 5 

Max 
(you) 

Min 
(them) 

Max 
(you) 

These are terminal utilities 
– assume we know what   

 these values are 
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What is Minimax? 

3 8 12 2 6 4 14 2 5 

3 2 2 

3 Max 
(you) 

Min 
(them) 

Max 
(you) 

This is called  
“backing up”  
the values 



Deterministic, zero-sum games: 

Tic-tac-toe, chess, checkers 
One player maximizes result 
The other minimizes result 
 

Minimax search: 

A state-space search tree 
Players alternate turns 
Compute each node’s minimax 

value: the best achievable 
utility against a rational 
(optimal) adversary 

8	 2	 5	 6	

max	

min	2	 5	

5	

Terminal	values:	
part	of	the	game		

Minimax	values:	
computed	recursively	

Minimax 



Minimax 

3 8 12 2 6 4 14 2 5 

Okay – so we know how to back up values ... 
 
… but, how do we construct the tree? 

This tree is already built... 



Minimax 

Notice that we only get utilities at the bottom of the tree … 
– therefore, DFS makes sense. 
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Notice that we only get utilities at the bottom of the tree … 
– therefore, DFS makes sense. 
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Minimax 

Notice that we only get utilities at the bottom of the tree … 
– therefore, DFS makes sense. 
– since most games have forward progress, the distinction 

 between tree search and graph search is less important 



Minimax 



Is it always correct to assume your opponent plays optimally? 

Minimax properties 

10	 10	 9	 100	

max	

min	



Is minimax optimal? Is it complete? 
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Is minimax optimal? Is it complete? 
 
Time complexity =  
 
Space complexity =  
 
Is it practical? In chess, b=35, d=100 

Minimax properties 

is a big number... 

So what can we do? 



Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value. 

Evaluation functions 

Cut it off here 

? ? ? ? 
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Key idea: cut off search at a certain depth and give the 
corresponding nodes an estimated value. 

Evaluation functions 

Cut it off here 

? ? ? ? 

-1	 -2	 4	 9	

4	

min	

max	

-2	 4	
the evaluation function 
makes this estimate. 



Problem: In realistic games, cannot search to leaves! 
 

Solution: Depth-limited search 
Instead, search only to a limited depth in the tree 
Replace terminal utilities with an evaluation function          

for non-terminal positions 

 
Example: 

Suppose we have 100 seconds 
Can explore 10K nodes / sec 
So can check 1M nodes per move 
 

Guarantee of optimal play is gone 
 

More plies makes a BIG difference 
 

Use iterative deepening for an anytime algorithm 
 

? ? ? ? 

-1	 -2	 4	 9	

4	

min	

max	

-2	 4	

Evaluation functions 



Evaluation functions 

How does the evaluation function make the estimate? 
 – depends upon domain 

For example, in chess, the value of a state 
might equal the sum of piece values. 

 – a pawn counts for 1 
 – a rook counts for 5 
 – a knight counts for 3 
 ... 



A weighted linear evaluation function 

number of pawns on the board 

number of knights on the board 

A pawn counts for 1 

A knight counts for 3 
Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
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At what depth do you run the evaluation function? 

Option 1: cut off search at a fixed depth 
 
 
Option 2: cut off search at particular 
states deeper than a certain threshold 
 

The deeper your threshold, the less the 
quality of the evaluation function 
matters... 

? ? ? ? 

-1	 -2	 4	 9	

4	

min	

max	

-2	 4	



Alpha/Beta pruning 
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Alpha/Beta pruning 

Max 

Min 

3 8 12 2 14 2 5 

3 2 2 

3 

So, we don't need to expand these nodes 
in order to back up correct values! 

That's alpha-beta 
pruning. 



General configuration (MIN version) 

We’re computing the MIN-VALUE at some node n 

We’re looping over n’s children 

n’s estimate of the childrens’ min is dropping 

Who cares about n’s value?  MAX 

Let a be the best value that MAX can get at any 
choice point along the current path from the root 

If n becomes worse than a, MAX will avoid it, so 
we can stop considering n’s other children (it’s 
already bad enough that it won’t be played) 

 

MAX version is symmetric 

MAX	

MIN	

MAX	

MIN	

a	

n	

Alpha/Beta pruning: algorithm idea 



def	min-value(state	,	α,	β):	
iniBalize	v	=	+∞ 
for	each	successor	of	state:	

v	=	min(v,	value(successor,	α,	β))	
if	v	≤	α	return	v	
β	=	min(β,	v)	

return	v	

	

def	max-value(state,	α,	β):	
iniBalize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	value(successor,	α,	β))	
if	v	≥	β	return	v	
α	=	max(α,	v)	

return	v	

α: MAX’s best option on path to root 
β: MIN’s best option on path to root 

Alpha/Beta pruning: algorithm 
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Alpha/Beta pruning 

3 8 12 

3 2 

(3,+inf) 

(-inf,3) (3,+inf) 

2 

Prune because value 
(2) is out of alpha-beta 
range 



Alpha/Beta pruning 
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Alpha/Beta pruning 
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Alpha/Beta pruning 
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(3,+inf) 

(-inf,3) (3,+inf) 

2 

2 (3,5) 

14 5 2 



Alpha/Beta pruning: algorithm 
The α–β algorithm

function Alpha-Beta-Decision(state) returns an action
return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value

inputs: state, current state in game
α, the value of the best alternative for max along the path to state

β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v←−∞

for a, s in Successors(state) do
v←Max(v, Min-Value(s,α,β))
if v ≥ β then return v

α←Max(α, v)
return v

function Min-Value(state,α,β) returns a utility value

same as Max-Value but with roles of α,β reversed

Chapter 6 19
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Alpha/Beta properties 

Is it complete? 
 
How much does alpha/beta help relative to minimax? 
 

 Minimax time complexity =  
 

 Alpha/beta time complexity >=  
 

  – the improvement w/ alpha/beta depends upon move ordering... 

3 8 12 2 6 4 14 2 5 

3 2 2 

3 The order in which we expand a node. 

How to choose move ordering? Use IDS. 
– on each iteration of IDS, use prior run to inform ordering of next node expansions. 



10	 10	 9	 100	

max	

min	

Idea:	Uncertain	outcomes	controlled	by	chance,	not	an	adversary!	

Worst-Case vs. Average Case 



Why wouldn’t we know the result of an action? 
Explicit randomness: rolling dice 
Unpredictable opponents: the ghosts respond randomly 
Actions can fail: when moving a robot, wheels may slip 
 

Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes 

 
Expectimax search: compute the average score under 

optimal play 
Max nodes as in minimax search 
Chance nodes are like min nodes but the outcome is uncertain 
Calculate their expected utilities 
I.e. take weighted average (expectation) of children 

 
Later, we’ll learn how to formalize the underlying uncertain-

result problems as Markov Decision Processes 

10	 4	 5	 7	

max	

chance	

10	 10	 9	 100	

Expectimax search 



Expectimax demo (min) 



Expectimax demo (exp) 



 

def value(state): 
if the state is a terminal state: return the state’s utility 
if the next agent is MAX: return max-value(state) 
if the next agent is EXP: return exp-value(state) 

def	exp-value(state):	
iniBalize	v	=	0	
for	each	successor	of	state:	
	 	p	=	probability(successor)	
v	+=	p	*	value(successor)	

return	v	
	

	

def	max-value(state):	
iniBalize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	value(successor))	
return	v	

Expectimax pseudocode 



def	exp-value(state):	
iniBalize	v	=	0	
for	each	successor	of	state:	
	 	p	=	probability(successor)	
v	+=	p	*	value(successor)	

return	v	
	

5	 7	8	 24	 -12	

1/2	
1/3	

1/6	

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)	=	10	

Expectimax pseudocode 



12 9 6 0 3 2 15 4 6 

Expectimax example 



12 9 3 2 

Expectimax pruning? 



…	

…	

492	 362	 …	

400	 300	

EsBmate	of	
true	

expecBmax	
value	(which	
would	require	
a	lot	of	work	
to	compute)	

Depth-limited expectimax  



Backgammon Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25
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Mixing these ideas: Nondeterministic games 



In nondeterministic games, chance introduced by dice, 
card-shuffling  

Simplified example with coin-flipping:  

Nondeterministic games in general 

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1
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max	

min	

chance	



Expectiminimax gives perfect play 

Just like Minimax, except we must also handle chance nodes:  

...  

if state is a Max node then 
return the highest ExpectiMinimax-Value of Successors(state)  

if state is a Min node then 
return the lowest ExpectiMinimax-Value of Successors(state)  

if state is a chance node then 
return average of ExpectiMinimax-Value of Successors(state)  

...  

Algorithm for nondeterministic games 



Dice rolls increase b: 21 possible rolls with 2 dice  

Backgammon ≈ 20 legal moves  

 depth 4=20×(21×20)3 ≈1.2×109 

As depth increases, probability of reaching a given node shrinks  

 ⇒ value of lookahead is diminished  

α–β pruning is much less effective  

TDGammon uses depth-2 search + very good Eval ≈ world-
champion level  

Nondeterministic games in practice 



Games are fun to work on! (and dangerous) 
 

They illustrate several important points about AI 
 – perfection is unattainable ⇒ must approximate 
– good idea to think about what to think about 
– uncertainty constrains the assignment of values to states 
– optimal decisions depend on information state, not real 
state  

 
Games are to AI as grand prix racing is to automobile design  

 

Adversarial search: summary 


