
Review

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA

Search

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state Goal state

What is graph search?

Graph search: find a path from start to goal

– what are the states?

– what are the actions (transitions)?

– how is this a graph?

Start state

Goal state

What is a graph?

Graph:

Edges:

Vertices:

Directed graph

What is a graph?

Graph:

Edges:

Vertices:

Undirected graph

Graph search

Given: a graph, G

Problem: find a path from A to B

– A: start state

– B: goal state

Problem formulation

A problem is defined by four items:

– initial state e.g., “at Arad”

– successor function S(x) = set of action–state pairs

e.g., S(Arad) = {⟨Arad → Zerind, Zerind⟩, . . .}

– goal test

can be explicit, e.g., x = “at Bucharest” implicit, e.g., NoDirt(x)

– path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a
goal state

Breadth first search (BFS)

fringe

Fringe
D
E
F
G

Which state gets removed next from the fringe?

What kind of a queue is this?

FIFO Queue!
(first in first out)

Breadth first search (BFS)

BFS Properties

Is BFS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of BFS?
– how many states are expanded before finding a solution?

– b: branching factor
– d: depth of shallowest solution
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

UCS

140 118
75

239 220

336 317

146229

299

Explored set: A, Z, T, S, R, L

Fringe
A
S
T
Z
T
L
F
R
C
P
M

Path Cost
0
140
118
75
146
229
239
220
336
317
299

UCS

UCS Properties

Is UCS complete?
– is it guaranteed to find a solution if one exists?

What is the time complexity of UCS?
– how many states are expanded before finding a solution?

– b: branching factor
– C*: cost of optimal solution
– e: min one-step cost
– complexity =

What is the space complexity of BFS?
– how much memory is required?

– complexity =

Is BFS optimal?
– is it guaranteed to find the best solution (shortest path)?

UCS vs BFS

Remember: UCS explores increasing
cost contours

The good: UCS is complete and
optimal!

The bad:
Explores options in every “direction”
No information about goal location

We’ll fix that soon!

Start Goal

…

c3
c2

c1

DFS

Fringe
A
B
C
F
G
H
I

Which state gets removed next from the fringe?

What kind of a queue is this? LIFO Queue!
(last in first out)

DFS Properties: Graph search version

Is DFS complete?
– only if you track the explored set in memory

What is the time complexity of DFS (graph version)?
– how many states are expanded before finding a
solution?

– complexity = number of states in the graph

What is the space complexity of DFS (graph version)?
– how much memory is required?

– complexity = number of states in the graph

Is DFS optimal?
– is it guaranteed to find the best solution (shortest path)?

This is the “graph search”
version of the algorithm

DFS: Tree search version

Suppose you don't track the explored set.
– why wouldn't you want to do that?

This is the “tree search”
version of the algorithm

What is the space complexity of DFS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a
solution?

– complexity =

Is it complete? NO!
What do we do???

IDS: Iterative deepening search

§ Idea:	get	DFS’s	space	advantage	with	BFS’s	
time	/	shallow-solution	advantages
§ Run	a	DFS	with	depth	limit	1.		If	no	
solution…

§ Run	a	DFS	with	depth	limit	2.		If	no	
solution…

§ Run	a	DFS	with	depth	limit	3.		…..

§ Isn’t	that	wastefully	redundant?
§ Generally	most	work	happens	in	the	
lowest	level	searched,	so	not	so	bad!

IDS

What is the space complexity of IDS (tree version)?
– how much memory is required?

– b: branching factor
– m: maximum depth of any node
– complexity =

What is the time complexity of DFS (tree version)?
– how many states are expanded before finding a
solution?

– complexity =

Is it complete? YES!!!

Is it optimal? Sometimes!!!

§ All	these	search	algorithms	are	the	
same	except	for	fringe	strategies
§ Conceptually,	all	fringes	are	

priority	queues	(i.e.	collections	of	
nodes	with	attached	priorities)

§ Practically,	for	DFS	and	BFS,	you	
can	avoid	the	log(n)	overhead	
from	an	actual	priority	queue,	by	
using	stacks	and	queues

§ Can	even	code	one	
implementation	that	takes	a	
variable	queuing	object

The One Queue

A	heuristic	is:
• A	function	that	estimates	how	close	a	state	is	to	a	goal
• Designed	for	a	particular	search	problem
• Examples:	Manhattan	distance,	Euclidean	distance	for	path	finding

10

5

11.2

Search heuristics

Example

Stright-line distances
to Bucharest

Greedy Search

Each time you expand a state, calculate the heuristic for
each of the states that you add to the fringe.

– heuristic:

– on each step, choose to expand the state with the
lowest heuristic value.

i.e. distance to Bucharest

This is like a guess about how far
the state is from the goal

Example: Greedy Search

Notice that this is not the optimal path!

Path: A-S-F-B

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

Greedy vs UCS

Greedy Search:
– Not optimal
– Not complete
– But, it can be very fast

UCS:
– Optimal
– Complete
– Usually very slow

A*

: a state

: minimum cost from start to

: heuristic at (i.e. an estimate of remaining
cost-to-go)

UCS: expand states in order of

Greedy: expand states in order of

A*: expand states in order of

When is A* optimal?

It depends on whether we are using the tree search
or the graph search version of the algorithm.

Optimal if h is admissible

– h(s) is an underestimate
of the true cost-to-go.

Optimal if h is consistent

– h(s) is an underestimate
of the cost of each arc.

What is “cost-to-go”?
– minimum cost required

to reach a goal state

Uniform-cost	expands	equally	in	
all	“directions”

A*	expands	mainly	toward	the	
goal,	but	does	hedge	its	bets	to	
ensure	optimality

Start Goal

Start Goal

A* vs UCS

Problem set question
AIMA 3.14. Which of the following are true and which are false? Explain your

answers.

(a) Depth-first search always expands at least as many nodes as A* search with
an admissible heuristic.

(b) h(n) = 0 is an admissible heuristic for the 8-puzzle.

(c) A* is of no use in robotics because percepts, states, and actions are
continuous.

(d) Breadth-first search is complete even if zero step costs are allowed.

(e) Assume that a rook can move on a chessboard any number of squares in a
straight line, vertically or horizontally, but cannot jump over other pieces.
Manhattan distance is an admissible heuristic for the problem of moving the
rook from square A to square B in the smallest number of moves.

Constraint Satisfaction

What is a CSP?

The space of all search
problems
– states and actions are

atomic
– goals are arbitrary sets of

states

CSPs All search problems

The space of all CSPs
– states are defined in

terms of variables
– goals are defined in terms

of constraints

A CSP is defined by:
1. a set of variables and their associated domains.
2. a set of constraints that must be satisfied.

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent
territories have the same color

Variables:

Domain of variables:

Constraints:

The constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure
to speed up search

E.g., Tasmania is an independent subproblem!

A harder CSP to represent: Cryptarithmetic

§ Variables:

§ Domains:

§ Constraints:

Backtracking search

When a node is expanded, check that each successor state
is consistent before adding it to the queue.

Does this state have any
valid successors?

Forward checking

Track domain for each unassigned variable
– initialize w/ domains from problem statement
– each time you expand a node, update domains of all unassigned variables

Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Constraint propagation

Increasing degrees of consistency

1-Consistency (Node Consistency): Each single node’s
domain has a value which meets that node’s unary
constraints

2-Consistency (Arc Consistency): For each pair of
nodes, any consistent assignment to one can be
extended to the other

K-Consistency: For each k nodes, any consistent
assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)

K-consistency

Heuristics for improving CSP performance

Minimum remaining values (MRV) heuristic:

– expand variables w/ minimum size domain first

Other heuristics such as the degree heuristic and
least constraining value (LCV) heuristic.

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such
that the remaining constraint graph is a tree

Cutset size c gives runtime O((dc)(n-c)d2), very fast for small c

Nearly tree-structured CSPs

Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

Local search: improve a single option until you can’t make it better
(no fringe!)

New successor function: local changes

Generally much faster and more memory efficient (but incomplete
and suboptimal)

Many local search algorithms (that we won’t cover): hill climbing,
simulated annealing, genetic algorithms, etc.

Aside: Local search more generally

Berkeley question
Q3. [16 pts] CSPs

(a) The graph below is a constraint graph for a CSP that has only binary constraints. Initially, no variables have
been assigned.

For each of the following scenarios, mark all variables for which the specified filtering might result in their
domain being changed.

(i) [1 pt] A value is assigned to A. Which domains might be changed as a result of running forward checking
for A?
A # B # C # D # E # F

(ii) [1 pt] A value is assigned to A, and then forward checking is run for A. Then a value is assigned to B.
Which domains might be changed as a result of running forward checking for B?
A # B # C # D # E # F

(iii) [1 pt] A value is assigned to A. Which domains might be changed as a result of enforcing arc consistency
after this assignment?
A # B # C # D # E # F

(iv) [1 pt] A value is assigned to A, and then arc consistency is enforced. Then a value is assigned to B. Which
domains might be changed as a result of enforcing arc consistency after the assignment to B?
A # B # C # D # E # F

(b) You decide to try a new approach to using arc consistency in which you initially enforce arc consistency, and
then enforce arc consistency every time you have assigned an even number of variables.

You have to backtrack if, after a value has been assigned to a variable, X, the recursion returns at X without a
solution. Concretely, this means that for a single variable with d values remaining, it is possible to backtrack
up to d times. For each of the following constraint graphs, if each variable has a domain of size d, how many
times would you have to backtrack in the worst case for each of the specified orderings?

(i) [6 pts]

A-B-C-D-E:

A-E-B-D-C:

C-B-D-E-A:

(ii) [6 pts]

A-B-C-D-E-F-G:

F-D-B-A-C-G-E:

C-A-F-E-B-G-D:

7

Adversarial search

Different types of games

Deterministic / stochastic

Two player / multi player?

Zero-sum / non zero-sum

Perfect information / imperfect information

Many possible formalizations, one is:
States: S (start at s0)
Players: P={1...N} (usually take turns)
Actions: A (may depend on player / state)
Transition Function: S x A → S
Terminal Test: S → {t,f}
Terminal Utilities: S x P → R

Solution for a player is a policy: S → A

Deterministic games

This is a game tree for tic-tac-toe

You

Them

Them

You

Utility

Deterministic, zero-sum games:

Tic-tac-toe, chess, checkers
One player maximizes result
The other minimizes result

Minimax search:

A state-space search tree
Players alternate turns
Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal	values:
part	of	the	game	

Minimax	values:
computed	recursively

Minimax

Key idea: cut off search at a certain depth and give the
corresponding nodes an estimated value.

Evaluation functions

Cut it off here

? ? ? ?

-1 -2 4 9

4

min

max

-2 4
the evaluation function
makes this estimate.

def	min-value(state	,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	value(successor,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def	max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha/Beta pruning: algorithm

Alpha/Beta pruning

3 812

3 2

(3,+inf)

(-inf,3) (3,+inf)

2

2(3,5)

14 5 2

Why wouldn’t we know the result of an action?
Explicit randomness: rolling dice
Unpredictable opponents: the ghosts respond randomly
Actions can fail: when moving a robot, wheels may slip

Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under
optimal play
Max nodes as in minimax search
Chance nodes are like min nodes but the outcome is uncertain
Calculate their expected utilities
I.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

Expectimax search

def	exp-value(state):
initialize	v	=	0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	*	value(successor)

return	v

5 78 24 -12

1/2
1/3

1/6

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)	=	10

Expectimax pseudocode

Problem set questionIn this problem set, upward triangles represent Maximizers, downward triangles represent Minimizers,
circles represent Expect nodes and squares represent terminal states.

2 Minimax

Figure 1: Minimax

(a) For the Minimax tree above, what is the value of A,B,C,D?

A: 25

B: 9

C: 6

D: 25

2

Problem set question
3 Expectimax

Figure 2: Expectimax

(a) For the Expectimax tree above, what is the value of A,B,C,D,E,F,G? (Assume uniform random
probabilities)

A:max(28, 40) = 40

B:min(34, 28) = 28

C:min(44, 40) = 40

D:(72 + 21 + 9)/3 = 34

E:(28 + 6 + 50)/3 = 28

F:(25 + 39 + 68)/3 = 44

G:(86 + 22 + 12)/3 = 40

3

Problem set question
3 Expectimax

Figure 2: Expectimax

(a) For the Expectimax tree above, what is the value of A,B,C,D,E,F,G? (Assume uniform random
probabilities)

A:max(28, 40) = 40

B:min(34, 28) = 28

C:min(44, 40) = 40

D:(72 + 21 + 9)/3 = 34

E:(28 + 6 + 50)/3 = 28

F:(25 + 39 + 68)/3 = 44

G:(86 + 22 + 12)/3 = 40

3

A:max(28, 40) = 40 B:min(34, 28) = 28 C:min(44, 40) = 40
D:(72 + 21 + 9)/3 = 34 E:(28 + 6 + 50)/3 = 28 F:(25 + 39 + 68)/3 = 44 G:(86 + 22 + 12)/3 = 40

Probability

(Discrete) random variables

What is a random variable?

Discrete random variable, X, can take on many (possibly infinite) values, called the
state space or domain A={1,2,3,4,5,6} (e.g., a die)

a is a random variable this is the domain of a

Another example:

Suppose b denotes whether it is raining or clear outside:

Probability distribution

A probability distribution associates each with a probability of occurrence,
represented by a probability mass function (pmf).
A probability table is one way to encode the distribution:

All probability distributions must satisfy the following:

1.

2.

Joint probability distributions

Given random variables:

The joint distribution is a probability
assignment to all combinations:

As with single-variate distributions, joint distributions must satisfy:

or:

1.

2.

P(X1 = x1 ∧ X2 = x2 ∧…∧ Xn = xn)Sometimes written as:

Prior or unconditional probabilities of propositions
e.g., P (Cavity = true) = 0.1 and P (Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Marginalization

Given P(T,W), calculate P(T) or P(W)...

Conditional Probabilities

Conditional probability: (if P(B)>0)

Example: Medical diagnosis

Product rule: P(A,B) = P(A ∧ B) = P(A|B)P(B)

Marginalization with conditional probabilities:

This formula/rule is called the law of of total probability

Chain rule is derived by successive application of product rule:
P(X1,...,Xn) = P(X1,...,Xn−1) P(Xn|X1,...,Xn−1)
= P(X1,...,Xn−2) P(Xn−1|X1,...,Xn−2) P(Xn|X1,...,Xn−1) = ...
= Πn

i=1 P(Xi|X1,...,Xi−1)

P(A | B) = P(A,B)
P(B)

P(A) = P
b∈B
∑ (A | B = b)P(B = b)

Normalization

Select corresponding
elts from the joint
distribution

Scale the numbers so
that they sum to 1.

The only purpose of this denominator is to make the
distribution sum to one.
– we achieve the same thing by scaling.

Independence

A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A,B) = P(A)P(B)

P(Toothache, Catch,Cavity,Weather)
= P(Toothache, Catch, Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which are
independent. What to do?

Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

Weather

Toothache Catch

Cavity decomposes into

Weather

Toothache Catch

Cavity

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch,Cavity)P(Weather)

32 entries reduced to 12; for n independent biased coins, 2n → n

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables,
none of which are independent. What to do?

Chapter 13 23

Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t
depend on whether I have a toothache:

(1)P(catch|toothache, cavity) = P(catch|cavity)
The same independence holds if I haven’t got a cavity:

(2) P(catch|toothache, ¬cavity) = P(catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:

P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity)=P(Toothache|Cavity)

P(Toothache, Catch|Cavity)=P(Toothache|Cavity)P(Catch|Cavity)

Bayes’ Rule

Thomas Bayes?

Using Bayes’ Rule

It's often easier to estimate thisBut harder to estimate this

Rational decision making requires reasoning
about one’s uncertainty and objectives

Previous section focused on uncertainty

This section will discuss how to make rational
decisions based
on a probabilistic model and utility function

Focus will be on single step decisions, next week
we will consider sequential decision problems

Making decisions under uncertainty

An agent chooses among prizes (A, B, etc.) and
lotteries, i.e., situations with uncertain prizes

Lottery L=[p,A; (1−p),B]

Notation:

A ≻ B A preferred to B

A ∼ B indifference between A and B

A ≿ B B not preferred to A

Preferences

Note: an agent can be entirely rational (consistent
with MEU) without ever representing or
manipulating utilities and probabilities

E.g., a lookup table for perfect tic-tac-toe

Although a utility function must exist, it is not unique

If Uʹ(S)=aU(S)+b and a and b are constants with
a>0, then preferences of Uʹ are the same as U

E.g., temperatures in Celcius, Fahrenheit, Kelvin

Preferences lead to utilities

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints there exists a real-
valued function U such that

U(A)≥U(B)⇔ A≿B

U(A) > U(B) ⇔ A ≻ B

U(A) = U(B) ⇔ A ∼ B

MEU principle: Choose the action that maximizes expected utility

Maximizing expected utility (MEU)

U([p1, s1;…; pn , sn]) = pi
i
∑ U(si)

Problem set question

AIMA 13.3 For each of the following statements,
either prove it is true or give a counterexample.

(a) If P(a|b,c) = P(b|a,c), then P(a|c) = P(b|c)

(b) If P(a|b,c) = P(a), then P(b|c) = P(b)

(c) If P(a|b) = P(a), then P(a|b,c) = P(a|c)

MDPs

What is an MDP?

State set:

Action Set:

Transition function:

Reward function:

An MDP (Markov Decision Process)
defines a stochastic control problem:

Probability of going from s to s'
when executing action a

Objective: calculate a strategy for acting so as to maximize
the (discounted) sum of future rewards.

– we will calculate a policy that will tell us how to act

Technically, an MDP is a 4-tuple

Example

§ A	robot	car	wants	to	travel	far,	quickly
§ Three	states:	Cool,	Warm,	Overheated
§ Two	actions:	Slow,	Fast
§ Going	faster	gets	double	reward

Example

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 A robot car wants to travel far, quickly

 Three states: Cool, Warm, Overheated

 Two actions: Slow, Fast

 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Discounting rewards

In general:

Utility

In the finite-horizon model, agent should optimize expected
reward for the next H steps:

• Continuously executing H-step optimal actions is known as
receding horizon control

In the infinite-horizon discounted model agent should
optimize:

• Discount factor 0 ≤ γ < 1 can be thought of as an interest
rate (reward now is worth more than reward in the future)

Models of optimal behavior

E rt

t=0

H

∑⎛⎝⎜
⎞
⎠⎟

E γ trt

t=0

∞

∑⎛⎝⎜
⎞
⎠⎟

Examples of optimal policies

R(s)	=	-2.0R(s)	=	-0.4

R(s)	=	-0.03R(s)	=	-0.01

Solving MDPs

§ The	value	(utility)	of	a	state	s:
V*(s)	=	expected	utility	starting	in	s	and	acting	

optimally

§ The	value	(utility)	of	a	q-state	(s,a):
Q*(s,a)	=	expected	utility	starting	out	having	

taken	action	a	from	state	s	and	(thereafter)	
acting	optimally

§ The	optimal	policy:
𝜋*(s)	=	optimal	action	from	state	s

(s,a,s’)	is	a	
transition

s	is	a	state

(s,	a)	is	a	q-
state

Solving MDPs

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 The value (utility) of a state s:
V*(s) = expected utility starting in s

and acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s
and (thereafter) acting optimally

 The optimal policy:
p*(s) = optimal action from state s

a

s

s, a

(s,a,s’) is a
transition

s,a,s’

s is a state

(s, a) is a
q-state

S'

Snapshot of Demo – Gridworld V Values

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

Snapshot of Demo – Gridworld V Values

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

Value iteration

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Value iteration

Image: Berkeley CS188 course notes (downloaded Summer 2015)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value of s at k timesteps to go:

Value iteration:

1. initialize

2.

3.

4. ….

5.

Bellman Equations and Value iteration

§ Bellman	equations	characterize the	optimal	values:

§ Value	iteration	computes them:

§ Value	iteration	is	just	a	fixed	point	solution	method
…	though	the	Vk vectors	are	also	interpretable	as	time-limited	values

Let’s imagine we have the optimal q-values:

How should we act?
Completely trivial to decide!

Important lesson: actions are easier to select from q-
values than values!

Computing actions from Q-values

Alternative approach for optimal values:
Step 1: Policy evaluation: calculate utilities for some fixed policy

(not optimal utilities!) until convergence
Step 2: Policy improvement: update policy using one-step look-

ahead with resulting converged (but not optimal!) utilities as
future values

Repeat steps until policy converges

This is policy iteration
It’s still optimal!
Can converge (much) faster under some conditions

Policy iteration

Online methods compute optimal action from current state

Expand tree up to some horizon

States reachable from the current state is typically small compared
to full state space

Heuristics and branch-and-bound techniques allow search space
to be pruned

Monte Carlo methods provide approximate solutions

Online methods

Problem set question
We assume there is a MDP which has a finite number of actions and states.

(a) What’s the condition that can make this MDP guaranteed to converge?
Why?

(b) Do the converged values change based on different initial values? Why?

(c) If the values in value iteration have just converged, is the policy converged as
well at that time? Why?

(d) If the policy in value iteration have just converged, are the values converged
as well at that time? Why?

(e) If two MDPs have the same actions and states, except the discount factor
and they both converge, will they have the same policy?

Reinforcement learning

Reinforcement Learning

We know the probabilities of moving in
each direction when an action is executed

We know the reward function

Still	assume	a	Markov	decision	process	(MDP):
A	set	of	states	s	∈ S
A	set	of	actions	(per	state)	A
A	model	T(s,a,s’)
A	reward	function	R(s,a,s’)

Still	looking	for	a	policy	𝜋(s)

New	twist:	don’t	know	T	or	R
I.e.	we	don’t	know	which	states	are	good	or	what	the	actions	do
Must	actually	try	actions	and	states	out	to	learn

Reinforcement Learning

Model-based RL

1. estimate T, R by
averaging experiences

2. solve for policy in MDP
(e.g., value iteration)

a. choose an exploration policy
– policy that enables

agent to explore all
relevant states

b. follow policy for a while

c. estimate T and R

Number of times agent reached s' by taking a from s

Set of rewards obtained when reaching s' by taking a from s

Model-based vs Model-free learning

Goal:	Compute	expected	age	of	students	in	this	class

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]

Unknown	P(A):	
“Model	Based”

Unknown	P(A):	
“Model	Free”

Why	does	this	
work?		Because	
samples	appear	
with	the	right	
frequencies.

Why	does	this	
work?		Because	
eventually	you	
learn	the	right	

model.

TD Value Learning

§ Big	idea:	learn	from	every	experience!
§Update	V(s)	each	time	we	experience	a	transition	(s,	a,	s’,	r)
§Likely	outcomes	s’ will	contribute	updates	more	often

§ Temporal	difference	learning	of	values
§Policy	still	fixed,	still	doing	evaluation!
§Move	values	toward	value	of	whatever	successor	occurs:	
running	average	(incremental	mean)

Sample	of	V(s):

Update	to	V(s):

Same	update:

TD Value Learning

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Big idea: learn from every experience!

 Update V(s) each time we experience a
transition (s, a, s’, r)

 Likely outcomes s’ will contribute updates
more often

 Temporal diBerence learning of values

 Policy still Cxed, still doing evaluation!

 Move values toward value of whatever
successor occurs: running average

p(s)

s

s, p(s)

Sample of V(s):

Update to V(s):

Same update:

s'

Full reinforcement learning: generate optimal policies
(like value iteration)
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’)
You choose the actions now
Goal: learn the optimal policy / values

In this case:
Learner makes choices!
Fundamental tradeoff: exploration vs. exploitation
This is NOT offline planning! You actually take actions in

the world and find out what happens…

Active	Reinforcement	Learning

Q-Learning

§ Q-Learning: sample-based Q-value iteration

§ Learn Q(s,a) values as you go
§Receive a sample (s,a,s’,r)
§Consider your old estimate:
§Consider your new sample estimate:

§Incorporate the new estimate into a running average:

Q-Learning:	properties

Q-learning converges to optimal Q-values if:

1. it explores every s, a, s' transition sufficiently often

2. the learning rate approaches zero (eventually)

Key insight: Q-value estimates converge even if
experience is obtained using a suboptimal policy.

This is called off-policy learning

Several schemes for forcing exploration
Simplest: random actions (ℇ-greedy)

Every time step, flip a coin
With (small) probability ℇ, act randomly
With (large) probability 1-ℇ, act on current policy

Problems with random actions?
You do eventually explore the space, but keep

thrashing around once learning is done
One solution: lower ℇ over time
Another solution: exploration functions

How	to	explore?

When to explore?
Random actions: explore a fixed amount
Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Modified	Q-Update:

Regular	Q-Update:

Exploration	functions

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

Advantage: our experience is summed up in a few powerful
numbers

Disadvantage: states may share features but actually be very
different in value!

Generalization:	Linear	value	functions

Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V /
Q best
E.g. your value functions from project 2 were probably horrible estimates of

future rewards, but they still produced good decisions
Q-learning’s priority: get Q-values close (modeling)
Action selection priority: get ordering of Q-values right (prediction)
We’ll see this distinction between modeling and prediction again later in the

course

Solution: learn policies that maximize rewards, not the values that
predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-
tune by hill climbing on feature weights

Policy	search

Problem set question

1. When learning with ε-greedy action selection, is it a good idea
to decrease ε to 0 with time? Why or why not?

2. When using features to represent the Q-function is it
guaranteed that the feature-based Q-learning finds the same
optimal Q∗ as would be found when using a tabular
representation for the Q-function?

3. Does the temporal difference learning of optimal utility values
(U) require knowledge of the transition probability tables?
Why or why not?

4. Why is temporal difference (TD) learning of Q-values (Q-
learning) superior to TD learning of values?

Bayes nets

Probabilistic inference: compute a desired
probability from other known probabilities
(e.g. conditional from joint)

We generally compute conditional probabilities
P(on time | no reported accidents) = 0.90
These represent the agent’s beliefs given the

evidence

Probabilities change with new evidence:
P(on time | no accidents, 5 a.m.) = 0.95
P(on time | no accidents, 5 a.m., raining) = 0.80
Observing new evidence causes beliefs to be

updated

We’ll cover inference techniques next class!

Probabilistic inference

Nodes:	variables	(with	domains)
Can	be	assigned	(observed)	or	unassigned	

(unobserved)

Arcs:	interactions
Similar	to	CSP	constraints
Indicate	“direct	influence” between	

variables
Formally:	encode	conditional	independence	

(more	later)

Graphical model notation

§ A	directed,	acyclic	graph,	one	node	per	random	variable
§ A	conditional	probability	table	(CPT)	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	combination	of	parents’ values

§ Bayes’ nets	implicitly	encode	joint	distributions

§ As	a	product	of	local	conditional	distributions
§ To	see	what	probability	a	BN	gives	to	a	full	assignment,	multiply	all	the	relevant	conditionals	

together:

Bayes’ net semantics

Bayesian networks
A compact representation of a joint probability distribution

I Each node corresponds to a random variable
I Arrows connect pairs of nodes, and there are no directed

cycles
I Associated with each node Xi is a distribution P(Xi | PaXi)

B S

E

D C

battery failure solar panel failure

electrical system failure

trajectory deviation communication loss

DMU 2.1.4

Representation of joint distribution

B S

E

D C

P(B) 1 1 P(S)

4 P(E | B, S)

P(D | E) 2 2 P(C | E)

I Chain rule:
P(B, S, E , D, C) = P(B)P(S)P(E | B, S)P(D | E)P(C | E)

I How many independent parameters in general? 25 ≠ 1 = 31
I How many independent parameters in Bayes net?

1 + 1 + 4 + 2 + 2 = 10

Bayesian networks can reduce the number of parameters
DMU 2.1.4

Bayes’ nets	implicitly encode	joint	distributions

As	a	product	of	local	conditional	distributions

To	see	what	probability	a	BN	gives	to	a	full	assignment,	
multiply	all	the	relevant	conditionals	together:

Example:

Probabilities in Bayes’ nets

Burglary Earthquake

Alarm

John	
calls

Mary
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

Example: Alarm network

§ How	big	is	a	joint	distribution	over	N	
Boolean	variables?

2N

§ How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?

O(N	*	2k+1)

§ Both	give	you	the	power	to	calculate

§ BNs:	Huge	space	savings!

§ Also	easier	to	elicit	local	CPTs

§ Also	faster	to	answer	queries	(coming)

Size of a Bayes’ net

§ Important	question	about	a	BN:
§ Are	two	nodes	independent	given	certain	evidence?
§ If	yes,	can	prove	using	algebra	(tedious	in	general)
§ If	no,	can	prove	with	a	counter	example
§ Example:

§ Question:	are	X	and	Z	necessarily	independent?
§ Answer:	no.		Example:	low	pressure	causes	rain,	which	causes	traffic.
§ X	can	influence	Z,	Z	can	influence	X	(via	Y)
§ Addendum:	they	could	be	independent:	how?

Independence in a Bayes’ net

Two sets of nodes, A and B, are conditionally independent given node set C are called
d-separated in the Bayes net if for any path between A and B:

• The path contains a chain of nodes, A → X → B, such that X is in C

• The path contains a fork, A ← X → B, such that X is in C

• The path contains a v-structure, A → X ← B, such that X is not in C
and no descendant of X is in C

Markov blanket: the parents, the children and the parents of the children

• A node is independent of all other nodes in the graph given its
Markov blanket

Independence concepts: General case

§ We	want	to	track	multiple	variables	over	time,	using	multiple	sources	
of	evidence

§ Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	time
§ Variables	from	time	t can	condition	on	those	from	t-1

§ Dynamic	Bayes	nets	are	a	generalization	of	HMMs

Dynamic	Bayes	Nets	(DBNs)

§ Examples:
§ Posterior	probability

§ Most	likely	explanation:

Inference
§ Inference:	calculating	some	

useful	quantity	from	a	joint	
probability	distribution

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

Burglar alarm example

General case:

Evidence variables:
Query* variable:
Hidden variables:

All	
variables

*	Works	fine	with	
multiple	query	
variables,	too

§ We	want:

§ Step	1:	Select	the	
entries	consistent	with	
the	evidence

§ Step	2:	Sum	out	H	to	get	joint	of	
query	and	evidence

§ Step	3:	Normalize

⇥ 1

Z

Inference by enumeration

§ Why	is	inference	by	enumeration	so	slow?
§ You	join	up	the	whole	joint	distribution	

before	you	sum	out	the	hidden	variables

§ Idea:	interleave	joining	and	marginalizing!
§ Called	“Variable	Elimination”
§ Sum	right-to-left,	storing	intermediate	results	

(factors)	to	avoid	recomputation
§ Still	NP-hard,	but	usually	much	faster	than	

inference	

§ First	we’ll	need	some	new	notation:	factors

Inference by enumeration vs. variable elimination

Thus far: Multiple join, multiple eliminate (= inference by enumeration)

Marginalizing early (= variable elimination)

§ Query:

§ Start	with	initial	factors:
§ Local	CPTs	(but	instantiated	by	evidence)

§ While	there	are	still	hidden	variables	
(not	Q	or	evidence):
§ Pick	a	hidden	variable	H
§ Join	all	factors	mentioning	H
§ Eliminate	(sum	out)	H

§ Join	all	remaining	factors	and	normalize

General variable elimination

§ The	computational	and	space	complexity	of	variable	elimination	is	
determined	by	the	largest	factor

§ The	elimination	ordering	can	greatly	affect	the	size	of	the	largest	
factor
§ E.g.,	2n vs.	2

§ Does	there	always	exist	an	ordering	that	only	results	in	small	factors?
§ No!

VE: Computation and space complexity

Direct sampling in a Bayes Net

Approximate inference through sampling

Problem set question
It’s election season, and the chosen president may or may not be the Green Party candidate.
Pundits believe that Green Party presidents are more likely to legalize marijuana than
candidates from other parties, but legalization could occur under any administration. Armed
with the power of probability, the analysts model the situation with the Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t
seem to find out who won the election. What is the conditional probability P (+g| + m) that
a Green Party president was elected?

CS 5100: Foundations of Artificial Intelligence (Fall 2016) Christopher Amato
Student(s): Nov. 3, 2016

Bayes Nets, Variable Elimination

1 Green Party

It’s election season, and the chosen president may or may not be the Green Party candidate. Pundits believe
that Green Party presidents are more likely to legalize marijuana than candidates from other parties, but
legalization could occur under any administration. Armed with the power of probability, the analysts model
the situation with the Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t seem to
find out who won the election. What is the conditional probability P (+g| + m) that a Green Party
president was elected?

1

Problem set question
It’s election season, and the chosen president may or may not be the Green Party candidate. Pundits believe that
Green Party presidents are more likely to legalize marijuana than candidates from other parties, but legalization
could occur under any administration. Armed with the power of probability, the analysts model the situation with the
Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t seem to find out who
won the election. What is the conditional probability P (+g| + m) that a Green Party president was elected?

CS 5100: Foundations of Artificial Intelligence (Fall 2016) Christopher Amato
Student(s): Nov. 3, 2016

Bayes Nets, Variable Elimination

1 Green Party

It’s election season, and the chosen president may or may not be the Green Party candidate. Pundits believe
that Green Party presidents are more likely to legalize marijuana than candidates from other parties, but
legalization could occur under any administration. Armed with the power of probability, the analysts model
the situation with the Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t seem to
find out who won the election. What is the conditional probability P (+g| + m) that a Green Party
president was elected?

1

CS 5100: Foundations of Artificial Intelligence (Fall 2016) Christopher Amato
Student(s): SOLUTION Nov. 3, 2016

Bayes Nets, Variable Elimination

1 Green Party

It’s election season, and the chosen president may or may not be the Green Party candidate. Pundits believe
that Green Party presidents are more likely to legalize marijuana than candidates from other parties, but
legalization could occur under any administration. Armed with the power of probability, the analysts model
the situation with the Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

Sol:

P (+m) = P (+m|+ g)P (+g) + P (+m|� g)P (�g)

P (+m) = 0.8 ⇤ 0.25 + 0.1 ⇤ 0.75

P (+m) = 0.275

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t seem to
find out who won the election. What is the conditional probability P (+g| + m) that a Green Party
president was elected?

Sol:

P (+g|+m) =
P (+m|+ g)P (+g)

P (+m)

P (+g|+m) =
0.8 ⇤ 0.25
0.275

P (+g|+m) = 0.727

1

CS 5100: Foundations of Artificial Intelligence (Fall 2016) Christopher Amato
Student(s): SOLUTION Nov. 3, 2016

Bayes Nets, Variable Elimination

1 Green Party

It’s election season, and the chosen president may or may not be the Green Party candidate. Pundits believe
that Green Party presidents are more likely to legalize marijuana than candidates from other parties, but
legalization could occur under any administration. Armed with the power of probability, the analysts model
the situation with the Bayes Net below.

1. What is the marginal probability that marijuana is legalized P (+m)?

Sol:

P (+m) = P (+m|+ g)P (+g) + P (+m|� g)P (�g)

P (+m) = 0.8 ⇤ 0.25 + 0.1 ⇤ 0.75

P (+m) = 0.275

2. News agencies air 24/7 coverage of the recent legalization of marijuana (+m), but you can’t seem to
find out who won the election. What is the conditional probability P (+g| + m) that a Green Party
president was elected?

Sol:

P (+g|+m) =
P (+m|+ g)P (+g)

P (+m)

P (+g|+m) =
0.8 ⇤ 0.25
0.275

P (+g|+m) = 0.727

1

(Hidden) Markov models

Markov Processes

transitions

State at time=1
State at time=2

Since this is a Markov process, we assume transitions are Markov:

Markov assumption:

Process model:

Markov Processes

How do we calculate:

In general:

Process model

Simulating dynamics forward

Joint distribution:

But, suppose we want to predict the state at time T, given a prior
distribution at time 1?

...

Hidden Markov Models (HMMs)

State, , is assumed to be unobserved

However, you get to make one observation, , on each
timestep.

Called an “emission”

HMM Filtering

Given a prior distribution, , and a series
of observations, , calculate the
posterior distribution:

Two steps:

Process update Observation update

Process update

This is just forward simulation of the Markov Model

Observation update

Where is a normalization factor

§ Particles:	track	samples	of	states	rather	than	an	explicit	distribution

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Recap:	Particle	Filtering

Problem set question
2 Hidden Markov Model

Consider the following Hidden Markov Model:

Suppose that O1 = A and O2 = B is observed. Use the Forward algorithm to compute the probability
distribution Pr(X2, O1 = A,O2 = B). Show your work.

X1 P (X1)
0 0.25
1 0.75

X
t

X
t+1 Pr(X

t+1|Xt

)
0 0 0.3
0 1 0.7
1 0 0.6
1 1 0.4

X
t

O
t

Pr(O
t

|X
t

)
0 A 0.8
0 B 0.2
1 A 0.5
1 B 0.5

Solution:
Forward algorithm: P (x

t

, e1:t) = P (e
t

|x
t

)
P

xt�1
P (x

t

|x
t�1)P (x

t�1, e1:t�1)

P (X2, O1 = A,O2 = B) = P (O2 = B|X2)
P

X1
P (X2|X1)P (X1, O1 = A)

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.5, 0.2 > ⇤((< 0.4, 0.6 > ⇤0.5 ⇤ 0.75)
X1=1 + (< 0.7, 0.3 > ⇤0.8 ⇤ 0.25)

X1=0)

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.5⇤ (0.4⇤0.5⇤0.75+0.7⇤0.8⇤0.25), 0.2⇤ (0.6⇤0.5⇤0.75+0.3⇤0.8⇤0.25) >

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.145, 0.057 >; ⌘ = 4.95,P =< 0.71775, 0.28215 >

4

Problem set question
2 Hidden Markov Model

Consider the following Hidden Markov Model:

Suppose that O1 = A and O2 = B is observed. Use the Forward algorithm to compute the probability
distribution Pr(X2, O1 = A,O2 = B). Show your work.

X1 P (X1)
0 0.25
1 0.75

X
t

X
t+1 Pr(X

t+1|Xt

)
0 0 0.3
0 1 0.7
1 0 0.6
1 1 0.4

X
t

O
t

Pr(O
t

|X
t

)
0 A 0.8
0 B 0.2
1 A 0.5
1 B 0.5

Solution:
Forward algorithm: P (x

t

, e1:t) = P (e
t

|x
t

)
P

xt�1
P (x

t

|x
t�1)P (x

t�1, e1:t�1)

P (X2, O1 = A,O2 = B) = P (O2 = B|X2)
P

X1
P (X2|X1)P (X1, O1 = A)

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.5, 0.2 > ⇤((< 0.4, 0.6 > ⇤0.5 ⇤ 0.75)
X1=1 + (< 0.7, 0.3 > ⇤0.8 ⇤ 0.25)

X1=0)

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.5⇤ (0.4⇤0.5⇤0.75+0.7⇤0.8⇤0.25), 0.2⇤ (0.6⇤0.5⇤0.75+0.3⇤0.8⇤0.25) >

P (X2, O1 = A,O2 = B) = ⌘⇤ < 0.145, 0.057 >; ⌘ = 4.95,P =< 0.71775, 0.28215 >

4

Classification

Supervised learning

Given: Training set {(xi, yi) | i = 1 … N}, given a labeled set of input-output pairs D =
{(xi, yi)}i

Find: A good approximation to f : X → Y Function approximation

Examples: what are X and Y ?

Spam Detection – Map email to {Spam, Not Spam} Binary Classification

Digit recognition – Map pixels to {0,1,2,3,4,5,6,7,8,9} Multiclass Classification

Stock Prediction – Map new, historic prices, etc. to (the real numbers) Regression

Probabilistic Classification

Want a probability distribution over possible labels, given the input
vector x and training set D by P(y|x,D)

In general, this represents a vector of length C

Calculate a “best guess”:

This corresponds to the most probable class label (the mode of the
distribution)

ŷ = f̂ (x) = argmaxc=1
C P(y = c | x,D)

Model-Based Classification

§ Model-based	approach
§ Build	a	model	(e.g.	Bayes’ net)	where	both	

the	label	and	features	are	random	variables
§ Instantiate	any	observed	features
§ Query	for	the	distribution	of	the	label	

conditioned	on	the	features

§ Challenges
§ What	structure	should	the	BN	have?
§ How	should	we	learn	its	parameters?

General Naïve Bayes

§ A	general	Naive	Bayes	model:

§ We	only	have	to	specify	how	each	feature	depends	on	the	class
§ Total	number	of	parameters	is	linear in	n
§ Model	is	very	simplistic,	but	often	works	anyway

|Y|	parameters

n	x	|F|	x	|Y|	
parameters

|Y|	x	|F|n
values

General	Naïve	Bayes

§ What	do	we	need	in	order	to	use	Naïve	Bayes?

§ Inference	method	(we	just	saw	this	part)
§ Start	with	a	bunch	of	probabilities:	P(Y)	and	the	P(Fi|Y)	tables
§ Use	standard	inference	to	compute	P(Y|F1…Fn)
§ Nothing	new	here

§ Estimates	of	local	conditional	probability	tables
§ P(Y),	the	prior	over	labels
§ P(Fi|Y)	for	each	feature	(evidence	variable)
§ These	probabilities	are	collectively	called	the	parameters of	the	model	and	

denoted	by 𝜃
§ Up	until	now,	we	assumed	these	appeared	by	magic,	but…
§ …they	typically	come	from	training	data	counts:	we’ll	look	at	this	soon

Parameter	Estimation

§ Estimating	the	distribution	of	a	random	variable

§ Elicitation: ask	a	human	(why	is	this	hard?)

§ Empirically:	use	training	data	(learning!)
§ E.g.:	for	each	outcome	x,	look	at	the	empirical	rate of	that	value:

§ This	is	the	estimate	that	maximizes	the	likelihood	of	the	data

Maximum	Likelihood?

§ Relative	frequencies	are	the	maximum	likelihood	estimates

§ Another	option	is	to	consider	the	most	likely	parameter	value	given	the	data

????

Linear	Classifiers

§ Inputs	are	feature	values
§ Each	feature	has	a	weight
§ Sum	is	the	activation

§ If	the	activation	is:
§ Positive,	output	+1
§ Negative,	output	-1 𝚺

f1
f2
f3

w1

w2

w3
>0?

Weights
§ Binary	case:	compare	features	to	a	weight	vector
§ Learning:	figure	out	the	weight	vector	from	examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product
positive means the
positive class

Binary	Decision	Rule

§ In	the	space	of	feature	vectors
§ Examples	are	points
§ Any	weight	vector	is	a	hyperplane
§ Decision	boundary:

§ One	side	corresponds	to	Y=+1
§ Other	corresponds	to	Y=-1

BIAS : -
3
free :
4
money :
2
...

m
on

ey
0 1

0

1

2

free

+1	=	
SPAM

-1	=	HAM

Learning:	Binary	Perceptron

§ Start	with	weights	=	0
§ For	each	training	instance:

§ Classify	with	current	weights

§ If	correct	(i.e.,	y=y*),	no	change!

§ If	wrong:	adjust	the	weight	vector

Multiclass	Decision	Rule

§ If	we	have	multiple	classes:
§ A	weight	vector	for	each	class:

§ Score	(activation)	of	a	class	y:

§ Prediction	highest	score	wins

Binary	=	multiclass	where	the	negative	class	has	
weight	zero

Learning:	Multiclass	Perceptron

§ Start	with	all	weights	=	0
§ Pick	up	training	examples	one	by	one
§ Predict	with	current	weights

§ If	correct,	no	change!
§ If	wrong:	lower	score	of	wrong	answer,	

raise	score	of	right	answer

Problems	with	the	Perceptron

§ Noise:	if	the	data	isn’t	separable,	
weights	might	thrash
§ Averaging	weight	vectors	over	time	can	

help	(averaged	perceptron)

§ Mediocre	generalization:	finds	a	
“barely” separating	solution

§ Overtraining:	test	/	held-out	accuracy	
usually	rises,	then	falls
§ Overtraining	is	a	kind	of	overfitting

Fixing	the	Perceptron

§ Idea:	adjust	the	weight	update	to	mitigate	these	effects

§ MIRA*:	choose	an	update	size	that	fixes	the	current	
mistake…

§ …	but,	minimizes	the	change	to	w

§ The	+1	helps	to	generalize

*	Margin	Infused	Relaxed	Algorithm

Support	Vector	Machines

§ Maximizing	the	margin:	good	according	to	intuition,	theory,	practice
§ Only	support	vectors	matter;	other	training	examples	are	ignorable	
§ Support	vector	machines	(SVMs)	find	the	separator	with	max	margin
§ Basically,	SVMs	are	MIRA	where	you	optimize	over	all	examples	at	once

MIRA

SVM

Problem set question
Now you first decide to use a perceptron to classify your data. This problem will
use the multi-class formulation even though there are only two classes. Suppose
you directly use the scores given as features, together with a bias feature. That
is f0 = 1, f1 = score given by A and f2 = score given by B. You want to train the
perceptron on the training data in the table below.

• Which is the first training instance at which you update your weights? Why?

• Write the updated weights after the first update.

2. Now you first decide to use a perceptron to classify your data. This problem will use the multi-class
formulation even though there are only two classes. Suppose you directly use the scores given above
as features, together with a bias feature. That is f0 = 1, f1 = score given by A and f2 = score given
by B. You want to train the perceptron on the training data in the table below.

Profit Weights Weights after 1st update
Yes [�1, 0, 0]
No [+1, 0, 0]

• Which is the first training instance at which you update your weights? Why?

• Write the updated weights after the first update.

3. More generally, irrespective of the training data, you want to know if your features are powerful enough
to allow you to handle a range of scenarios. Some scenarios are given below. Circle those scenarios for
which a perceptron using the features above can indeed perfectly classify the data:

i Your reviewers are art critics. Your movie will succeed if and only if each reviewer gives either a
score of 2 or a score of 3.

ii Your reviewers are awesome: if the total of their scores is more than 8, then the movie will
definitely be a success and otherwise it will fail.

iii Your reviewers have weird but di↵erent tastes. Your movie will succeed if and only if both re-
viewers agree.

You decide to use a di↵erent set of features. Consider the following feature space:

f0 = 1 (The bias feature)

f1A = 1 if score given by A is 1, 0 otherwise

f1B = 1 if score given by B is 1, 0 otherwise

f2A = 1 if score given by A is 2, 0 otherwise

f2B = 1 if score given by B is 2, 0 otherwise

· · ·

f5B = 1 if score given by B is 5, 0 otherwise

2

CS 5100: Foundations of Artificial Intelligence (Fall 2016) Christopher Amato
Student(s): Nov. 10, 2016

Naive Bayes and Perceptrons

1 Movie Prediction

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to
read a script you have and rate it on a scale of 1 to 5 (so the critic ratings are the features to be used and
that we are trying to predict profitability). The critics are not perfect; here are five data points including
the critics scores and the performance of the movie:

Movie Name A B Profit?
Meet Pac Man 3 2 Yes

Pixels 1 1 No
The Ghostly Adventures 4 5 No

Pac Baby 2 4 Yes
Pac is Back 3 4 Yes

1. First, you would like to examine the linear separability of the data. Plot the data on the 2D plane.
Label profitable movies with + and non-profitable movies with - and determine if the data are linearly
separable.

1

