Adversarial Search

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA
How should Pac-Man move when there are ghosts?
What is adversarial search?

Adversarial search: planning used to play a game such as chess or checkers – algorithms are similar to graph search except that we plan under the assumption that our opponent will maximize his own advantage...
Some types of games

<table>
<thead>
<tr>
<th>Perfect Information</th>
<th>Deterministic</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess, checkers, go, othello</td>
<td>backgammon, monopoly</td>
<td></td>
</tr>
<tr>
<td>Imperfect Information</td>
<td>Battleships, blind tictactoe</td>
<td>Bridge, poker, scrabble, nuclear war</td>
</tr>
</tbody>
</table>
Some types of games

Chess Solved/unsolved?
Checkers Solved/unsolved?
Tic-tac-toe Solved/unsolved?
Go Solved/unsolved?

Outcome of game can be predicted from any initial state assuming both players play perfectly
Examples of adversarial search

Chess Unsolved
Checkers Solved
Tic-tac-toe Solved
Go Unsolved

Outcome of game can be predicted from any initial state assuming both players play perfectly.
Examples of adversarial search

<table>
<thead>
<tr>
<th>Game</th>
<th>Outcome</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess</td>
<td>Unsolved</td>
<td>(\sim 10^{40}) states</td>
</tr>
<tr>
<td>Checkers</td>
<td>Solved</td>
<td>(\sim 10^{20}) states</td>
</tr>
<tr>
<td>Tic-tac-toe</td>
<td>Solved</td>
<td>Less than 9! = 362k states</td>
</tr>
<tr>
<td>Go</td>
<td>Unsolved</td>
<td>?</td>
</tr>
</tbody>
</table>

Outcome of game can be predicted from any initial state assuming both players play perfectly.
Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Perfect information / imperfect information
Zero-Sum Games
Agents have opposite utilities (values on outcomes)
Lets us think of a single value that one maximizes and the other minimizes (for two player game)

\[U_A = -U_B \]
Adversarial, pure competition

General Games
Agents have independent utilities (values on outcomes)
Cooperation, indifference, competition, and more are all possible
More later on non-zero-sum games

What is a zero-sum game?
Many possible formalizations, one is:

- **States:** S (start at s_0)
- **Players:** $P=\{1...N\}$ (usually take turns)
- **Actions:** A (may depend on player / state)
- **Transition Function:** $S \times A \rightarrow S$
- **Terminal Test:** $S \rightarrow \{t,f\}$
- **Terminal Utilities:** $S \times P \rightarrow R$

Solution for a player is a **policy:** $S \rightarrow A$
Many possible formalizations, one is:

States: S (start at s_0)
Players: $P=\{1...N\}$ (usually take turns)
Actions: A (may depend on player / state)
Transition Function: $S \times A \rightarrow S$
Terminal Test: $S \rightarrow \{t,f\}$
Terminal Utilities: $S \times P \rightarrow R$

Solution for a player is a policy: $S \rightarrow A$

How is this similar/different to the definition of a standard search problem?
Deterministic games

Many possible formalizations, one is:

States: S (start at s_0)
Players: $P=\{1...N\}$ (usually take turns)
Actions: A (may depend on player / state)
Transition Function: $S \times A \rightarrow S$
Terminal Test: $S \rightarrow \{t,f\}$
Terminal Utilities: $S \times P \rightarrow R$

Solution for a player is a policy: $S \rightarrow A$

How do we solve this problem?
Adversarial search
This is a game tree for tic-tac-toe
This is a game tree for tic-tac-toe.
This is a game tree for tic-tac-toe

Max (x):

Min (o):

Terminal:

Utility: -1 0 +1
What is Minimax?

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends
What is Minimax?

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree look like in this case?
What is Minimax?

Consider a simple game:
1. you make a move
2. your opponent makes a move
3. game ends

What does the minimax tree look like in this case?
What is Minimax?

Max (you)

Min (them)

Max (you)

These are terminal utilities – assume we know what these values are
What is Minimax?

Max (you)

Min (them)

Max (you)

$$V(s) = \min_{s' \in \text{successors}(s)} V(s')$$
What is Minimax?

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]
What is Minimax?

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

Max (you)

Min (them)

This is called “backing up” the values
Deterministic, zero-sum games:

Tic-tac-toe, chess, checkers

One player maximizes result
The other minimizes result

Minimax search:

A state-space search tree
Players alternate turns
Compute each node’s minimax value: the best achievable utility against a rational (optimal) adversary
Okay – so we know how to back up values ...

... but, how do we construct the tree?

This tree is already built...
Minimax

Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Notice that we only get utilities at the bottom of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the bottom of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the *bottom* of the tree ... – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Notice that we only get utilities at the *bottom* of the tree … – therefore, DFS makes sense.
Minimax

Notice that we only get utilities at the bottom of the tree …
– therefore, DFS makes sense.
– since most games have forward progress, the distinction between tree search and graph search is less important
Minimax

\begin{verbatim}
function MINIMAX-DECISION(state) returns an action
 return \arg \max_{a \in ACTIONS(s)} MIN-VALUE\left(RESULT(state, a)\right)
\end{verbatim}

\begin{verbatim}
function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v \leftarrow -\infty
 for each a in ACTIONS(state) do
 v \leftarrow \max(v, MIN-VALUE(RESULT(s, a)))
 return v
\end{verbatim}

\begin{verbatim}
function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v \leftarrow \infty
 for each a in ACTIONS(state) do
 v \leftarrow \min(v, MAX-VALUE(RESULT(s, a)))
 return v
\end{verbatim}

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move, that is, the move that leads to the outcome with the best utility, under the assumption that the opponent plays to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state. The notation \(\arg \max_{a \in S} f(a)\) computes the element \(a\) of set \(S\) that has the maximum value of \(f(a)\).
Minimax properties

Is it always correct to assume your opponent plays optimally?
Minimax properties

Is minimax optimal? Is it complete?
Minimax properties

Is minimax optimal? Is it complete?

Time complexity = ?

Space complexity = ?
Minimax properties

Is minimax optimal? Is it complete?

Time complexity $= O(b^d)$

Space complexity $= O(bd)$
Minimax properties

Is minimax optimal? Is it complete?

Time complexity = $O(b^d)$

Space complexity = $O(bd)$

Is it practical? In chess, $b=35$, $d=100$
Is minimax optimal? Is it complete?

Time complexity = $O(b^d)$

Space complexity = $O(bd)$

Is it practical? In chess, $b=35$, $d=100$

$O(35^{100})$ is a big number...
Minimax properties

Is minimax optimal? Is it complete?

Time complexity = $O(b^d)$

Space complexity = $O(bd)$

Is it practical? In chess, $b=35$, $d=100$

$O(35^{100})$ is a big number...

So what can we do?
Evaluation functions

Key idea: cut off search at a certain depth and give the corresponding nodes an estimated value.
Key idea: cut off search at a certain depth and give the corresponding nodes an estimated value.

The evaluation function makes this estimate.

Cut it off here
Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search

Instead, search only to a limited depth in the tree
Replace terminal utilities with an evaluation function for non-terminal positions

Example:
Suppose we have 100 seconds
Can explore 10K nodes / sec
So can check 1M nodes per move

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm
Evaluation functions

How does the evaluation function make the estimate?
- depends upon domain

For example, in chess, the value of a state might equal the sum of piece values.
- a pawn counts for 1
- a rook counts for 5
- a knight counts for 3
...

...
A weighted linear evaluation function

\[\text{eval}(s) = w_1 f_1(s) + \cdots + w_n f_n(s) \]

where:
- \(f_1(s) \) is the number of pawns on the board
- \(f_2(s) \) is the number of knights on the board

We have:
- \(w_1 = 1 \) for pawns (a pawn counts for 1)
- \(w_2 = 3 \) for knights (a knight counts for 3)

For chess, typically a linear weighted sum of features:

\[\text{Eval}(s) = w_1 f_1(s) + \cdots + w_n f_n(s) \]

e.g., \(w_1 = 9 \) with \(f_1(s) = \text{number of white queens} - \text{number of black queens} \), etc.
At what depth do you run the evaluation function?

Option 1: cut off search at a fixed depth

Option 2: cut off search at particular states deeper than a certain threshold

The deeper your threshold, the less the quality of the evaluation function matters...
Alpha/Beta pruning
Alpha/Beta pruning

Diagram: A tree with nodes labeled 3, 3, 12, and 8.
Alpha/Beta pruning
Alpha/Beta pruning
Alpha/Beta pruning

We don't need to expand this node!
We don't need to expand this node! Why?
We don't need to expand this node!

Why?

We don't need to expand this node!
Alpha/Beta pruning

Max

Min

3

12

8

2

14

5

2
So, we don't need to expand these nodes in order to back up correct values!
So, we don't need to expand these nodes in order to back up correct values! That's alpha-beta pruning.
Alpha/Beta pruning: algorithm idea

General configuration (MIN version)

We’re computing the MIN-VALUE at some node \(n \)

We’re looping over \(n \)’s children

\(n \)’s estimate of the childrens’ min is dropping

Who cares about \(n \)’s value? MAX

Let \(a \) be the best value that MAX can get at any choice point along the current path from the root

If \(n \) becomes worse than \(a \), MAX will avoid it, so we can stop considering \(n \)’s other children (it’s already bad enough that it won’t be played)

MAX version is symmetric
def min-value(state, α, β):
 iniBalize v = +∞
 for each successor of state:
 v = min(v, value(successor, α, β))
 if v ≤ α return v
 α = max(α, v)
 return v

def max-value(state, α, β):
 iniBalize v = -∞
 for each successor of state:
 v = max(v, value(successor, α, β))
 if v ≥ β return v
 β = min(β, v)
 return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root
Alpha/Beta pruning

(-inf, +inf)

[Diagram]
Alpha/Beta pruning

(-inf, +inf)

(-inf, +inf)
Alpha/Beta pruning

Best value for far for MIN along path to root

(-inf, 3) → 3 → (-inf, +inf)

3
Alpha/Beta pruning

Best value for far for MIN along path to root

(-inf,3)
Alpha/Beta pruning

Best value for far for MIN along path to root

(-inf,3)
Alpha/Beta pruning

Best value for far for MAX along path to root

(3, +inf)

(-inf, 3)

3

3 12 8
Alpha/Beta pruning

((-\infty, 3)\rightarrow 3 \rightarrow 3, 12, 8 \rightarrow (3, +\infty))

((3, +\infty)\rightarrow (3, +\infty))
Alpha/Beta pruning
Alpha/Beta pruning

Prune because value (2) is out of alpha-beta range
Alpha/Beta pruning

Diagram:

- Root node with value (3, +∞)
- Left child with value (-∞, 3)
- Left child with value 3
 - Left grandchild with value 3
 - Right grandchild with value 12
 - Right grandchild with value 8
- Right child with value (3, +∞)
- Right child with value 2
 - Right greatgrandchild with value 2

Alpha/Beta pruning

\[
(-\infty, 3) \quad (3, +\infty) \quad (3, 14)
\]

\[
3 \quad 12 \quad 8
\]

\[
2
\]

\[
14
\]
Alpha/Beta pruning

(-∞, 3)

3

3 12 8

(3, +∞)

(3, +∞)

2

2

(3, 5)

5

14 5
Alpha/Beta pruning

(-\infty, 3)

3

3 12 8

3 (+\infty)

2

2

(3, 5)

14 5 2

(3, 5)
Alpha/Beta pruning: algorithm

function **Alpha-Beta-Decision**(*state*) returns an action
 return the *a* in **Actions**(*state*) maximizing **Min-Value**(**Result**(*a*, *state*))

function **Max-Value**(*state*, *α*, *β*) returns a utility value
 inputs: *state*, current state in game
 α, the value of the best alternative for **MAX** along the path to *state*
 β, the value of the best alternative for **MIN** along the path to *state*

 if **Terminal-Test**(*state*) then return **Utility**(*state*)
 v ← −∞
 for *a*, *s* in **Successors**(*state*) do
 v ← **Max**(*v*, **Min-Value**(*s*, *α*, *β*))
 if *v* ≥ *β* then return *v*
 α ← **Max**(*α*, *v*)
 return *v*

function **Min-Value**(*state*, *α*, *β*) returns a utility value
 same as **Max-Value** but with roles of *α*, *β* reversed
Alpha/Beta properties

Is it complete?
Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = $O(b^m)$

Alpha/beta time complexity $\geq O(b^{m/2})$

– the improvement w/ alpha/beta depends upon move ordering...
Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = $O(b^m)$

Alpha/beta time complexity $\geq O\left(b^{\frac{m}{2}}\right)$

- the improvement with alpha/beta depends upon move ordering...

The order in which we expand a node.
Is it complete?

How much does alpha/beta help relative to minimax?

Minimax time complexity = $O(b^m)$

Alpha/beta time complexity $\geq O(b^{m/2})$

- the improvement w/ alpha/beta depends upon move ordering...

The order in which we expand a node.

How to choose move ordering? Use IDS.
- on each iteration of IDS, use prior run to inform ordering of next node expansions.
Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!
Why wouldn’t we know the result of an action?
- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels may slip

Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under optimal play
- Max nodes as in minimax search
- Chance nodes are like min nodes but the outcome is uncertain
- Calculate their expected utilities
 - i.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-result problems as **Markov Decision Processes**
Expectimax demo (min)
Expectimax demo (exp)
def value(state):
 if the state is a terminal state: return the state’s utility
 if the next agent is MAX: return max-value(state)
 if the next agent is EXP: return exp-value(state)

def max-value(state):
 initialize v = -∞
 for each successor of state:
 v = max(v, value(successor))
 return v

def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v
def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v

v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10
Expectimax example
Expectimax pruning?
Depth-limited expectimax

Estimate of true expectimax value (which would require a lot of work to compute)
Mixing these ideas: Nondeterministic games

Backgammon
In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

```
max

chance

min
```

```
3

2

0.5

4

0.5

0

0.5

-2

0.5

5

-2
```
Algorithm for nondeterministic games

Expectiminimax gives perfect play

Just like Minimax, except we must also handle chance nodes:

if state is a Max node then
 return the highest ExpectiMinimax-Value of Successors(state)

if state is a Min node then
 return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then
 return average of ExpectiMinimax-Value of Successors(state)

...
Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice

Backgammon \approx 20 legal moves

$$\text{depth } 4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks

\Rightarrow value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval \approx world-champion level
Adversarial search: summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI
- perfection is unattainable ⇒ must approximate
- good idea to think about what to think about
- uncertainty constrains the assignment of values to states
- optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design